
ROBOTICS

Technical reference manual
RAPID Instructions, Functions and Data
types

Trace back information:
Workspace R18-2 version a11
Checked in 2018-10-11
Skribenta version 5.3.008

Technical reference manual
RAPID Instructions, Functions and Data types

RobotWare 6.08

Document ID: 3HAC050917-001
Revision: H

© Copyright 2004-2018 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to
persons or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2004-2018 ABB. All rights reserved.
Specifications subject to change without notice.

ABB AB, Robotics
Robotics and Motion
Se-721 68 Västerås

Sweden

Table of contents
17Overview of this manual ...

211 Instructions
211.1 AccSet - Reduces the acceleration ...
241.2 ActEventBuffer - Activation of event buffer ...
261.3 ActUnit - Activates a mechanical unit ..
281.4 Add - Adds a numeric value ..
301.5 AliasCamera - Define camera device with alias name ...
321.6 AliasIO - Define I/O signal with alias name ...
351.7 AliasIOReset - Resetting I/O signal with alias name ...
371.8 ":=" - Assigns a value ...
391.9 BitClear - Clear a specified bit in a byte or dnum data ..
421.10 BitSet - Set a specified bit in a byte or dnum data ..
451.11 BookErrNo - Book a RAPID system error number ..
471.12 Break - Break program execution ...
481.13 CallByVar - Call a procedure by a variable ...
501.14 CamFlush - Removes the collection data for the camera ...
511.15 CamGetParameter - Get different named camera parameters
531.16 CamGetResult - Gets a camera target from the collection ...
551.17 CamLoadJob - Load a camera task into a camera ...
571.18 CamReqImage - Order the camera to acquire an image ..
591.19 CamSetExposure - Set camera specific data ..
611.20 CamSetParameter - Set different named camera parameters
631.21 CamSetProgramMode - Orders the camera to go to program mode
641.22 CamSetRunMode - Orders the camera to run mode ...
651.23 CamStartLoadJob - Start load of a camera task into a camera
671.24 CamWaitLoadJob – Wait until a camera task is loaded ...
691.25 CancelLoad - Cancel loading of a module ..
711.26 CapAPTrSetup - Setup an At-Point-Tracker ..
741.27 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals
771.28 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output signals
801.29 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent variables
831.30 CapC - Circular CAP motion instruction ...
931.31 CapCondSetDO - Set a digital output signal at TCP stop ...
951.32 CapEquiDist - Generate equidistant event ..
971.33 CapL - Linear CAP motion instruction ...
1061.34 CapLATrSetup - Set up a Look-Ahead-Tracker ..
1111.35 CapNoProcess - Run CAP without process ..
1131.36 CapRefresh - Refresh CAP data ...
1151.37 CapWeaveSync - set up signals and levels for weave synchronization
1181.38 CheckProgRef - Check program references ...
1201.39 CirPathMode - Tool reorientation during circle path ...
1261.40 Clear - Clears the value ..
1271.41 ClearIOBuff - Clear input buffer of a serial channel ..
1291.42 ClearPath - Clear current path ...
1331.43 ClearRawBytes - Clear the contents of rawbytes data ..
1351.44 ClkReset - Resets a clock used for timing ..
1361.45 ClkStart - Starts a clock used for timing ...
1381.46 ClkStop - Stops a clock used for timing ...
1391.47 Close - Closes a file or serial channel ..
1401.48 CloseDir - Close a directory ...
1411.49 Comment - Comment ...
1421.50 Compact IF - If a condition is met, then... (one instruction) ..
1431.51 ConfJ - Controls the configuration during joint movement ...
1451.52 ConfL - Monitors the configuration during linear movement
1481.53 CONNECT - Connects an interrupt to a trap routine ...
1501.54 ContactL - Linear contact movement ...

Technical reference manual - RAPID Instructions, Functions and Data types 5
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

1551.55 CopyFile - Copy a file ...
1571.56 CopyRawBytes - Copy the contents of rawbytes data ...
1591.57 CornerPathWarning - Show or hide corner path warnings ...
1611.58 CorrClear - Removes all correction generators ...
1621.59 CorrCon - Connects to a correction generator ...
1671.60 CorrDiscon - Disconnects from a correction generator ...
1681.61 CorrWrite - Writes to a correction generator ...
1701.62 DeactEventBuffer - Deactivation of event buffer ..
1721.63 DeactUnit - Deactivates a mechanical unit ...
1741.64 Decr - Decrements by 1 ..
1761.65 DropSensor - Drop object on sensor ...
1771.66 DropWObj - Drop work object on conveyor ...
1781.67 EGMActJoint - Prepare an EGM movement for a joint target
1811.68 EGMActMove - Prepare an EGM movement with path correction
1831.69 EGMActPose - Prepare an EGM movement for a pose target
1871.70 EGMGetId - Gets an EGM identity ..
1881.71 EGMMoveC - Circular EGM movement with path correction
1921.72 EGMMoveL - Linear EGM movement with path correction ...
1951.73 EGMReset - Reset an EGM process ...
1961.74 EGMRunJoint - Perform an EGM movement with a joint target
1991.75 EGMRunPose - Perform an EGM movement with a pose target
2021.76 EGMSetupAI - Setup analog input signals for EGM ..
2051.77 EGMSetupAO - Setup analog output signals for EGM ..
2081.78 EGMSetupGI - Setup group input signals for EGM ...
2111.79 EGMSetupLTAPP - Setup the LTAPP protocol for EGM ..
2131.80 EGMSetupUC - Setup the UdpUc protocol for EGM ...
2151.81 EGMStop - Stop an EGM movement ...
2171.82 EGMStreamStart - start EGM position streaming ...
2191.83 EGMStreamStop - stop EGM position streaming ...
2201.84 EGMWaitCond - wait for EGM process ..
2221.85 EOffsOff - Deactivates an offset for additional axes ...
2231.86 EOffsOn - Activates an offset for additional axes ...
2251.87 EOffsSet - Activates an offset for additional axes using known values
2271.88 EraseModule - Erase a module ..
2291.89 ErrLog - Write an error message ..
2331.90 ErrRaise - Writes a warning and calls an error handler ...
2371.91 ErrWrite - Write an error message ..
2391.92 EXIT - Terminates program execution ...
2401.93 ExitCycle - Break current cycle and start next ...
2421.94 FitCircle - Fits a circle to 3D-points ...
2461.95 FOR - Repeats a given number of times ..
2481.96 FricIdInit - Initiate friction identification ..
2491.97 FricIdEvaluate - Evaluate friction identification ..
2521.98 FricIdSetFricLevels - Set friction levels after friction identification
2541.99 GetDataVal - Get the value of a data object ..
2571.100 GetJointData - Get joint specific data ..
2591.101 GetSysData - Get system data ...
2621.102 GetTrapData - Get interrupt data for current TRAP ..
2641.103 GOTO - Goes to a new instruction ..
2661.104 GripLoad - Defines the payload for a robot ...
2681.105 HollowWristReset - Reset hollow wrist ..
2701.106 ICap - connect CAP events to trap routines ..
2751.107 IDelete - Cancels an interrupt ..
2761.108 IDisable - Disables interrupts ...
2771.109 IEnable - Enables interrupts ..
2781.110 IError - Orders an interrupt on errors ...
2811.111 IF - If a condition is met, then ...; otherwise
2831.112 Incr - Increments by 1 ..
2851.113 IndAMove - Independent absolute position movement ...

6 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

2891.114 IndCMove - Independent continuous movement ..
2931.115 IndDMove - Independent delta position movement ..
2961.116 IndReset - Independent reset ..
3011.117 IndRMove - Independent relative position movement ...
3051.118 InitSuperv - Reset all supervision for CAP ..
3061.119 InvertDO - Inverts the value of a digital output signal ...
3081.120 IOBusStart - Start of I/O network ..
3091.121 IOBusState - Get current state of I/O network ...
3121.122 IODisable - Deactivate an I/O device ...
3151.123 IOEnable - Activate an I/O device ...
3181.124 IPathPos - Get center line robtarget when weaving ..
3201.125 IPers - Interrupt at value change of a persistent variable ...
3221.126 IRMQMessage - Orders RMQ interrupts for a data type ..
3261.127 ISignalAI - Interrupts from analog input signal ..
3361.128 ISignalAO - Interrupts from analog output signal ...
3401.129 ISignalDI - Orders interrupts from a digital input signal ...
3431.130 ISignalDO - Interrupts from a digital output signal ..
3461.131 ISignalGI - Orders interrupts from a group of digital input signals
3491.132 ISignalGO - Orders interrupts from a group of digital output signals
3521.133 ISleep - Deactivates an interrupt ..
3541.134 ITimer - Orders a timed interrupt ..
3561.135 IVarValue - orders a variable value interrupt ...
3591.136 IWatch - Activates an interrupt ...
3611.137 Label - Line name ..
3621.138 Load - Load a program module during execution ...
3661.139 LoadId - Load identification of tool or payload ...
3721.140 MakeDir - Create a new directory ...
3731.141 ManLoadIdProc - Load identification of IRBP manipulators
3771.142 MatrixSolve - Solve a linear equation system ..
3801.143 MatrixSolveQR - Computes a QR-factorization ..
3821.144 MatrixSVD - Computes a singular value decomposition ..
3851.145 MechUnitLoad - Defines a payload for a mechanical unit ..
3901.146 MotionProcessModeSet - Set motion process mode ..
3921.147 MotionSup - Deactivates/Activates motion supervision ...
3951.148 MoveAbsJ - Moves the robot to an absolute joint position ...
4021.149 MoveC - Moves the robot circularly ...
4101.150 MoveCAO - Moves the robot circularly and sets analog output in the corner
4151.151 MoveCDO - Moves the robot circularly and sets digital output in the corner
4201.152 MoveCGO - Moves the robot circularly and set a group output signal in the corner
4251.153 MoveCSync - Moves the robot circularly and executes a RAPID procedure
4301.154 MoveExtJ - Move one or several mechanical units without TCP
4331.155 MoveJ - Moves the robot by joint movement ...
4391.156 MoveJAO - Moves the robot by joint movement and sets analog output in the corner
4431.157 MoveJDO - Moves the robot by joint movement and sets digital output in the corner

447
1.158 MoveJGO - Moves the robot by joint movement and set a group output signal in the

corner ...
4521.159 MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
4571.160 MoveL - Moves the robot linearly ..
4631.161 MoveLAO - Moves the robot linearly and sets analog output in the corner
4671.162 MoveLDO - Moves the robot linearly and sets digital output in the corner
4711.163 MoveLGO - Moves the robot linearly and sets group output signal in the corner
4761.164 MoveLSync - Moves the robot linearly and executes a RAPID procedure
4811.165 MovePnP - Moves the robot along a pick and place path ..
4911.166 MToolRotCalib - Calibration of rotation for moving tool ...
4941.167 MToolTCPCalib - Calibration of TCP for moving tool ..
4971.168 Open - Opens a file or serial channel ..
5011.169 OpenDir - Open a directory ...
5031.170 PackDNHeader - Pack DeviceNet Header into rawbytes data
5061.171 PackRawBytes - Pack data into rawbytes data ..

Technical reference manual - RAPID Instructions, Functions and Data types 7
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

5101.172 PathAccLim - Reduce TCP acceleration along the path ..
5141.173 PathRecMoveBwd - Move path recorder backwards ..
5201.174 PathRecMoveFwd - Move path recorder forward ...
5231.175 PathRecStart - Start the path recorder ...
5261.176 PathRecStop - Stop the path recorder ...
5291.177 PathResol - Override path resolution ..
5311.178 PDispOff - Deactivates program displacement ..
5321.179 PDispOn - Activates program displacement ...
5371.180 PDispSet - Activates program displacement using known frame
5401.181 ProcCall - Calls a new procedure ...
5421.182 ProcerrRecovery - Generate and recover from process-move error
5481.183 PrxActivAndStoreRecord - Activate and store the recorded profile data
5501.184 PrxActivRecord - Activate the recorded profile data ...
5521.185 PrxDbgStoreRecord - Store and debug the recorded profile data
5531.186 PrxDeactRecord - Deactivate a record ...
5541.187 PrxResetPos - Reset the zero position of the sensor ..
5551.188 PrxResetRecords - Reset and deactivate all records ..
5561.189 PrxSetPosOffset - Set a reference position for the sensor ...
5571.190 PrxSetRecordSampleTime - Set the sample time for recording a profile
5581.191 PrxSetSyncalarm - Set sync alarm behavior ...
5591.192 PrxStartRecord - Record a new profile ..
5611.193 PrxStopRecord - Stop recording a profile ...
5621.194 PrxStoreRecord - Store the recorded profile data ..
5641.195 PrxUseFileRecord - Use the recorded profile data ...
5651.196 PulseDO - Generates a pulse on a digital output signal ..
5681.197 RAISE - Calls an error handler ...
5711.198 RaiseToUser - Propagates an error to user level ...
5741.199 ReadAnyBin - Read data from a binary channel or file ..
5771.200 ReadBlock - read a block of data from device ...
5791.201 ReadCfgData - Reads attribute of a system parameter ...
5831.202 ReadErrData - Gets information about an error ...
5861.203 ReadRawBytes - Read rawbytes data ..
5891.204 ReadVarArr - Read multiple variables from a sensor device
5911.205 RemoveAllCyclicBool - Remove all Cyclic bool conditions ..
5931.206 RemoveCyclicBool - Remove a Cyclic bool condition ...
5951.207 RemoveDir - Delete a directory ..
5971.208 RemoveFile - Delete a file ...
5981.209 RemoveSuperv - Remove condition for one signal ...
6001.210 RenameFile - Rename a file ..
6021.211 Reset - Resets a digital output signal ..
6041.212 ResetAxisDistance - Reset the traversed distance information for the axis
6061.213 ResetAxisMoveTime - Reset the move time counter of the axis
6081.214 ResetPPMoved - Reset state for the program pointer moved in manual mode
6091.215 ResetRetryCount - Reset the number of retries ...
6101.216 RestoPath - Restores the path after an interrupt ..
6121.217 RETRY - Resume execution after an error ..
6131.218 RETURN - Finishes execution of a routine ...
6151.219 Rewind - Rewind file position ...
6161.220 RMQEmptyQueue - Empty RAPID Message Queue ...
6181.221 RMQFindSlot - Find a slot identity from the slot name ..
6201.222 RMQGetMessage - Get an RMQ message ...
6231.223 RMQGetMsgData - Get the data part from an RMQ message
6261.224 RMQGetMsgHeader - Get header information from an RMQ message
6291.225 RMQReadWait - Returns message from RMQ ...
6321.226 RMQSendMessage - Send an RMQ data message ..
6361.227 RMQSendWait - Send an RMQ data message and wait for a response
6411.228 SafetyControllerSyncRequest - Initiation of hardware synchronization procedure
6421.229 Save - Save a program module ..
6451.230 SaveCfgData - Save system parameters to file ..

8 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

6471.231 SCWrite - Send variable data to a client application ...
6501.232 SearchC - Searches circularly using the robot ..
6601.233 SearchExtJ - Search with one or several mechanical units without TCP
6681.234 SearchL - Searches linearly using the robot ...
6801.235 SenDevice - connect to a sensor device ..
6821.236 Set - Sets a digital output signal ...
6841.237 SetAllDataVal - Set a value to all data objects in a defined set
6861.238 SetAO - Changes the value of an analog output signal ...
6881.239 SetDataSearch - Define the symbol set in a search sequence
6921.240 SetDataVal - Set the value of a data object ...
6951.241 SetDO - Changes the value of a digital output signal ..
6981.242 SetGO - Changes the value of a group of digital output signals
7011.243 SetLeadThrough - Activate and deactivate lead-through ...
7041.244 SetSysData - Set system data ..
7061.245 SetupCyclicBool - Setup a Cyclic bool condition ...
7091.246 SetupSuperv - Setup conditions for signal supervision in CAP
7121.247 SiConnect - Sensor Interface Connect ...
7151.248 SiClose - Sensor Interface Close ..
7171.249 SiGetCyclic - Sensor Interface Get Cyclic ..
7191.250 SingArea - Defines interpolation around singular points ..
7221.251 SiSetCyclic - Sensor Interface Set Cyclic ...
7241.252 SkipWarn - Skip the latest warning ...
7251.253 SocketAccept - Accept an incoming connection ..
7281.254 SocketBind - Bind a socket to my IP-address and port ...
7301.255 SocketClose - Close a socket ..
7321.256 SocketConnect - Connect to a remote computer ...
7351.257 SocketCreate - Create a new socket ...
7371.258 SocketListen - Listen for incoming connections ..
7391.259 SocketReceive - Receive data from remote computer ..
7441.260 SocketReceiveFrom - Receive data from remote computer
7491.261 SocketSend - Send data to remote computer ..
7531.262 SocketSendTo - Send data to remote computer ..
7571.263 SoftAct - Activating the soft servo ...
7591.264 SoftDeact - Deactivating the soft servo ..
7601.265 SoftElbow - Making the elbow flexible for external forces ..
7621.266 SpeedLimAxis - Set speed limitation for an axis ..
7661.267 SpeedLimCheckPoint - Set speed limitation for check points
7711.268 SpeedRefresh - Update speed override for ongoing movement
7741.269 SpyStart - Start recording of execution time data ...
7761.270 SpyStop - Stop recording of time execution data ...
7771.271 StartLoad - Load a program module during execution ..
7811.272 StartMove - Restarts robot movement ...
7841.273 StartMoveRetry - Restarts robot movement and execution ..
7871.274 STCalib - Calibrate a Servo Tool ..
7911.275 STClose - Close a Servo Tool ..
7941.276 StepBwdPath - Move backwards one step on path ..
7961.277 STIndGun - Sets the gun in independent mode ...
7981.278 STIndGunReset - Resets the gun from independent mode ..
7991.279 SToolRotCalib - Calibration of TCP and rotation for stationary tool
8021.280 SToolTCPCalib - Calibration of TCP for stationary tool ...
8051.281 Stop - Stops program execution ...
8081.282 STOpen - Open a Servo Tool ...
8101.283 StopMove - Stops robot movement ...
8141.284 StopMoveReset - Reset the system stop move state ..
8161.285 StorePath - Stores the path when an interrupt occurs ...
8181.286 STTune - Tuning Servo Tool ..
8221.287 STTuneReset - Resetting Servo tool tuning ..
8231.288 SupSyncSensorOff - Stop synchronized sensor supervision
8241.289 SupSyncSensorOn - Start synchronized sensor supervision

Technical reference manual - RAPID Instructions, Functions and Data types 9
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

8261.290 SyncMoveOff - End coordinated synchronized movements
8321.291 SyncMoveOn - Start coordinated synchronized movements
8381.292 SyncMoveResume - Set synchronized coordinated movements
8401.293 SyncMoveSuspend - Set independent-semicoordinated movements
8421.294 SyncMoveUndo - Set independent movements ...
8441.295 SyncToSensor - Sync to sensor ...
8461.296 SystemStopAction - Stop the robot system ..
8481.297 TEST - Depending on the value of an expression
8501.298 TestSignDefine - Define test signal ...
8521.299 TestSignReset - Reset all test signal definitions ..
8531.300 TextTabInstall - Installing a text table ..
8551.301 TPErase - Erases text printed on the FlexPendant ...
8561.302 TPReadDnum - Reads a number from the FlexPendant ..
8601.303 TPReadFK - Reads function keys ...
8651.304 TPReadNum - Reads a number from the FlexPendant ..
8691.305 TPShow - Switch window on the FlexPendant ...
8701.306 TPWrite - Writes on the FlexPendant ...
8731.307 TriggC - Circular robot movement with events ..
8821.308 TriggCheckIO - Defines I/O check at a fixed position ..
8881.309 TriggDataCopy - Copy the content in a triggdata variable ..
8901.310 TriggDataReset - Reset the content in a triggdata variable ..
8921.311 TriggEquip - Define a fixed position and time I/O event on the path
8981.312 TriggInt - Defines a position related interrupt ..
9031.313 TriggIO - Define a fixed position or time I/O event near a stop point
9091.314 TriggJ - Axis-wise robot movements with events ...
9171.315 TriggL - Linear robot movements with events ...
9251.316 TriggJIOs - Joint robot movements with I/O events ..
9321.317 TriggLIOs - Linear robot movements with I/O events ..
9401.318 TriggRampAO - Define a fixed position ramp AO event on the path

947
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale

event ..
9571.320 TriggStopProc - Generate restart data for trigg signals at stop
9631.321 TryInt - Test if data object is a valid integer ..
9651.322 TRYNEXT - Jumps over an instruction which has caused an error
9661.323 TuneReset - Resetting servo tuning ..
9671.324 TuneServo - Tuning servos ...
9741.325 UIMsgBox - User Message Dialog Box type basic ..
9831.326 UIMsgWrite - User message dialog box type non-waiting ..
9871.327 UIMsgWriteAbort - Abort user message dialog box type non-waiting
9881.328 UIShow - User Interface show ..
9921.329 UnLoad - UnLoad a program module during execution ...
9951.330 UnpackRawBytes - Unpack data from rawbytes data ...
9991.331 VelSet - Changes the programmed velocity ..
10011.332 WaitAI - Waits until an analog input signal value is set ...
10071.333 WaitAO - Waits until an analog output signal value is set ..
10131.334 WaitDI - Waits until a digital input signal is set ..
10181.335 WaitDO - Waits until a digital output signal is set ...
10231.336 WaitGI - Waits until a group of digital input signals are set ..
10291.337 WaitGO - Waits until a group of digital output signals are set
10351.338 WaitLoad - Connect the loaded module to the task ..
10391.339 WaitRob - Wait until stop point or zero speed ...
10411.340 WaitSensor - Wait for connection on sensor ...
10441.341 WaitSyncTask - Wait at synchronization point for other program tasks
10481.342 WaitTestAndSet - Wait until variable becomes FALSE, then set
10511.343 WaitTime - Waits a given amount of time ...
10531.344 WaitUntil - Waits until a condition is met ..
10601.345 WaitWObj - Wait for work object on conveyor ...
10631.346 WarmStart - Restart the controller ..
10641.347 WHILE - Repeats as long as

10 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

10661.348 WorldAccLim - Control acceleration in world coordinate system
10681.349 Write - Writes to a character-based file or serial channel ...
10711.350 WriteAnyBin - Writes data to a binary serial channel or file ..
10741.351 WriteBin - Writes to a binary serial channel ..
10761.352 WriteBlock - Write block of data to device ..
10781.353 WriteCfgData - Writes attribute of a system parameter ...
10821.354 WriteRawBytes - Write rawbytes data ..
10841.355 WriteStrBin - Writes a string to a binary serial channel ...
10861.356 WriteVar - Write variable ...
10891.357 WriteVarArr - Write multiple variables to a sensor device ..
10911.358 WZBoxDef - Define a box-shaped world zone ...
10931.359 WZCylDef - Define a cylinder-shaped world zone ..
10961.360 WZDisable - Deactivate temporary world zone supervision
10981.361 WZDOSet - Activate world zone to set digital output ..
11021.362 WZEnable - Activate temporary world zone supervision ..
11041.363 WZFree - Erase temporary world zone supervision ..
11061.364 WZHomeJointDef - Define a world zone for home joints ...
11091.365 WZLimJointDef - Define a world zone for limitation in joints
11131.366 WZLimSup - Activate world zone limit supervision ...
11161.367 WZSphDef - Define a sphere-shaped world zone ...

11192 Functions
11192.1 Abs - Gets the absolute value ..
11212.2 AbsDnum - Gets the absolute value of a dnum ...
11232.3 ACos - Calculates the arc cosine value ..
11242.4 ACosDnum - Calculates the arc cosine value ..
11252.5 AInput - Reads the value of an analog input signal ..
11272.6 AND - Evaluates a logical value ...
11292.7 AOutput - Reads the value of an analog output signal ..
11312.8 ArgName - Gets argument name ..
11342.9 ASin - Calculates the arc sine value ..
11352.10 ASinDnum - Calculates the arc sine value ..
11362.11 ATan - Calculates the arc tangent value ...
11372.12 ATanDnum - Calculates the arc tangent value ..
11382.13 ATan2 - Calculates the arc tangent2 value ...
11392.14 ATan2Dnum - Calculates the arc tangent2 value ...
11402.15 BitAnd - Logical bitwise AND - operation on byte data ..
11422.16 BitAndDnum - Logical bitwise AND - operation on dnum data
11442.17 BitCheck - Check if a specified bit in a byte data is set ...
11462.18 BitCheckDnum - Check if a specified bit in a dnum data is set
11482.19 BitLSh - Logical bitwise LEFT SHIFT - operation on byte ..
11502.20 BitLShDnum - Logical bitwise LEFT SHIFT - operation on dnum
11532.21 BitNeg - Logical bitwise NEGATION - operation on byte data
11552.22 BitNegDnum - Logical bitwise NEGATION - operation on dnum data
11572.23 BitOr - Logical bitwise OR - operation on byte data ..
11592.24 BitOrDnum - Logical bitwise OR - operation on dnum data ..
11612.25 BitRSh - Logical bitwise RIGHT SHIFT - operation on byte ..
11632.26 BitRShDnum - Logical bitwise RIGHT SHIFT - operation on dnum
11652.27 BitXOr - Logical bitwise XOR - operation on byte data ..
11672.28 BitXOrDnum - Logical bitwise XOR - operation on dnum data
11692.29 ByteToStr - Converts a byte to a string data ...
11712.30 CalcJointT - Calculates joint angles from robtarget ..
11752.31 CalcRobT - Calculates robtarget from jointtarget ...
11772.32 CalcRotAxFrameZ - Calculate a rotational axis frame ...
11822.33 CalcRotAxisFrame - Calculate a rotational axis frame ..
11862.34 CamGetExposure - Get camera specific data ..
11882.35 CamGetLoadedJob - Get name of the loaded camera task ..
11902.36 CamGetName - Get the name of the used camera ...
11912.37 CamNumberOfResults - Get number of available results ..

Technical reference manual - RAPID Instructions, Functions and Data types 11
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

11932.38 CapGetFailSigs - Get failed I/O signals ..
11952.39 CDate - Reads the current date as a string ...
11962.40 CJointT - Reads the current joint angles ..
11982.41 ClkRead - Reads a clock used for timing ..
12002.42 CorrRead - Reads the current total offsets ...
12012.43 Cos - Calculates the cosine value ...
12022.44 CosDnum - Calculates the cosine value ...
12032.45 CPos - Reads the current position (pos) data ..
12052.46 CRobT - Reads the current position (robtarget) data ..
12082.47 CrossProd - Cross product of two pos vectors ..
12112.48 CSpeedOverride - Reads the current override speed ...
12132.49 CTime - Reads the current time as a string ...
12142.50 CTool - Reads the current tool data ..
12162.51 CWObj - Reads the current work object data ..
12182.52 DecToHex - Convert from decimal to hexadecimal ...
12192.53 DefAccFrame - Define an accurate frame ...
12222.54 DefDFrame - Define a displacement frame ...
12252.55 DefFrame - Define a frame ..
12282.56 Dim - Obtains the size of an array ...
12302.57 DInput - Reads the value of a digital input signal ...
12322.58 Distance - Distance between two points ..
12342.59 DIV - Evaluates an integer division ...
12352.60 DnumToNum - Converts dnum to num ..
12372.61 DnumToStr - Converts numeric value to string ..
12392.62 DotProd - Dot product of two pos vectors ...
12412.63 DOutput - Reads the value of a digital output signal ...
12432.64 EGMGetState - Gets the current EGM state ..
12442.65 EulerZYX - Gets euler angles from orient ...
12462.66 EventType - Get current event type inside any event routine
12482.67 ExecHandler - Get type of execution handler ..
12492.68 ExecLevel - Get execution level ...
12502.69 Exp - Calculates the exponential value ..
12512.70 FileSize - Retrieve the size of a file ...
12542.71 FileTimeDnum - Retrieve time information about a file ..
12572.72 FSSize - Retrieve the size of a file system ..
12602.73 GetAxisDistance - Get the traversed distance counter of the axis
12622.74 GetAxisMoveTime - Get the move time counter of the axis ..
12642.75 GetMaxNumberOfCyclicBool - Get the maximum number of Cyclic bool conditions
12652.76 GetMecUnitName - Get the name of the mechanical unit ..
12662.77 GetModalPayLoadMode - Get the ModalPayLoadMode value
12672.78 GetMotorTorque - Reads the current motor torque ..
12702.79 GetNextCyclicBool - Get the names of all Cyclic bools ...
12722.80 GetNextMechUnit - Get name and data for mechanical units
12752.81 GetNextSym - Get next matching symbol ...
12772.82 GetNumberOfCyclicBool - Get the number of Cyclic bool conditions
12782.83 GetServiceInfo - Get service information from the system ...
12802.84 GetSignalOrigin - Get information about the origin of an I/O signal
12822.85 GetSysInfo - Get information about the system ...
12852.86 GetTaskName - Gets the name and number of current task
12872.87 GetTime - Reads the current time as a numeric value ...
12892.88 GetTSPStatus - Get current task selection panel status ..
12912.89 GetUASUserName - Get user name of logged in user ..
12922.90 GInput - Read value of group input signal ..
12942.91 GInputDnum - Read value of group input signal ..
12972.92 GOutput - Reads the value of a group of digital output signals
12992.93 GOutputDnum - Read value of group output signal ..
13022.94 HexToDec - Convert from hexadecimal to decimal ...
13032.95 IndInpos - Independent axis in position status ..
13052.96 IndSpeed - Independent speed status ...

12 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

13072.97 IOUnitState - Get current state of I/O device ...
13102.98 IsBrakeCheckActive - Test if brake check is running ..
13112.99 IsCyclicBool - Checks if a persistent variable is a Cyclic bool
13142.100 IsFile - Check the type of a file ...
13182.101 IsLeadThrough - Check lead-through status ...
13202.102 IsMechUnitActive - Is mechanical unit active ..
13212.103 IsPers - Is persistent ..
13232.104 IsStopMoveAct - Is stop move flags active ...
13252.105 IsStopStateEvent - Test whether moved program pointer ..
13272.106 IsSyncMoveOn - Test if in synchronized movement mode ...
13292.107 IsSysId - Test system identity ..
13302.108 IsVar - Is variable ..
13312.109 Max - Get the largest of two values ...
13322.110 MaxExtLinearSpeed - Maximum additional axis speed ...
13332.111 MaxExtReorientSpeed - Maximum additional axis rotational speed
13342.112 MaxRobReorientSpeed - Maximum reorient speed of robot
13352.113 MaxRobSpeed - Maximum robot speed ...
13362.114 Min - Get the smallest of two values ..
13372.115 MirPos - Mirroring of a position ..
13392.116 MOD - Evaluates an integer modulo ..
13402.117 ModExist - Check if program module exist ...
13412.118 ModTimeDnum - Get file modify time for the loaded module
13432.119 MotionPlannerNo - Get connected motion planner number
13452.120 NonMotionMode - Read the Non-Motion execution mode ..
13472.121 NOT - Inverts a logical value ..
13482.122 NOrient - Normalize orientation ..
13502.123 NumToDnum - Converts num to dnum ..
13512.124 NumToStr - Converts numeric value to string ...
13532.125 Offs - Displaces a robot position ..
13552.126 OpMode - Read the operating mode ...
13562.127 OR - Evaluates a logical value ...
13572.128 OrientZYX - Builds an orient from Euler angles ...
13592.129 ORobT - Removes the program displacement from a position
13612.130 ParIdPosValid - Valid robot position for parameter identification
13642.131 ParIdRobValid - Valid robot type for parameter identification
13672.132 PathLevel - Get current path level ...
13692.133 PathRecValidBwd - Is there a valid backward path recorded
13722.134 PathRecValidFwd - Is there a valid forward path recorded ...
13762.135 PFRestart - Check interrupted path after power failure ...
13772.136 PoseInv - Inverts pose data ...
13792.137 PoseMult - Multiplies pose data ...
13812.138 PoseVect - Applies a transformation to a vector ..
13832.139 Pow - Calculates the power of a value ...
13842.140 PowDnum - Calculates the power of a value ...
13852.141 PPMovedInManMode - Test whether the program pointer is moved in manual mode
13862.142 Present - Tests if an optional parameter is used ..
13882.143 ProgMemFree - Get the size of free program memory ..
13892.144 PrxGetMaxRecordpos - Get the maximum sensor position ..
13902.145 RawBytesLen - Get the length of rawbytes data ..
13922.146 ReadBin - Reads a byte from a file or serial channel ..
13942.147 ReadDir - Read next entry in a directory ..
13972.148 ReadMotor - Reads the current motor angles ..
13992.149 ReadNum - Reads a number from a file or serial channel ..
14022.150 ReadStr - Reads a string from a file or serial channel ...
14062.151 ReadStrBin - Reads a string from a binary serial channel or file
14082.152 ReadVar - Read variable from a device ..
14102.153 RelTool - Make a displacement relative to the tool ...
14122.154 RemainingRetries - Remaining retries left to do ..
14132.155 RMQGetSlotName - Get the name of an RMQ client ...

Technical reference manual - RAPID Instructions, Functions and Data types 13
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

14152.156 RobName - Get the TCP robot name ...
14172.157 RobOS - Check if execution is on RC or VC ..
14182.158 Round - Round a numeric value ...
14202.159 RoundDnum - Round a numeric value ...
14222.160 RunMode - Read the running mode ..
14242.161 SafetyControllerGetChecksum - Get the checksum for the user configuration file
14252.162 SafetyControllerGetOpModePinCode - Get the operating mode pin code
14262.163 SafetyControllerGetSWVersion - Get the safety controller firmware version
14272.164 SafetyControllerGetUserChecksum - Get the checksum for protected parameters
14282.165 Sin - Calculates the sine value ...
14292.166 SinDnum - Calculates the sine value ...
14302.167 SocketGetStatus - Get current socket state ..
14332.168 SocketPeek - Test for the presence of data on a socket ..
14352.169 Sqrt - Calculates the square root value ..
14362.170 SqrtDnum - Calculates the square root value ..
14372.171 STCalcForce - Calculate the tip force for a Servo Tool ..
14392.172 STCalcTorque - Calculate the motor torque for a servo tool
14412.173 STIsCalib - Tests if a servo tool is calibrated ..
14432.174 STIsClosed - Tests if a servo tool is closed ..
14452.175 STIsIndGun - Tests if a servo tool is in independent mode ..
14462.176 STIsOpen - Tests if a servo tool is open ..
14482.177 StrDigCalc - Arithmetic operations with datatype stringdig ..
14512.178 StrDigCmp - Compare two strings with only digits ...
14532.179 StrFind - Searches for a character in a string ..
14552.180 StrLen - Gets the string length ...
14562.181 StrMap - Maps a string ...
14582.182 StrMatch - Search for pattern in string ...
14602.183 StrMemb - Checks if a character belongs to a set ..
14622.184 StrOrder - Checks if strings are ordered ..
14642.185 StrPart - Finds a part of a string ...
14662.186 StrToByte - Converts a string to a byte data ...
14682.187 StrToVal - Converts a string to a value ..
14702.188 Tan - Calculates the tangent value ..
14712.189 TanDnum - Calculates the tangent value ..
14722.190 TaskRunMec - Check if task controls any mechanical unit ..
14732.191 TaskRunRob - Check if task controls some robot ..
14742.192 TasksInSync - Returns the number of synchronized tasks ..
14762.193 TaskIsActive - Check if a normal task is active ..
14782.194 TaskIsExecuting - Check if task is executing ..
14802.195 TestAndSet - Test variable and set if unset ..
14832.196 TestDI - Tests if a digital input is set ...
14852.197 TestSignRead - Read test signal value ..
14872.198 TextGet - Get text from system text tables ...
14892.199 TextTabFreeToUse - Test whether text table is free ...
14912.200 TextTabGet - Get text table number ..
14932.201 TriggDataValid - Check if the content in a triggdata variable is valid
14952.202 Trunc - Truncates a numeric value ...
14972.203 TruncDnum - Truncates a numeric value ...
14992.204 Type - Get the data type name for a variable ..
15012.205 UIAlphaEntry - User Alpha Entry ..
15082.206 UIClientExist - Exist User Client ...
15092.207 UIDnumEntry - User Number Entry ...
15162.208 UIDnumTune - User Number Tune ..
15232.209 UIListView - User List View ...
15312.210 UIMessageBox - User Message Box type advanced ...
15392.211 UINumEntry - User Number Entry ...
15462.212 UINumTune - User Number Tune ...
15532.213 ValidIO - Valid I/O signal to access ...
15552.214 ValToStr - Converts a value to a string ..

14 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

15572.215 VectMagn - Magnitude of a pos vector ..
15592.216 XOR - Evaluates a logical value ...

15613 Data types
15613.1 aiotrigg - Analog I/O trigger condition ..
15633.2 ALIAS - Assigning an alias data type ...
15643.3 bool - Logical values ..
15653.4 btnres - Push button result data ...
15673.5 busstate - State of I/O network ...
15683.6 buttondata - Push button data ..
15703.7 byte - Integer values 0 - 255 ..
15713.8 cameradev - camera device ...
15723.9 cameratarget - camera data ...
15743.10 capaptrreferencedata - Variable setup data for At-Point-Tracker
15763.11 capdata - CAP data ..
15803.12 caplatrackdata - CAP Look-Ahead-Tracker track data ...
15843.13 capspeeddata - Speed data for CAP ...
15863.14 captrackdata - CAP track data ...
15893.15 capweavedata - Weavedata for CAP ...
15973.16 cfgdomain - Configuration domain ..
15983.17 clock - Time measurement ..
15993.18 confdata - Robot configuration data ..
16063.19 corrdescr - Correction generator descriptor ..
16083.20 datapos - Enclosing block for a data object ..
16093.21 dionum - Digital values (0 - 1) ..
16103.22 dir - File directory structure ...
16113.23 dnum - Double numeric values ..
16133.24 egmframetype - Defines frame types for EGM ...
16143.25 egmident - Identifies a specific EGM process ...
16163.26 egm_minmax - Convergence criteria for EGM ...
16173.27 egmstate - Defines the state for EGM ..
16183.28 egmstopmode - Defines stop modes for EGM ...
16193.29 errdomain - Error domain ..
16213.30 errnum - Error number ...
16293.31 errstr - Error string ...
16303.32 errtype - Error type ..
16313.33 event_type - Event routine type ..
16323.34 exec_level - Execution level ..
16333.35 extjoint - Position of external joints ...
16353.36 flypointdata - Data for flying start/end ..
16383.37 handler_type - Type of execution handler ..
16393.38 icondata - Icon display data ...
16413.39 identno - Identity for move instructions ..
16433.40 intnum - Interrupt identity ..
16453.41 iodev - Serial channels and files ...
16463.42 iounit_state - State of I/O device ...
16473.43 jointtarget - Joint position data ...
16493.44 listitem - List item data structure ..
16503.45 loaddata - Load data ..
16563.46 loadidnum - Type of load identification ..
16573.47 loadsession - Program load session ...
16583.48 mecunit - Mechanical unit ...
16603.49 motsetdata - Motion settings data ...
16663.50 num - Numeric values ..
16683.51 opcalc - Arithmetic Operator ..
16693.52 opnum - Comparison operator ...
16703.53 orient - Orientation ..
16753.54 paridnum - Type of parameter identification ...
16773.55 paridvalidnum - Result of ParIdRobValid ..

Technical reference manual - RAPID Instructions, Functions and Data types 15
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

16793.56 pathrecid - Path recorder identifier ...
16813.57 pnpdata - Configure pick and place paths ..
16833.58 pos - Positions (only X, Y and Z) ..
16853.59 pose - Coordinate transformations ..
16863.60 processtimes - process times ..
16873.61 progdisp - Program displacement ...
16893.62 rawbytes - Raw data ..
16913.63 restartblkdata - blockdata for restart ...
16933.64 restartdata - Restart data for trigg signals ..
16973.65 rmqheader - RAPID Message Queue Message header ...
16993.66 rmqmessage - RAPID Message Queue message ...
17003.67 rmqslot - Identity number of an RMQ client ..
17013.68 robjoint - Joint position of robot axes ..
17023.69 robtarget - Position data ...
17053.70 sensor - External device descriptor ...
17073.71 sensorstate - Communication state of the device ..
17083.72 sensorvardata - Multiple variable setup data for sensor interface
17103.73 shapedata - World zone shape data ..
17123.74 signalorigin - Describes the I/O signal origin ...
17143.75 signalxx - Digital and analog signals ...
17163.76 socketdev - Socket device ..
17173.77 socketstatus - Socket communication status ..
17183.78 speeddata - Speed data ..
17223.79 stoppointdata - Stop point data ..
17283.80 string - Strings ..
17303.81 stringdig - String with only digits ..
17313.82 supervtimeouts - Handshake supervision time outs ...
17333.83 switch - Optional parameters ..
17343.84 symnum - Symbolic number ..
17353.85 syncident - Identity for synchronization point ..
17363.86 System data - Current RAPID system data settings ...
17383.87 taskid - Task identification ..
17393.88 tasks - RAPID program tasks ...
17413.89 testsignal - Test signal ...
17433.90 tooldata - Tool data ..
17493.91 tpnum - FlexPendant window number ...
17503.92 trapdata - Interrupt data for current TRAP ..
17523.93 triggdata - Positioning events, trigg ..
17533.94 triggios - Positioning events, trigg ..
17563.95 triggiosdnum - Positioning events, trigg ...
17583.96 triggmode - Trigg action mode ...
17613.97 triggstrgo - Positioning events, trigg ...
17643.98 tsp_status - Task selection panel status ..
17663.99 tunetype - Servo tune type ..
17673.100 uishownum - Instance ID for UIShow ..
17683.101 weavestartdata - weave start data ..
17703.102 wobjdata - Work object data ..
17743.103 wzstationary - Stationary world zone data ..
17763.104 wztemporary - Temporary world zone data ...
17783.105 zonedata - Zone data ...

17854 Programming type examples
17854.1 ERROR handler with movements ...
17884.2 Service routines with or without movements ...
17914.3 System I/O interrupts with or without movements ..
17944.4 TRAP routines with movements ...

1797Index

16 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Table of contents

Overview of this manual
About this manual

This is a technical reference manual intended for the RAPID programmer. The
RAPID base instructions, functions and data types are detailed in this manual.
This manual describes RobotWare 6.

Usage
This manual should be read during programming and when you need specific
information about a RAPID instruction, function or data type.

Who should read this manual?
This manual is intended for someone with some previous experience in
programming, for example, a robot programmer.

Prerequisites
The reader should have some programming experience and have studied

• Technical reference manual - RAPID Overview

Organization of chapters
The manual is organized in the following chapters:

ContentsChapter

Detailed descriptions of all RAPID base instruc-
tions, including examples of how to use them.

Instructions

Detailed descriptions of all RAPID base func-
tions, including examples of how to use them.

Functions

Detailed descriptions of all RAPID base data
types, including examples of how to use them.

Data types

A general view of how to write program code
that contains different instructions/func-
tions/data types. The chapter contains also
programming tips and explanations.

Programming type examples

References

Document IDReference

3HAC050947-001Technical reference manual - RAPID Overview

3HAC050946-001Technical reference manual manual - RAPID kernel

3HAC050798-001Application manual - Controller software IRC5

3HAC032104-001Operating manual - RobotStudio

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 17
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Overview of this manual

Revisions

DescriptionRevision

Released with RobotWare 6.0.

Note

For IRC5 with RobotWare 5, see manual 3HAC16581-001.

-

Released with RobotWare 6.01.
• The following instructions, functions, and data types are added:

AliasIOReset - Resetting I/O signal with alias name on page 35,
TriggJIOs - Joint robot movements with I/O events on page 925

• Information about 7-axis robots is added to the data type confdata
- Robot configuration data on page 1599.

A

Released with RobotWare 6.02.
• The following common instructions, functions, and data types are

added:
SaveCfgData - Save systemparameters to file on page645, cfgdomain
-Configurationdomainonpage1597,TriggDataCopy -Copy the content
in a triggdata variable on page888, TriggDataReset - Reset the content
in a triggdata variable on page 890, TriggDataValid - Check if the
content in a triggdata variable is valid on page 1493
AInput - Reads the value of an analog input signal on page1125,DInput
- Reads the value of a digital input signal on page1230,GInput - Read
value of group input signal on page 1292

• Added all instructions, functions, and data types for the RobotWare
option Integrated Vision.

• Warning about breaking distance is added to SoftAct - Activating the
soft servo on page 757.

• Added trigonometric functions for data type dnum:
ACosDnum, ASinDnum, ATanDnum, ATan2Dnum, CosDnum,
TanDnum, SinDnum

• Added RAPID instructions for the functionality EGMPath Correction:
EGMActJoint - Prepare an EGM movement for a joint target on
page178,EGMMoveC - Circular EGMmovement with path correction
on page188,EGMMoveL - Linear EGMmovementwith path correction
on page192, EGMSetupLTAPP - Setup the LTAPP protocol for EGM
on page 211

• Minor corrections.

B

Released with RobotWare 6.03.
• New functionality added to instructionMotionProcessModeSet - Set

motion process mode on page 390.
• Added CAP instructions, functions, and data types.
• Added Cyclic bool instructions and functions.
• Added instructions and functions related to Functional Safety.
• signalxx is now a semi-value data type that permits value oriented

operations, see signalxx - Digital and analog signals on page 1714.
• Minor corrections.

C

Continues on next page
18 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

Overview of this manual
Continued

DescriptionRevision

Released with RobotWare 6.04.
• Added SafetyControllerGetOpModePinCode - Get the operating

mode pin code on page 1425.
• Added new instructions for displaying wait conditions, see

UIMsgWrite - Usermessage dialog box type non-waiting on page983.
• Added the error recovery ERR_TASKNAME where it was missing.
• Added SetLeadThrough - Activate and deactivate lead-through on

page701and IsLeadThrough -Check lead-throughstatusonpage1318.
• Minor corrections.

D

Released with RobotWare 6.05.
• Added new instruction for Integrated Vision, seeAliasCamera - Define

camera device with alias name on page 30.
• Added mathematical instructions for calculating matrixes, see Mat-

rixSolve - Solve a linear equation system on page 377.
• Added new instructions for travelling distance and time for track

motion, seeResetAxisDistance - Reset the traversed distance inform-
ation for the axis on page 604.

• Added the possibility to interrupt all UIxx and TPxx instructions with
a persistent boolean.

• Added new instructions for handlingmultiple variables from a device,
seeWriteVarArr - Write multiple variables to a sensor device on
page 1089.

• Removed the instructions DitherAct and DitherDeact.
• Minor corrections.

E

Released with RobotWare 6.06.
• Added FitCircle - Fits a circle to 3D-points on page 242.
• Added GetJointData - Get joint specific data on page 257.
• Added GetTSPStatus - Get current task selection panel status on

page1289 and tsp_status - Task selection panel status on page1764.
• Added IsBrakeCheckActive - Test if brake check is running on

page 1310.
• Added TaskIsActive - Check if a normal task is active on page 1476

and TaskIsExecuting - Check if task is executing on page 1478.
• Minor corrections.

F

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 19
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Overview of this manual
Continued

DescriptionRevision

Released with RobotWare 6.07.
• Added functions MaxExtLinearSpeed - Maximum additional axis

speed on page1332,MaxExtReorientSpeed -Maximumadditional axis
rotational speed on page1333, andMaxRobReorientSpeed -Maximum
reorient speed of robot on page1334. For speeddata - Speed data on
page1718, the predefined valuevmax is changed to use themax values
returned by these functions.

• Added the function CrossProd - Cross product of two pos vectors
on page 1208.

• Added info about quadrants for 7-axis robots to section confdata -
Robot configuration data on page 1599.

• Updated info about limitations forMoveC - Moves the robot circularly
on page 402.

• Added limitations for Comment - Comment on page 141.
• Clarified program execution when using \LockAxis4 in the

SingArea instruction. Also removed note saying that \LockAxis4
only can be used on serial link robots. See SingArea - Defines inter-
polation around singular points on page 719.

• Updated PathResol - Override path resolution on page 529.
• Minor changes to the limitations inWriteCfgData - Writes attribute

of a system parameter on page 1078.
• Added the instructionsCapAPTrSetupAI - Setup an At-Point-Tracker

controlled by analog input signals on page 74, CapAPTrSetupAO -
Setup an At-Point-Tracker controlled by analog output signals on
page77,CapAPTrSetupPERS - Setup an At-Point-Tracker controlled
by persistent variables on page 80, and the data type capaptrrefer-
encedata - Variable setup data for At-Point-Tracker on page 1574.

• Added track mode 13, 14, and 15 to the data type trackdata.
• Clarified rotation order in OrientZYX - Builds an orient from Euler

angles on page 1357 and RelTool - Make a displacement relative to
the tool on page 1410.

• Added the instructions EGMStreamStart, EGMStreamStop and
EGMWaitCond.

G

Released with RobotWare 6.08.
• Minor corrections.
• Updated Limitations with information on declaration of signal variable

for AliasIO - Define I/O signal with alias name on page 32.
• Added predefined data PRESS_TENDING_MODE to MotionProcess-

ModeSet - Set motion process mode on page 390.
• Added instruction MovePnP and data type pnpdata.
• Added instruction SoftElbow.
• Minor changes to zonedata - Zone data on page 1778. Reference to

Technical reference manual - RAPID Overview, where changes for
corner paths are described in more detail.

• Added function GetUASUserName.

H

20 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Overview of this manual
Continued

1 Instructions
1.1 AccSet - Reduces the acceleration

Usage
AccSet is used when handling fragile loads or in order to decrease vibrations and
path errors. It allows slower acceleration and deceleration, which results in smoother
robot movements.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction AccSet:

Example 1
AccSet 50, 100;

The acceleration is limited to 50% of the normal value.

Example 2
AccSet 100, 50;

The acceleration ramp is limited to 50% of the normal value, which means that the
time to reach the acceleration is increased by a factor of 2.

Example 3
AccSet 100, 100 \FinePointRamp:=50;

The deceleration ramp when decelerating towards a finepoint is limited to 50% of
the normal value.

Arguments
AccSet Acc Ramp [\FinePointRamp]

Acc

Data type: num
Acceleration and deceleration as a percentage of the normal values. 100%
corresponds to maximum acceleration. Input value < 20% gives 20% of maximum
acceleration.

Ramp

Data type: num
The rate at which acceleration and deceleration increases as a percentage of the
normal values. Jerking can be restricted by reducing this value. 100% corresponds
to maximum rate. Input value < 10% gives 10% of maximum rate.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 21
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.1 AccSet - Reduces the acceleration

RobotWare - OS

The figures show that reducing the acceleration results in smoother movements.

Ti

xx0500002146

[\FinePointRamp]

Data type: num
The rate at which deceleration decreases as a percentage of the normal values.
The parameter only affects the rampwhen the robot decelerates towards a finepoint.
In a finepoint the deceleration ramp value is a combination of this parameter and
the Ramp value, Ramp * FinePointRamp. The parameter must be greater than 0
and be in the interval 0 to 100%.
If this optional argument is not used, the FinePointRamp value is set to the default
value, 100%.

Program execution
The acceleration applies for the next executed movement instruction, for both the
robot and external axes, until a new AccSet instruction is executed.
The default values (AccSet 100, 100) are automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Syntax
AccSet

[Acc ':='] < expression (IN) of num > ','

[Ramp ':='] < expression (IN) of num >

['\'FinePointRamp ':=' < expression (IN) of num >] ';'

Continues on next page
22 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.1 AccSet - Reduces the acceleration
RobotWare - OS
Continued

Related information

SeeFor information about

motsetdata - Motion settings data on page 1660Motion settings data

PathAccLim - Reduce TCP acceleration along the
path on page 510

Reduce TCP acceleration along the path

VelSet - Changes the programmed velocity on
page 999

Definition of maximum velocity

WorldAccLim - Control acceleration in world co-
ordinate system on page 1066

Control acceleration in world coordinate
system

Technical reference manual - RAPID OverviewPositioning instructions

Technical reference manual - RAPID Instructions, Functions and Data types 23
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.1 AccSet - Reduces the acceleration

RobotWare - OS
Continued

1.2 ActEventBuffer - Activation of event buffer

Description
ActEventBuffer is used to activate the use of the event buffer in current motion
program task.
The instructions ActEventBuffer and DeactEventBuffer should be used when
combining an application using finepoints and a continuous application where
signals needs to be set in advance due to slow process equipment.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction ActEventBuffer:

Example 1
...

DeactEventBuffer;

! Use an application that uses finepoints, such as SpotWelding

...

! Activate the event buffer again

ActEventBuffer;

! Now it is possible to use an application that needs

! to set signals in advance, such as Dispense

...

The DeactEventBuffer deactivates the configured event buffer. When using an
application with finepoints, the start of the robot from the finepoint will be faster.
When activating the event buffer with ActEventBuffer, it is possible to set signals
in advance for an application with slow process equipment.

Program execution
The use of an event buffer applies for the next executed robot movement instruction
of any type and is valid until a DeactEventBuffer instruction is executed.
The instruction will wait until the robot and external axes has reached the stop
point (ToPoint of current move instruction) before the activation of the event
buffer. Therefore it is recommended to program themovement instruction preceding
ActEventBuffer with a fine point.
The default value (ActEventBuffer) is automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Continues on next page
24 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.2 ActEventBuffer - Activation of event buffer
RobotWare - OS

Limitations
ActEventBuffer cannot be executed in a RAPID routine connected to any of the
following special system events: PowerOn, Stop, QStop, Restart or Step.

Syntax
ActEventBuffer ';'

Related information

SeeFor information about

DeactEventBuffer - Deactivation of event buffer
on page 170

Deactivation of event buffer

Technical referencemanual - SystemparametersConfiguration of Event preset time

motsetdata - Motion settings data on page 1660Motion settings data

Technical reference manual - RAPID Instructions, Functions and Data types 25
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.2 ActEventBuffer - Activation of event buffer

RobotWare - OS
Continued

1.3 ActUnit - Activates a mechanical unit

Usage
ActUnit is used to activate a mechanical unit.
It can be used to determine which unit is to be active when, for example, common
drive units are used.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction ActUnit:

Example 1
ActUnit orbit_a;

Activation of the orbit_a mechanical unit.

Arguments
ActUnit MechUnit

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit to be activated.

Program execution
When the robots and the actual path of external axes are ready, the path on current
path level is cleared and the specified mechanical unit is activated. This means
that it is controlled and monitored by the robot.
If several mechanical units share a common drive unit, activation of one of these
mechanical units will also connect that unit to the common drive unit.

Limitations
If this instruction is preceded by a move instruction, that move instruction must be
programmed with a stop point (zonedata fine), not a fly-by point, otherwise restart
after power failure will not be possible.
ActUnit cannot be executed in a RAPID routine connected to any of the following
special system events: PowerOn, Stop, QStop, Restart, Reset or Step.
It is possible to use ActUnit - DeactUnit on StorePath level, but the same
mechanical units must be active when doing RestoPath as when StorePathwas
done. Such operation on the Path Recorder and the path on the base level will be
intact, but the path on the StorePath level will be cleared.

Syntax
ActUnit

[MechUnit ':='] < variable (VAR) of mecunit> ';'

Continues on next page
26 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.3 ActUnit - Activates a mechanical unit
RobotWare - OS

Related information

SeeFor information about

DeactUnit - Deactivates a mechanical unit on page 172Deactivating mechanical units

mecunit - Mechanical unit on page 1658Mechanical units

DeactUnit - Deactivates a mechanical unit on page 172More examples

IsMechUnitActive - Ismechanical unit active on page1320Check if a mechanical unit is activ-
ated or not.

PathRecMoveBwd - Move path recorder backwards on
page 514

Path Recorder

Technical reference manual - RAPID Instructions, Functions and Data types 27
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.3 ActUnit - Activates a mechanical unit

RobotWare - OS
Continued

1.4 Add - Adds a numeric value

Usage
Add is used to add or subtract a value to or from a numeric variable or persistent.

Basic examples
The following examples illustrate the instruction Add:

Example 1
Add reg1, 3;

3 is added to reg1, that is,reg1:=reg1+3.

Example 2
Add reg1, -reg2;

The value of reg2 is subtracted from reg1, that is,reg1:=reg1-reg2.

Example 3
VAR dnum mydnum:=5;

Add mydnum, 500000000;

500000000 is added to mydnum, that is,mynum:=mynum+500000000.

Example 4
VAR dnum mydnum:=5000;

VAR num mynum:=6000;

Add mynum, DnumToNum(mydnum \Integer);

5000 is added to mynum, that is, mynum:=mynum+5000. You have to use DnumToNum
to get a num numeric value that you can use together with the num variable mynum.

Arguments
Add Name | Dname AddValue | AddDvalue

Name

Data type: num
The name of the variable or persistent to be changed.

Dname

Data type: dnum
The name of the variable or persistent to be changed.

AddValue

Data type: num
The value to be added.

AddDvalue

Data type: dnum
The value to be added.

Continues on next page
28 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.4 Add - Adds a numeric value
RobotWare - OS

Limitations
If the value to be added is of the type dnum, and the variable/persistent that should
be changed is a num, a runtime error will be generated. The combination of
arguments is not possible (see Example 4 above how to solve this).

Syntax
Add

[Name ':='] < var or pers (INOUT) of num >

| [Dname ':='] < var or pers (INOUT) of dnum > ','

[AddValue ':='] < expression (IN) of num >

| [AddDvalue ':='] < expression (IN) of dnum > ';'

Related information

SeeFor information about

Incr - Increments by 1 on page 283Incrementing a variable by 1

Decr - Decrements by 1 on page 174Decrementing a variable by 1

":=" - Assigns a value on page 37Changing data using an arbitrary expres-
sion, for example, multiplication

Technical reference manual - RAPID Instructions, Functions and Data types 29
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.4 Add - Adds a numeric value

RobotWare - OS
Continued

1.5 AliasCamera - Define camera device with alias name

Usage
AliasCamera is used to define a camera with an alias name or to use cameras in
built-in taskmodules. Cameras with alias names can be used for predefined generic
programs. The instruction AliasCameramust be run before any use of the actual
camera.

Basic examples
The following examples illustrate the instruction AliasCamera.

Example 1
VAR cameradev mycamera;

...

PROC prog_start()

AliasCamera "CAMERA1", mycamera;

...

CamReqImage mycamera;

The routine prog_start is executed in the beginning of the RAPID program.
Instruction AliasCamera searches for the predefined RAPID camera device
variable named CAMERA1, and the content of it is copied to mycamera. From now,
it is possible to access the camera with mycamera camera device.

Example 2
VAR cameradev mycamera;

PROC proc1()

IF GetTaskName() = "T_ROB_L" THEN

AliasCamera CAMERA_L, mycamera;

ELSE

AliasCamera CAMERA_R, mycamera;

ENDIF

...

CamReqImage mycamera;

The routine proc1 is connected to the START event in the system parameters. The
program defining the camera device mycamera is connected to the configured
camera CAMERA_L or CAMERA_R at program start.

Arguments
AliasCamera CameraName | FromCamera ToCamera

CameraName

Data type: string
The camera identifier according to the system parameter Communication
configuration. The instruction AliasCamera searches for the predefined RAPID
camera device variable (installed data) with the name used in CameraName, and
copies the content of it.

FromCamera

Data type: cameradev

Continues on next page
30 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.5 AliasCamera - Define camera device with alias name
Integrated Vision

The camera identifier in the system parameter Communication configuration from
which the camera device is copied. The camera must be defined in the system
parameters.

ToCamera

Data type: cameradev
The camera identifier according to the program to which the camera device is
copied. The cameradev must be declared in the RAPID program.

Program execution
The camera device content is copied from the camera given in argument
CameraName or FromCamera to the camera device given in argument ToCamera.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

The camera in argument CameraName or the cameradev
used in argument FromCamera is not defined in the system
parameter Communication configuration. Or the ToCamera
is not declared in the RAPID program or is already defined
in the system parameter Communication configuration.

ERR_ALIASCAM_DEF

Limitation
When starting the program, the alias camera cannot be used until the AliasCamera
instruction is executed.
Instruction AliasCamera must be placed:

• either in the event routine executed at program start (event START).
• or in the program part executed after every program start (before use of the

camera).
To prevent mistakes it is not recommended to use dynamic reconnection of an
AliasCamera camera to different physical cameras.

Syntax
AliasCamera

[CameraName ':='] < expression (IN) of string >

| FromCamera ':=' < variable (VAR) of cameradev > ','

[ToCamera ':=' < variable (VAR) of cameradev >] ';'

Related information

SeeFor information about

cameradev - camera device on page 1571Definition of camera devices

Technical reference manual - System parametersConfiguration of cameras

Technical reference manual - System parametersDefining event routines

Application manual - Integrated VisionIntegrated Vision

Technical reference manual - RAPID Instructions, Functions and Data types 31
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.5 AliasCamera - Define camera device with alias name

Integrated Vision
Continued

1.6 AliasIO - Define I/O signal with alias name

Usage
AliasIO is used to define a signal of any type with an alias name or to use signals
in built-in task modules.
Signals with alias names can be used for predefined generic programs, without
any modification of the program before running in different robot installations.
The instruction AliasIO must be run before any use of the actual signal. See
Basic examples on page 32 for loaded modules, and More examples on page 33
for installed modules.

Basic examples
The following example illustrates the instruction AliasIO:
See also More examples on page 33.

Example 1
VAR signaldo alias_do;

PROC prog_start()

AliasIO config_do, alias_do;

ENDPROC

The routine prog_start is connected to the START event in system parameters.
The program defining digital output signal alias_do is connected to the configured
digital output signal config_do at program start.

Arguments
AliasIO FromSignal ToSignal

FromSignal

Data type: signalxx or string
Loaded modules:
The signal identifier named according to the configuration (data type signalxx)
from which the signal descriptor is copied. The signal must be defined in the I/O
configuration.
Installed modules or loaded modules:
A reference (CONST, VAR or parameter of these) containing the name of the signal
(data type string) from which the signal descriptor after search in the system is
copied. The signal must be defined in the I/O configuration.

ToSignal

Data type: signalxx
The signal identifier according to the program (data type signalxx) to which the
signal descriptor is copied. The signal must be declared in the RAPID program.
The same data type must be used (or found) for the arguments FromSignal and
ToSignal andmust be one of type signalxx (signalai, signalao, signaldi,
signaldo, signalgi, or signalgo).

Continues on next page
32 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.6 AliasIO - Define I/O signal with alias name
RobotWare - OS

Program execution
The signal descriptor value is copied from the signal given in argument FromSignal
to the signal given in argument ToSignal.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The FromSignal is not defined in the I/O configuration, or
the ToSignal is not declared in the RAPID program, or the
ToSignal is not defined in the I/O configuration.

ERR_ALIASIO_DEF

The data types for the arguments FromSignal and
ToSignal is not the same type.

ERR_ALIASIO_TYPE

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

More examples
More examples of the instruction AliasIO are illustrated below.

Example 1
VAR signaldi alias_di;

PROC prog_start()

CONST string config_string := "config_di";

AliasIO config_string, alias_di;

ENDPROC

The routine prog_start is connected to the START event in system parameters.
The program defined digital input signal alias_di is connected to the configured
digital input signal config_di (via constant config_string) at program start.

Limitations
When starting the program, the alias signal cannot be used until the AliasIO
instruction is executed.
The signal variable should be declared globally in the module. It must not be a part
of a RECORD component or declared locally in a procedure (otherwise the refresh
of the signal after power fail restart will not work as it should).
Instruction AliasIO must be placed

• either in the event routine executed at program start (event START)
• or in the program part executed after every program start (before use of the

signal)
To prevent mistakes it is not recommended to use dynamic reconnection of an
AliasIO signal to different physical signals.

Syntax
AliasIO

[FromSignal ':='] < reference (REF) of anytype > ','

[ToSignal ':='] < variable (VAR) of anytype > ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 33
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.6 AliasIO - Define I/O signal with alias name

RobotWare - OS
Continued

Related information

SeeFor information about

AliasIOReset - Resetting I/O signal with alias name
on page 35

Reset I/O signal with alias name

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

GetSignalOrigin - Get information about the origin of
an I/O signal on page 1280

Get information about the origin of
an I/O signal

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - System parametersDefining event routines

Technical reference manual - System parametersLoaded/Installed task modules

Application manual - Controller software IRC5Advanced RAPID

34 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.6 AliasIO - Define I/O signal with alias name
RobotWare - OS
Continued

1.7 AliasIOReset - Resetting I/O signal with alias name

Usage
AliasIOReset is used to reset a signal that has been used in a previous call to
AliasIO.

Basic examples
The following example illustrates the instruction AliasIOReset:

Example 1
VAR signaldo alias_do;

PROC myproc()

AliasIO config_do, alias_do;

SetDO alias_do, 1;

..

AliasIOReset alias_do;

ENDPROC

The program defined digital output signal alias_do is connected to the configured
digital output signal config_do at the beginning of the procedure myproc. The
signal config_do is defined in the I/O configuration. Later on, when alias_do
should not be used anymore, the alias coupling is removed.

Arguments
AliasIOReset Signal

Signal

Data type: signalxx
The signal identifier according to the program (data type signalxx) that should
be reset. The signal must be declared in the RAPID program.

Program execution
The entire alias coupling is removed. The signal cannot be used until a new alias
coupling with AliasIO is done.

Limitation
Signals that are defined in the I/O configuration can not be reset. Only signals that
have been used in an AliasIO instruction and are declared in the RAPID program
can be used.

Syntax
AliasIOReset

[Signal ':='] < variable (VAR) of anytype > ';'

Related information

SeeFor information about

AliasIO - Define I/O signal with alias name on page32Define I/O signal with alias name

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 35
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.7 AliasIOReset - Resetting I/O signal with alias name

RobotWare - OS

SeeFor information about

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - System parametersDefining event routines

Technical reference manual - System parametersLoaded/Installed task modules

Application manual - Controller software IRC5Advanced RAPID

36 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.7 AliasIOReset - Resetting I/O signal with alias name
RobotWare - OS
Continued

1.8 ":=" - Assigns a value

Usage
The “:=” instruction is used to assign a new value to data. This value can be
anything from a constant value to an arithmetic expression, for
example,reg1+5*reg3.

Basic examples
The following examples illustrate the instruction “:=”:
See also More examples on page 37.

Example 1
reg1 := 5;

reg1 is assigned the value 5.

Example 2
reg1 := reg2 - reg3;

reg1 is assigned the value that the reg2-reg3 calculation returns.

Example 3
counter := counter + 1;

counter is incremented by one.

Arguments
Data := Value

Data

Data type: All
The data that is to be assigned a new value.

Value

Data type: Same as Data
The desired value.

More examples
More examples of the instruction “:=” are illustrated below.

Example 1
tool1.tframe.trans.x := tool1.tframe.trans.x + 20;

The TCP for tool1 is shifted 20 mm in the X-direction.

Example 2
pallet{5,8} := Abs(value);

An element in the pallet matrix is assigned a value equal to the absolute value
of the value variable.

Limitations
The data (whose value is to be changed) must not be

• a constant

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 37
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.8 ":=" - Assigns a value

RobotWare - OS

• a non-value data type.
The data and value must have similar (the same or alias) data types.

Syntax
<assignment target> ':=' <expression> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewExpressions

Technical reference manual - RAPID OverviewNon-value data types

Operating manual - IRC5 with FlexPendantAssigning an initial value to data

38 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.8 ":=" - Assigns a value
RobotWare - OS
Continued

1.9 BitClear - Clear a specified bit in a byte or dnum data

Usage
BitClear is used to clear (set to 0) a specified bit in a defined byte data or dnum
data.

Basic examples
The following examples illustrate the instruction BitClear:

Example 1
CONST num parity_bit := 8;

VAR byte data1 := 130;

BitClear data1, parity_bit;

Bit number 8 (parity_bit) in the variable data1 will be set to 0, for example, the
content of the variable data1will be changed from 130 to 2 (integer representation).
Bit manipulation of data type byte when using BitClear is illustrated in the
following figure.

xx0500002147

Example 2
CONST num parity_bit := 52;

VAR dnum data2 := 2251799813685378;

BitClear data2, parity_bit;

Bit number 52 (parity_bit) in the variable data2 will be set to 0, e.g. the content of
the variable data2 will be changed from 2251799813685378 to 130 (integer

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 39
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.9 BitClear - Clear a specified bit in a byte or dnum data

RobotWare - OS

representation). Bit manipulation of data type dnum when using BitClear is
illustrated in the figure below.

B
it

P
o

s
 5

2

B
it

P
o

s
 1

data2 : 2251799813685378

data2 : 130

Clear bit 52

xx1200000014

Arguments
BitClear BitData | DnumData BitPos

BitData

Data type: byte
The bit data, in integer representation, to be changed.

DnumData

Data type: dnum
The dnum bit data, in integer representation, to be changed.

BitPos

Bit Position
Data type: num
The bit position (1-8) in the BitData, or bit position (1-52) in the DnumData, to be
set to 0.

Limitations
The range for a data type byte is 0 - 255 decimal.
The bit position is valid from 1 - 8 for data type byte.
The range for a data type dnum is 0 - 4503599627370495 decimal.
The bit position is valid from 1 - 52 for data type dnum.

Syntax
BitClear

[BitData ':='] < var or pers (INOUT) of byte >

| [DnumData ':='] < var or pers (INOUT) of dnum > ','

[BitPos ':='] < expression (IN) of num > ';'

Continues on next page
40 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.9 BitClear - Clear a specified bit in a byte or dnum data
RobotWare - OS
Continued

Related information

SeeFor information about

BitSet - Set a specified bit in a byte or dnum data
on page 42

Set a specified bit in a byte or dnum data

BitCheck - Check if a specified bit in a byte data
is set on page 1144

Check if a specified bit in a byte data is
set

BitCheckDnum - Check if a specified bit in a
dnum data is set on page 1146

Check if a specified bit in a dnum data is
set

Technical reference manual - RAPID OverviewOther bit functions

Application manual - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 41
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.9 BitClear - Clear a specified bit in a byte or dnum data

RobotWare - OS
Continued

1.10 BitSet - Set a specified bit in a byte or dnum data

Usage
BitSet is used to set a specified bit to 1 in a defined byte data or dnum data.

Basic examples
The following examples illustrate the instruction BitSet:

Example 1
CONST num parity_bit := 8;

VAR byte data1 := 2;

BitSet data1, parity_bit;

Bit number 8 (parity_bit) in the variable data1 will be set to 1, for example, the
content of the variable data1will be changed from 2 to 130 (integer representation).
Bit manipulation of data type byte when using BitSet is illustrated in the figure
below.

xx0500002148

Example 2
CONST num parity_bit := 52;

VAR dnum data2 := 130;

BitSet data2, parity_bit;

Bit number 52 (parity_bit) in the variable data2will be set to 1, e.g. the content
of the variable data2 will be changed from 130 to 2251799813685378 (integer

Continues on next page
42 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.10 BitSet - Set a specified bit in a byte or dnum data
RobotWare - OS

representation). Bit manipulation of data type dnumwhen using BitSet is illustrated
in the figure below.

B
it

P
o

s
 5

2

B
it

P
o

s
 1

data2 : 2251799813685378

data2 : 130

Set bit 52

xx1200000015

Arguments
BitSet BitData | DnumData BitPos

BitData

Data type: byte
The bit data, in integer representation, to be changed.

DnumData

Data type: dnum
The bit data, in integer representation, to be changed.

BitPos

Bit Position
Data type: num
The bit position (1-8) in the BitData, or bit position (1-52) in the DnumData, to be
set to 1.

Limitations
The range for a data type byte is integer 0 - 255.
The bit position is valid from 1 - 8 for data type byte.
The range for a data type dnum is integer 0 - 4503599627370495.
The bit position is valid from 1 - 52 for data type dnum.

Syntax
BitSet

[BitData':='] < var or pers (INOUT) of byte >

| [DnumData':='] < var or pers (INOUT) of dnum > ','

[BitPos':='] < expression (IN) of num > ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 43
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.10 BitSet - Set a specified bit in a byte or dnum data

RobotWare - OS
Continued

Related information

SeeFor information about

BitClear - Clear a specified bit in a byte or
dnum data on page 39

Clear a specified bit in a byte or dnum data

BitCheck - Check if a specified bit in a byte
data is set on page 1144

Check if a specified bit in a byte data is set

BitCheckDnum - Check if a specified bit in a
dnum data is set on page 1146

Check if a specified bit in a dnum data is set

Technical reference manual - RAPID Over-
view

Other bit functions

Application manual - Controller software
IRC5

Advanced RAPID

44 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.10 BitSet - Set a specified bit in a byte or dnum data
RobotWare - OS
Continued

1.11 BookErrNo - Book a RAPID system error number

Usage
BookErrNo is used to book a new RAPID system error number.

Basic examples
The following example illustrates the instruction BookErrNo:

Example 1
! Introduce a new error number in a glue system

! Note: The new error variable must be declared with the initial
value -1

VAR errnum ERR_GLUEFLOW := -1;

! Book the new RAPID system error number

BookErrNo ERR_GLUEFLOW;

The variable ERR_GLUEFLOW will be assigned to a free system error number for
use in the RAPID code.

! Use the new error number

IF di1 = 0 THEN

RAISE ERR_GLUEFLOW;

ELSE

...

ENDIF

! Error handling

ERROR

IF ERRNO = ERR_GLUEFLOW THEN

...

ELSE

...

ENDIF

If the digital input di1 is 0, the new booked error number will be raised and the
system error variable ERRNO will be set to the new booked error number. The error
handling of those user generated errors can then be handled in the error handler
as usual.

Arguments
BookErrNo ErrorName

ErrorName

Data type: errnum
The new RAPID system error variable name.

Limitations
The new error variable must not be declared as a routine variable.
The new error variable must be declared with an initial value of -1, that gives the
information that this error should be a RAPID system error.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 45
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.11 BookErrNo - Book a RAPID system error number

RobotWare - OS

Syntax
BookErrNo

[ErrorName ':='] < variable (VAR) of errnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewError handling

errnum - Error number on page 1621Error number

RAISE - Calls an error handler on page 568Call an error handler

Application manual - Controller software IRC5Advanced RAPID

46 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.11 BookErrNo - Book a RAPID system error number
RobotWare - OS
Continued

1.12 Break - Break program execution

Usage
Break is used tomake an immediate break in programexecution for RAPID program
code debugging purposes. The robot movement is stopped at once.

Basic examples
The following example illustrates the instruction Break:

Example 1
...

Break;

...

Program execution stops and it is possible to analyze variables, values etc. for
debugging purposes.

Program execution
The instruction stops program execution at once, without waiting for the robot and
external axes to reach their programmed destination points for themovement being
performed at the time. Program execution can then be restarted from the next
instruction.
If there is a Break instruction in some routine event, the execution of the routine
will be interrupted and no STOP routine event will be executed. The routine event
will be executed from the beginning the next time the same event occurs.

Syntax
Break';'

Related information

SeeFor information about

Stop - Stops program execution on page 805Stopping for program actions

EXIT - Terminates program execution on page239Stopping after a fatal error

EXIT - Terminates program execution on page239Terminating program execution

StopMove - Stops robot movement on page 810Only stopping robot movements

Technical reference manual - RAPID Instructions, Functions and Data types 47
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.12 Break - Break program execution

RobotWare - OS

1.13 CallByVar - Call a procedure by a variable

Usage
CallByVar (Call By Variable) can be used to call procedures with specific names,
for example,proc_name1, proc_name2, proc_name3 ... proc_namex via
a variable.

Basic examples
The following example illustrates the instruction CallByVar:
See also More examples on page 48.

Example 1
reg1 := 2;

CallByVar "proc", reg1;

The procedure proc2 is called.

Arguments
CallByVar Name Number

Name

Data type: string
The first part of the procedure name, for example, proc_name.

Number

Data type: num
The numeric value for the number of the procedure. This value will be converted
to a string and gives the 2nd part of the procedure name, for example, 1. The value
must be a positive integer.

More examples
More examples of how to make static and dynamic selection of procedure call.

Example 1 - Static selection of procedure call
TEST reg1

CASE 1:

lf_door door_loc;

CASE 2:

rf_door door_loc;

CASE 3:

lr_door door_loc;

CASE 4:

rr_door door_loc;

DEFAULT:

EXIT;

ENDTEST

Depending on whether the value of register reg1 is 1, 2, 3, or 4, different procedures
are called that perform the appropriate type of work for the selected door. The door
location in argument door_loc.

Continues on next page
48 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.13 CallByVar - Call a procedure by a variable
RobotWare - OS

Example 2 - Dynamic selection of procedure call with RAPID syntax
reg1 := 2;

%"proc"+NumToStr(reg1,0)% door_loc;

The procedure proc2 is called with argument door_loc.
Limitation: All proceduresmust have a specific name, for example, proc1, proc2,
proc3.

Example 3 - Dynamic selection of procedure call with CallByVar
reg1 := 2;

CallByVar "proc",reg1;

The procedure proc2 is called.
Limitation: All procedures must have specific name, for example, proc1, proc2,
proc3, and no arguments can be used.

Limitations
Can only be used to call procedures without parameters.
Cannot be used to call LOCAL procedures.
Execution of CallByVar takes a little more time than execution of a normal
procedure call.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The argument Number is < 0 or is not an integer.ERR_ARGVALERR

The reference is to an unknown procedure.ERR_REFUNKPRC

Procedure call error (not procedure).ERR_CALLPROC

Syntax
CallByVar

[Name ':='] <expression (IN) of string>','

[Number ':='] <expression (IN) of num>';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewCalling procedures
Operating manual - IRC5 with FlexPendant

Technical reference manual - RAPID Instructions, Functions and Data types 49
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.13 CallByVar - Call a procedure by a variable

RobotWare - OS
Continued

1.14 CamFlush - Removes the collection data for the camera

Usage
CamFlush is used to flush (remove) the cameratarget collection for the camera.

Basic examples
The following example illustrates the instruction CamFlush.

Example 1
CamFlush mycamera;

The collection data for camera mycamera is removed.

Arguments
CamFlush Camera

Camera

Data type: cameradev
The name of the camera.

Syntax
CamFlush

[Camera ':='] < variable (VAR) of cameradev > ';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

50 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.14 CamFlush - Removes the collection data for the camera
Integrated Vision

1.15 CamGetParameter - Get different named camera parameters

Usage
CamGetParameter is used to get named parameters that the cameramay expose.
The user has to know the name of the parameter and its return type in order to
retrieve its value.

Basic examples
The following example illustrates the instruction CamGetParameter.

Example 1
VAR bool mybool:=FALSE;

...

CamGetParameter mycamera, "Pattern_1.Tool_Enabled_Status"
\BoolVar:=mybool;

TPWite "The current value of Pattern_1.Tool_Enabled_Status is: "
\Bool:=mybool;

Get the named boolean parameter Pattern_1.Tool_Enabled_Status and write
the value on the FlexPendant.

Arguments
CamGetParameter Camera ParName [\Num] | [\Bool] | [\Str]

Camera

Data type: cameradev
The name of the camera.

ParName

Parameter Name
Data type: string
The name of the parameter in the camera.

[\NumVar]

Data type: num
Variable (VAR) to store the numeric value of the data object retrieved.

[\BoolVar]

Data type: bool
Variable (VAR) to store the boolean value of the data object retrieved.

[\StrVar]

Data type: string
Variable (VAR) to store the string value of the data object retrieved.

Program execution
The instruction reads the specified parameter directly when the instruction is
executed and returns the value.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 51
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.15 CamGetParameter - Get different named camera parameters

Integrated Vision

If the instruction is used to read a result from the image analysis, make sure that
the camera has finished processing the image before getting the data.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

The parameter fetched from the camera with instruction
CamGetParameter has the wrong data type.

ERR_CAM_GET_MISMATCH

Syntax
CamGetParameter

[Camera ':='] < variable (VAR) of cameradev > ','

[ParName ':='] < expression (IN) of string >

['\'NumVar ':=' < variable (VAR) of num >]

| ['\'BoolVar ':=' < variable (VAR) of bool >]

| ['\'StrVar ':=' < variable (VAR) of string >] ';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

52 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.15 CamGetParameter - Get different named camera parameters
Integrated Vision
Continued

1.16 CamGetResult - Gets a camera target from the collection

Usage
CamGetResult (Camera Get Result)) is used to get a camera target from the
vision result collection.

Basic examples
The following example illustrates the instruction CamGetResult.

Example 1
VAR num mysceneid;

VAR cameratarget mycamtarget;

...

CamReqImage mycamera \SceneId:= mysceneid;

CamGetResult mycamera, mycamtarget \SceneId:= mysceneid;

Order camera mycamera to acquire an image. Get a vision result originating from
the image with SceneId.

Arguments
CamGetResult Camera CamTarget [\SceneId] [\MaxTime]

Camera

Data type: cameradev
The name of the camera.

CamTarget

Camera Target
Data type: cameratarget
The variable where the vision result will be stored.

[\SceneId]

Scene Identification
Data type: num
The SceneId is an identifier that specifies from which image the cameratarget
has been generated.

[\MaxTime]

Maximum Time
Data type: num
The maximum amount of time in seconds that program execution waits. The
maximum allowed value is 120 seconds.

Program execution
CamGetResult gets a camera target from the vision result collection. If no SceneId
or MaxTime is used, and there is no result to fetch, the instruction will hang forever.
If a SceneId is used in CamGetResult it should have been generated in a
preceding CamReqImage instruction.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 53
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.16 CamGetResult - Gets a camera target from the collection

Integrated Vision

The SceneId can only be used if the image has been ordered from instruction
CamReqImage. If images are generated by an external I/O signal, the SceneId
cannot be used in instruction CamGetResult.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

No result could be fetched within the time-out time.ERR_CAM_MAXTIME

No more vision results can be fetched for used SceneId,
or the result could not be fetched within the time-out time.

ERR_CAM_NO_MORE_DATA

Syntax
CamGetResult

[Camera ':='] < variable (VAR) of cameradev > ','

[CamTarget ':='] < variable (VAR) of CameraTarget >

['\'SceneId ':=' < expression (IN) of num >]

['\'MaxTime ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

54 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.16 CamGetResult - Gets a camera target from the collection
Integrated Vision
Continued

1.17 CamLoadJob - Load a camera task into a camera

Usage
CamLoadJob (Camera Load Job) loads a camera task, job, describing exposure
parameters, calibration, and what vision tools to apply.

Basic examples
The following example illustrates the instruction CamLoadJob.

Example 1
CamSetProgramMode mycamera;

CamLoadJob mycamera, "myjob.job";

CamSetRunMode mycamera;

The job myjob is loaded into the camera named mycamera.

Arguments
CamLoadJob Camera JobName [\KeepTargets] [\MaxTime]

Camera

Data type: cameradev
The name of the camera.

Name

Data type: string
The name of the job to load into the camera.

[\KeepTargets]

Data type: switch
This argument is used to specify if any existing camera targets produced by the
camera should be kept.

[\MaxTime]

Data type: num
The maximum amount of time in seconds that program execution waits. The
maximum allowed value is 120 seconds.

Program execution
The execution of CamLoadJob will wait until the job is loaded or fail with a time-out
error. If the optional argument KeepTargets is used, the old collection data for
the specified camera is kept. The default behavior is to remove (flush) the old
collection data.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 55
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.17 CamLoadJob - Load a camera task into a camera

Integrated Vision

Cause of errorName

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

The camera job was not loaded within the time-out time.ERR_CAM_MAXTIME

The camera is not in program modeERR_CAM_NO_PROGMODE

Limitations
It is only possible to execute CamLoadJob when the camera is set in program
mode. Use instruction CamSetProgramMode to set the camera in program mode.
To be able to load the job, the job file must be stored on the camera flash disk.

Syntax
CamLoadJob

[Camera ':='] < variable (VAR) of cameradev > ','

[JobName ':='] <expression (IN) of string >

['\'KeepTargets]

['\'MaxTime ':=' <expression (IN) of num>]';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

56 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.17 CamLoadJob - Load a camera task into a camera
Integrated Vision
Continued

1.18 CamReqImage - Order the camera to acquire an image

Usage
CamReqImage (Camera Request Image) orders the camera to acquire an image.

Basic examples
The following example illustrates the instruction CamReqImage.

Example 1
CamReqImage mycamera;

Order camera mycamera to acquire an image.

Arguments
CamReqImage Camera [\SceneId] [\KeepTargets] [\AwaitComplete]

Camera

Data type: cameradev
The name of the camera.

[\SceneId]

Scene Identification
Data type: num
The optional argument SceneId is an identifier for the acquired image. It is
generated for each executed CamReqImage using the optional argument SceneId.
The identifier is an integer between 1 and 8388608. If no SceneId is used, the
identifier value is set to 0.

[\KeepTargets]

Data type: switch
This argument is used to specify if old collection data for a specified camera should
be kept.

[\AwaitComplete]

Data type : switch
If the optional argument \AwaitComplete is specified the instruction waits until
the results from the image have been received.
When \AwaitComplete is used, the camera trigger type has to be set to External.

Program execution
CamReqImage is ordering a specified camera to acquire an image. If the optional
argument SceneId is used, the available vision results of an acquired image is
marked with the unique number generated by the instruction.
If optional argument KeepTargets is used, the old collection data for the specified
camera is kept. The default behavior is to remove (flush) any old collection data.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 57
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.18 CamReqImage - Order the camera to acquire an image

Integrated Vision

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

The camera is not in running modeERR_CAM_NO_RUNMODE

Limitations
It is only possible to execute CamReqImage when the camera is set in running
mode. Use instruction CamSetRunMode to set the camera in running mode.

Syntax
CamReqImage

[Camera ':='] < variable (VAR) of cameradev > ','

['\'SceneId ':=' < variable (VAR) of num >]

['\'KeepTargets]

['\'AwaitComplete]';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

58 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.18 CamReqImage - Order the camera to acquire an image
Integrated Vision
Continued

1.19 CamSetExposure - Set camera specific data

Usage
CamSetExposure (Camera Set Exposure) sets camera specific data and makes
it possible to adapt image parameters depending on ambient lighting conditions.

Basic examples
The following example illustrates the instruction CamSetExposure.

Example 1
CamSetExposure mycamera \ExposureTime:=10;

Order the camera mycamera to change the exposure time to 10 ms.

Arguments
CamSetExposure Camera [\ExposureTime] [\Brightness] [\Contrast]

Camera

Data type: cameradev
The name of the camera.

[\ExposureTime]

Data type: num
If this optional argument is used, the exposure time of the camera is updated. The
value is in milliseconds (ms).

[\Brightness]

Data type: num
If this optional argument is used, the brightness setting of the camera is updated.
The value is normally expressed on a scale from 0 to 1.

[\Contrast]

Data type: num
If this optional argument is used, the contrast setting of the camera is updated.
The value is normally expressed on a scale from 0 to 1.

Program execution
The instruction updates the exposure time, brightness and contrast if it is possible
to update those for the specific camera. If a setting is not supported by the camera
an error message will be presented to the user, and the program execution stops.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 59
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.19 CamSetExposure - Set camera specific data

Integrated Vision

Syntax
CamSetExposure

[Camera ':='] < variable (VAR) of cameradev > ','

['\'ExposureTime ':=' < variable (IN) of num >]

['\'Brightness ':=' < variable (IN) of num >]

['\'Contrast ':=' < variable (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

60 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.19 CamSetExposure - Set camera specific data
Integrated Vision
Continued

1.20 CamSetParameter - Set different named camera parameters

Usage
CamSetParameter is used to set different named camera parameters that a camera
may expose. With this instruction it is possible to change different parameters in
the camera in runtime. The user has to know the name of the parameter and its
type in order to set its value.

Basic examples
The following example illustrates the instruction CamSetParameter.

Example 1
CamSetParameter mycamera, "Pattern_1.Tool_Enabled" \BoolVal:=FALSE;

CamSetRunMode mycamera;

In this example the parameter named "Pattern_1.Tool_Enabled" is set to false,
which means that the specified vision tool shall not execute when an image is
acquired.
This will give a faster execution of the vision tool. However, the tool still produces
results with the values from the latest active execution. In order to not use these
targets, sort them out in the RAPID program.

Arguments
CamSetParameter Camera ParName [\Num] | [\Bool] | [\Str]

Camera

Data type: cameradev
The name of the camera.

ParName

Data type: string
The name of the parameter in the camera.

[\NumVal]

Data type: num
The numeric value to set for the camera parameter with the name set in argument
ParName.

[\BoolVal]

Data type: bool
The boolean value to set for the camera parameter with the name set in argument
ParName.

[\StrVal]

Data type: string
The string value to set for the camera parameter with the name set in argument
ParName.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 61
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.20 CamSetParameter - Set different named camera parameters

Integrated Vision

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

The parameter written to the camera with instruction Cam-
SetParameter has the wrong data type, or the value is out
of range.

ERR_CAM_SET_MISMATCH

Syntax
CamSetParameter

[Camera ':='] < variable (VAR) of cameradev > ','

[ParName ':='] < expression (IN) of string >

['\'NumVal ':=' < expression (IN) of num >]

| ['\'BoolVal ':=' < expression (IN) of bool >]

| ['\'StrVal ':=' < expression (IN) of string >] ';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

62 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.20 CamSetParameter - Set different named camera parameters
Integrated Vision
Continued

1.21 CamSetProgramMode - Orders the camera to go to program mode

Usage
CamSetProgramMode (Camera Set Program Mode) orders the camera to go to
program mode (offline).

Basic examples
The following example illustrates the instruction CamSetProgramMode.

Example 1
CamSetProgramMode mycamera;

CamLoadJob mycamera, "myjob.job";

CamSetRunMode mycamera;

...

First, change the camera to programmingmode. Then load myjob into the camera.
Then, order the camera to go to running mode.

Arguments
CamSetProgramMode Camera

Camera

Data type: cameradev
The name of the camera.

Program execution
When ordering a camera to go to program mode with instruction
CamSetProgramMode, it will be possible to change settings and load a job into
the camera.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

Syntax
CamSetProgramMode

[Camera ':='] < variable (VAR) of cameradev > ';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

Technical reference manual - RAPID Instructions, Functions and Data types 63
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.21 CamSetProgramMode - Orders the camera to go to program mode

Integrated Vision

1.22 CamSetRunMode - Orders the camera to run mode

Usage
CamSetRunMode (Camera Set RunningMode) orders the camera to go to runmode
(online), and updates the controller on the current output to RAPID configuration.

Basic examples
The following example illustrates the instruction CamSetRunMode.

Example 1
CamSetProgramMode mycamera;

CamLoadJob mycamera, "myjob.job";

...

CamSetRunMode mycamera;

First, change the camera to programmingmode. Then load myjob into the camera.
Then, order the camera to go to running mode with instruction CamSetRunMode.

Arguments
CamSetRunMode Camera

Camera

Data type: cameradev
The name of the camera.

Program execution
When ordering a camera to go to run mode with CamSetRunMode it is possible to
start taking images.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

Syntax
CamSetRunMode

[Camera ':='] < variable (VAR) of cameradev > ';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

64 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.22 CamSetRunMode - Orders the camera to run mode
Integrated Vision

1.23 CamStartLoadJob - Start load of a camera task into a camera

Usage
CamStartLoadJob will start the loading of a job into a camera, and then the
execution will continue on the next instruction. When loading is in progress other
instructions can be executed in parallel.

Basic examples
The following example illustrates the instruction CamStartLoadJob.

Example 1
...

CamStartLoadJob mycamera, "myjob.job";

MoveL p1, v1000, fine, tool2;

CamWaitLoadJob mycamera;

CamSetRunMode mycamera;

CamReqImage mycamera;

...

First a job loading is started to the camera, and while the loading is proceeding, a
movement to position p1 is done. When the movement is ready, and the loading
has finished, an image is acquired.

Arguments
CamStartLoadJob Camera Name [\KeepTargets]

Camera

Data type: cameradev
The name of the camera.

Name

Data type: string
The name of the job to load into the camera.

[\KeepTargets]

Data type: switch
This argument is used to specify if old collection data for a specified camera should
be kept.

Program execution
Execution of CamStartLoadJob will only order the loading and then proceed
directly with the next instruction without waiting for the loading to be completed.
If optional argument \KeepTargets is used, the old collection data for the specified
camera is not removed. The default behavior is to remove (flush) old collection
data.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 65
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.23 CamStartLoadJob - Start load of a camera task into a camera

Integrated Vision

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Limitations
It is only possible to execute CamStartLoadJobwhen the camera is set in program
mode. Use instruction CamSetProgramMode to set the camera in program mode.
When an ongoing load of a job is executing, it is not possible to access that specific
camera with any other instruction or function. The following camera instruction or
function must be a CamWaitLoadJob instruction.
To be able to load the job, the job file must be stored on the camera flash disk.

Syntax
CamStartLoadJob

[Camera ':='] < variable (VAR) of cameradev > ','

[Name ':='] <expression (IN) of string >

['\'KeepTargets]';'

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

66 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.23 CamStartLoadJob - Start load of a camera task into a camera
Integrated Vision
Continued

1.24 CamWaitLoadJob – Wait until a camera task is loaded

Usage
CamWaitLoadJob (Camera Wait Load Job) will wait until the loading of a job into
a camera is ready.

Basic examples
The following example illustrates the instruction CamWaitLoadJob.

Example 1
...

CamStartLoadJob mycamera, "myjob.job";

MoveL p1, v1000, fine, tool2;

CamWaitLoadJob mycamera;

CamSetRunMode mycamera;

CamReqImage mycamera;

...

First a job loading is started to the camera, and while the loading is proceeding, a
movement to position p1 is done. When the movement is ready, and the loading
has finished, an image is acquired.

Arguments
CamWaitLoadJob Camera

Camera

Data type: cameradev
The name of the camera.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

Limitations
It is only possible to execute CamWaitLoadJobwhen the camera is set in program
mode. Use instruction CamSetProgramMode to set the camera in program mode.
When an ongoing load of a job is executing, it is not possible to access that specific
camera with any other instruction or function. The following camera instruction or
function must be a CamWaitLoadJob instruction.

Syntax
CamWaitLoadJob

[Camera ':='] < variable (VAR) of cameradev > ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 67
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.24 CamWaitLoadJob – Wait until a camera task is loaded

Integrated Vision

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

68 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.24 CamWaitLoadJob – Wait until a camera task is loaded
Integrated Vision
Continued

1.25 CancelLoad - Cancel loading of a module

Usage
CancelLoad can be used to cancel the loading operation generated from the
instruction StartLoad.
CancelLoad can only be used between the instruction StartLoad and WaitLoad.

Basic examples
The following example illustrates the instruction CancelLoad:
See also More examples on page 69.

Example1
CancelLoad load1;

The load session load1 is cancelled.

Arguments
CancelLoad LoadNo

LoadNo

Data type: loadsession
Reference to the load session, created by the instruction StartLoad.

More examples
More examples of how to use the instruction CancelLoad are illustrated below.

Example 1
VAR loadsession load1;

StartLoad "HOME:"\File:="PART_B.MOD",load1;

...

IF ...

CancelLoad load1;

StartLoad "HOME:"\File:="PART_C.MOD",load1;

ENDIF

...

WaitLoad load1;

The instruction CancelLoad will cancel the on-going loading of the module
PART_B.MOD and instead make it possible to load PART_C.MOD.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The variable specified in argument LoadNo is not in use,
meaning that no load session is in use.

ERR_LOADNO_NOUSE

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 69
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.25 CancelLoad - Cancel loading of a module

RobotWare - OS

Limitation
CancelLoad can only be used in the sequence after that instruction StartLoad
is ready and before instruction WaitLoad is started.

Syntax
CancelLoad

[LoadNo ':='] < variable (VAR) of loadsession >';'

Related information

SeeFor information about

StartLoad - Load a programmodule during execu-
tion on page 777

Load a program module during execu-
tion

WaitLoad - Connect the loaded module to the task
on page 1035

Connect the loaded module to the task

loadsession - Program load session on page1657Load session

Load - Load a program module during execution
on page 362

Load a program module

UnLoad - UnLoad a programmodule during execu-
tion on page 992

Unload a program module

CheckProgRef - Check program references on
page 118

Check program references

70 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.25 CancelLoad - Cancel loading of a module
RobotWare - OS
Continued

1.26 CapAPTrSetup - Setup an At-Point-Tracker

Usage
CapAPTrSetup (Setup an At-Point-Tracker) is used to setup an At-Point-Tracker
type of sensor, for example,WeldGuide or AWC.
The sensor interface communicates with a maximum of one sensor over serial
channels using the RTP1 transport protocol.

Basic example
SIO.cfg:

COM_PHY_CHANNEL:

-name sio1:" -Connector "COM1"

COM_TRP:

-Name "swg:" -Type "RTP1" -PhyChannel "sio1"

RAPID code:
! Define variable numbers

CONST num SensorOn := 6;

CONST num XCoord := 8;

CONST num YCoord := 9;

CONST num ZCoord := 10;

VAR pos SensorPos;

! Setup a Weldguide

CapAPTrSetup "swg:", do_left, 80, do_right, 80;

Arguments
CapAPTrSetup device DoLeft LevelLeft DoRight LevelRight [\LogFile]

[\LogSize]

device
Data type: string
The I/O device name configured in sio.cfg for the sensor used.

DoLeft
Data type: signaldo
Digital output signal for weave synchronization on the left weave cycle.

LevelLeft
Data type: num
The coordination position on the left side of the weaving pattern. The value specified
is a percentage of the width on the left of the weaving center. When weaving is
carried out beyond this point, a digital output signal is automatically set high
(provided the signal is defined).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 71
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.26 CapAPTrSetup - Setup an At-Point-Tracker

Continuous Application Platform (CAP)

This type of coordination can be used for seam tracking using Through-the-Arc
Tracker.

xx1200000178

DoRight
Data type: signaldo
Digital output signal for weave synchronization on the right weave cycle.

LevelRight
Data type: num
The coordination position on the right side of the weaving pattern. The value
specified is a percentage of the width on the right of the weaving center. When
weaving is carried out beyond this point, a digital output signal is automatically set
high (provided the signal is defined).
This type of coordination can be used for seam tracking using Through-the-Arc
Tracker.

xx1200000179

[\LogFile]
Data type: string
Name of tracklog log file.

[\LogSize]
Data type: num
Size of the tracklog ring buffer, that is the number of sensor measurements that
can be buffered during tracking.
Default value: 1000.

Syntax
CapAPTrSetup

[device ':='] < expression (IN) of string> ','

[DoLeft ':='] < expression (IN) of signaldo > ','

[LevelLeft ':='] < expression (IN) of num > ','

[DoRight ':='] < expression (IN) of signaldo > ','

[LevelRight ':='] < expression (IN) of num >

['\'LogFile ':='] < expression (IN) of string >

['\'LogSize ':='] < expression (IN) of num > ';'

Continues on next page
72 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.26 CapAPTrSetup - Setup an At-Point-Tracker
Continuous Application Platform (CAP)
Continued

Related information

Described in:

Application manual - Continuous Application
Platform

Continuous Application Platform

Applicationmanual - Controller software IRC5Sensor Interface

Technical reference manual - RAPID Instructions, Functions and Data types 73
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.26 CapAPTrSetup - Setup an At-Point-Tracker

Continuous Application Platform (CAP)
Continued

1.27 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals

Usage
CapAPTrSetupAI is used to setup an At-Point-Tracker controlled by analog input
signals.

Basic examples
The following example illustrates the instruction CapAPTrSetupAI.

Example 1
TASK PERS capdata cData:=[.....];

TASK PERS weavestartdata wsData:=[.....];

TASK PERS capweavedata wData:=[.....];

TASK PERS captrackdata trackData:=["ANALOG_TRACKER",.....];

VAR capaptrreferencedata referenceData:=[2,2,1,1,0.1,0.1];

VAR signalai ai_y;

VAR signalai ai_z;

AliasIO realsignal_y, ai_y;

AliasIO realsignal_z, ai_z;

CapAPTrSetupAI ai_y, ai_z, referenceData;

CapL p1, v200, cData, wsData, wData , fine, tWeldGun
\Track:=trackData;

Arguments
CapAPTrSetupAO ai_y, ai_z, ReferenceData [\MaxIncrCorr]

[\WarnMaxCorr] [\Filter] [\SampleTime] [\Logfile] [\LogSize]
[\LatestCorr] [\AccCorr]

ai_y

Data type: signalai
Analog input signal used as process position for the y-direction.

ai_z

Data type: signalai
Analog input signal used as process position for the z-direction.

ReferenceData

Data type: capaptrreferencedata
Setup data used for the correction regulator loop.

MaxIncCorr

Data type: num
Maximum incremental correction allowed (in mm).
If the incremental TCP correction is larger than \MaxIncCorr and \WarnMaxCorr,
the robot will continue its path but the applied incremental correction will not exceed

Continues on next page
74 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.27 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals
Continuous Application Platform (CAP)

\MaxIncCorr. If \WarnMaxCorr is not specified, a track error is reported and the
program execution is stopped.

WarnMaxCorr

Data type: switch
If this switch is present the program execution is not interrupted when the limit for
maximum correction is exceeded, specified in \MaxIncCorr. Only a warning is
sent.

Filter

Data type: num
Size of the reference sample data filter. A value between 1 and 15 is allowed, the
default value is 1.

SampleTime

Data type: num
Sample time in milliseconds for the correction loop. The value is rounded to a
multiple of 24. The minimum value allowed is 24, and the default value is 24.

LogFile

Data type: string
The name of the tracklog log file. The log file is placed in the HOME directory of
the system.

LatestCorr

Data type: pos
Size of the latest added correction (in mm).

AccCorr

Data type: pos
Size of the total accumulated correction added (in mm).

LogSize

Data type: num
The size of the tracklog ring buffer that is the number of sensor measurements
that can be buffered during tracking.
Default value: 1000.

Syntax
CapAPTrSetupAI

[aoi_y ':='] <expression (IN) of signalai> ','

[ai_z ':='] <expression (IN) of signalai> ','

[ReferenceData ':='] <expression (IN) of capaptrreferencedata>
','

[\MaxIncrCorr ':='] <expression (IN) of num> ','

[\WarnMaxCorr ':='] <expression (IN) of switch> ','

[\Filter ':='] <expression (IN) of num> ','

[\SampleTime ':='] <expression (IN) of num> ','

[\LogFile ':='] <expression (IN) of string> ','

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 75
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.27 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals

Continuous Application Platform (CAP)
Continued

[\LogSize ':='] <expression (IN) of num> ','

[\LatestCorr ':='] <expression (PERS) of pos> ','

[\AccCorr ':='] <expression (PERS) of pos> ';'

Related information

SeeFor information about

CapAPTrSetupAO - Setup an At-Point-Tracker
controlled by analog output signals on page 77

Instruction CapAPTrSetupAO

CapAPTrSetupPERS - Setup an At-Point-Tracker
controlled by persistent variables on page 80

Instruction CapAPTrSetupPERS

capaptrreferencedata - Variable setup data for
At-Point-Tracker on page 1574

Data type capaptrreferencedata

Application manual - Continuous Application
Platform

Continuous Application Platform

Application manual - Controller software IRC5Sensor Interface

76 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.27 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals
Continuous Application Platform (CAP)
Continued

1.28 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output
signals

Usage
CapAPTrSetupAO is used to setup an At-Point-Tracker controlled by analog output
signals.

Basic examples
The following example illustrates the instruction CapAPTrSetupAO.

Example 1
TASK PERS capdata cData:=[.....];

TASK PERS weavestartdata wsData:=[.....];

TASK PERS capweavedata wData:=[.....];

TASK PERS captrackdata trackData:=["ANALOG_TRACKER",.....];

VAR capaptrreferencedata referenceData:=[2,2,1,1,0.1,0.1];

VAR signalao ao_y;

VAR signalao ao_z;

AliasIO realsignal_y, ao_y;

AliasIO realsignal_z, ao_z;

CapAPTrSetupAO ao_y, ao_z, referenceData;

CapL p1, v200, cData, wsData, wData , fine, tWeldGun
\Track:=trackData;

Arguments
CapAPTrSetupAO ao_y, ao_z, ReferenceData [\MaxIncrCorr]

[\WarnMaxCorr] [\Filter] [\SampleTime] [\Logfile] [\LogSize]
[\LatestCorr] [\AccCorr]

ao_y

Data type: signalao
Analog output signal used as process position for the y-direction.

ao_z

Data type: signalao
Analog output signal used as process position for the z-direction.

ReferenceData

Data type: capaptrreferencedata
Setup data used for the correction regulator loop.

MaxIncCorr

Data type: num
Maximum incremental correction allowed (in mm).
If the incremental TCP correction is larger than \MaxIncCorr and \WarnMaxCorr,
the robot will continue its path but the applied incremental correction will not exceed

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 77
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.28 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output signals

Continuous Application Platform (CAP)

\MaxIncCorr. If \WarnMaxCorr is not specified, a track error is reported and the
program execution is stopped.

WarnMaxCorr

Data type: switch
If this switch is present the program execution is not interrupted when the limit for
maximum correction is exceeded, specified in \MaxIncCorr. Only a warning is
sent.

Filter

Data type: num
Size of the reference sample data filter. A value between 1 and 15 is allowed, the
default value is 1.

SampleTime

Data type: num
Sample time in milliseconds for the correction loop. The value is rounded to a
multiple of 24. The minimum value allowed is 24, and the default value is 24.

LogFile

Data type: string
The name of the tracklog log file. The log file is placed in the HOME directory of
the system.

LogSize

Data type: num
The size of the tracklog ring buffer that is the number of sensor measurements
that can be buffered during tracking.
Default value: 1000.

LatestCorr

Data type: pos
Size of the latest added correction (in mm).

AccCorr

Data type: pos
Size of the total accumulated correction added (in mm).

Syntax
CapAPTrSetupAO

[ao_y ':='] <expression (IN) of signalao> ','

[ao_z ':='] <expression (IN) of signalao> ','

[ReferenceData ':='] <expression (IN) of capaptrreferencedata>
','

[\MaxIncrCorr ':='] <expression (IN) of num> ','

[\WarnMaxCorr ':='] <expression (IN) of switch> ','

[\Filter ':='] <expression (IN) of num> ','

[\SampleTime ':='] <expression (IN) of num> ','

[\LogFile ':='] <expression (IN) of string> ','

Continues on next page
78 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.28 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output signals
Continuous Application Platform (CAP)
Continued

[\LogSize ':='] <expression (IN) of num> ','

[\LatestCorr ':='] <expression (PERS) of pos> ','

[\AccCorr ':='] <expression (PERS) of pos> ';'

Related information

SeeFor information about

CapAPTrSetupAI - Setup an At-Point-Tracker
controlled by analog input signals on page 74

Instruction CapAPTrSetupAI

CapAPTrSetupPERS - Setup an At-Point-Tracker
controlled by persistent variables on page 80

Instruction CapAPTrSetupPERS

capaptrreferencedata - Variable setup data for
At-Point-Tracker on page 1574

Data type capaptrreferencedata

Application manual - Continuous Application
Platform

Continuous Application Platform

Application manual - Controller software IRC5Sensor Interface

Technical reference manual - RAPID Instructions, Functions and Data types 79
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.28 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output signals

Continuous Application Platform (CAP)
Continued

1.29 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent
variables

Usage
CapAPTrSetupPERS is used to setup an At-Point-Tracker controlled by persistent
variables.

Basic examples
The following example illustrates the instruction CapAPTrSetupPERS.

Example 1
TASK PERS capdata cData:=[.....];

TASK PERS weavestartdata wsData:=[.....];

TASK PERS capweavedata wData:=[.....];

TASK PERS captrackdata trackData:=["ANALOG_TRACKER",.....];

PERS pos corr:=[0,-0.05,-0.025];

VAR capaptrreferencedata referenceData:=[2,2,1,1,0.1,0.1];

IDelete intno1;

CONNECT intno1 WITH trOffset;

CapAPTRSetupPERS corr.y, corr.z, referenceData;

ITimer 1,intno1;

CapL p1, v200, cData, wsData, wData , fine,
tWeldGun\Track:=trackData;

TRAP trOffset

corr.y := referenceData.reference_y +-;

corr.z := referenceData.reference_z +-;

ENDTRAP

Arguments
CapAPTrSetupPERS var_y, var_z, ReferenceData [\MaxIncrCorr]

[\WarnMaxCorr] [\Filter] [\SampleTime] [\Logfile] [\LogSize]
[\LatestCorr] [\AccCorr]

var_y

Data type: num
Analog input signal used as process position for the y-direction.

var_z

Data type: signalai
Analog input signal used as process position for the z-direction.

ReferenceData

Data type: capaptrreferencedata
Setup data used for the correction regulator loop.

Continues on next page
80 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.29 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent variables
Continuous Application Platform (CAP)

MaxIncCorr

Data type: num
Maximum incremental correction allowed (in mm).
If the incremental TCP correction is larger than \MaxIncCorr and \WarnMaxCorr,
the robot will continue its path but the applied incremental correction will not exceed
\MaxIncCorr. If \WarnMaxCorr is not specified, a track error is reported and the
program execution is stopped.

WarnMaxCorr

Data type: switch
If this switch is present the program execution is not interrupted when the limit for
maximum correction is exceeded, specified in \MaxIncCorr. Only a warning is
sent.

Filter

Data type: num
Size of the reference sample data filter. A value between 1 and 15 is allowed, the
default value is 1.

SampleTime

Data type: num
Sample time in milliseconds for the correction loop. The value is rounded to a
multiple of 24. The minimum value allowed is 24, and the default value is 24.

LogFile

Data type: string
The name of the tracklog log file. The log file is placed in the HOME directory of
the system.

LatestCorr

Data type: pos
Size of the latest added correction (in mm).

AccCorr

Data type: pos
Size of the total accumulated correction added (in mm).

LogSize

Data type: num
The size of the tracklog ring buffer that is the number of sensor measurements
that can be buffered during tracking.
Default value: 1000.

Syntax
CapAPTrSetupPERS

[var_y ':='] <expression (PERS) of num> ','

[var_z ':='] <expression (PERS) of vnum> ','

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 81
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.29 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent variables

Continuous Application Platform (CAP)
Continued

[ReferenceData ':='] <expression (IN) of capaptrreferencedata>
','

[\MaxIncrCorr ':='] <expression (IN) of num> ','

[\WarnMaxCorr ':='] <expression (IN) of switch> ','

[\Filter ':='] <expression (IN) of num> ','

[\SampleTime ':='] <expression (IN) of num> ','

[\LogFile ':='] <expression (IN) of string> ','

[\LogSize ':='] <expression (IN) of num> ','

[\LatestCorr ':='] <expression (PERS) of pos> ','

[\AccCorr ':='] <expression (PERS) of pos> ';'

Related information

SeeFor information about

CapAPTrSetupAI - Setup an At-Point-Tracker
controlled by analog input signals on page 74

Instruction CapAPTrSetupAI

CapAPTrSetupAO - Setup an At-Point-Tracker
controlled by analog output signals on page 77

Instruction CapAPTrSetupAO

capaptrreferencedata - Variable setup data for
At-Point-Tracker on page 1574

Data type capaptrreferencedata

Application manual - Continuous Application
Platform

Continuous Application Platform

Application manual - Controller software IRC5Sensor Interface

82 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.29 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent variables
Continuous Application Platform (CAP)
Continued

1.30 CapC - Circular CAP motion instruction

Usage
CapC is used to move the tool center point (TCP) along a circular path to a given
destination and at the same time control a continuous process. Furthermore it is
possible to connect up to eight events to CapC. The events are defined using the
instructions TriggRampAO, TriggIO, TriggEquip, TriggInt, TriggCheckIO,
or TriggSpeed.

Basic examples

Example 1
Circular movements with CapC.

CapC cirp, p1, v100, cdata, weavestart, weave, fine, gun1;

The TCP of the tool, gun1, is moved circularly to the fine point p1 with speed
defined in cdata.

Example 2
Circular movement with user event and CAP event.

VAR intnum start_intno;

...

PROC main()

VAR triggdata gunon;

IDelete start_intno;

CONNECT start_intno WITH start_trap;

ICap start_intno, CAP_START;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveJ p1, v500, z50, gun1;

CapC p2,p3,v500,cdata,wstart,w1,fine,gun1,\T1:=gunon;

ENDPROC

TRAP start_trap

! This routine will be executed when the event CAP_START is
reported

ENDTRAP

The digital output signal gun is set when the robot’s TCP passes the midpoint of
the corner path of the point p1. The trap routine start_trap is executed when the
CAP process is starting.

xx1200000174

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 83
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction

Continuous Application Platform (CAP)

Arguments
CapC Cirpoint ToPoint [\Id] Speed Cdata [\MoveStartTimer] Weavestart

Weave Zone [\Inpos] Tool [\WObj] [\Track] | [\Corr]
[\PreProcessTracking] [\Time] [\T1] [\T2] [\T3] [\T4] [\T5]
[\T6] [\T7] [\T8] [\TLoad]

Cirpoint

Data type: robtarget
The circle point of the robot. The circle point is a point on the circle between the
start point and the destination point. To obtain the best accuracy it should be placed
about halfway between the start and destination points. If it is placed to close to
the start or end point, the robot may give a warning. The circle point is defined as
a named position or stored directly in the instruction (if marked with an * in the
instruction).

ToPoint

Data type: robtarget
The destination point of the robot and additional axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\Id]

(Sync identity)
Data type: identno
Synchronization identity for RAPID movement instructions in a MultiMove system
in synchronized mode.

Speed

Data type: speeddata
The speed data that applies to movements without active CAP process. Speed
data defines the velocity of the tool center point, the additional axes and of the tool
reorientation. If a CAP process is active (not blocked), then the Cdata argument
defines the TCP velocity.

Cdata

(CAP process Data)
Data type: capdata
CAP process data, see capdata - CAP data on page1576 for a detailed description.

[\Movestart_timer]

(Time in s)
Data type: num
Upper limit for the time difference between the order of the process start and the
actual start of the robots TCP movement in a MultiMove system in synchronized
mode.

Weavestart

(Weavestart Data)
Data type: weavestartdata

Continues on next page
84 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction
Continuous Application Platform (CAP)
Continued

Weave start data for the CAP process, see weavestartdata - weave start data on
page 1768 for a detailed description.

Weave

(Weave Data)
Data type: capweavedata
Weaving data for the CAP process, see capweavedata - Weavedata for CAP on
page 1589 for a detailed description.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

(In position)
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point (TCP) is the point that
is moved to the specified destination position.

[\WObj]

Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated additional
axes are used, this argument must be specified for a linear movement relative to
the work object to be performed.

[\Track]

(Track Sensor Data)
Data type: captrackdata
This data structure contains data needed for use of path correction generating
sensors together with CapC, see captrackdata - CAP track data on page1586. This
argument is not allowed together with the argument \Corr.

[\Corr]

(Use Correction Generator)
Data type: switch

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 85
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction

Continuous Application Platform (CAP)
Continued

This argument tells CapC to read path corrections from a correction generator, see
CorrCon - Connects to a correction generator on page 162. This argument is not
allowed together with the argument \Track.
The RobotWare option Path Offset is required when using this argument.

[\PreProcessTracking]

Data type: switch
This argument is effective only if first_instruction is set to TRUE and the
\Track argument is present.
This argument activates Pre Process Tracking, which means that the robot will be
tracking only, without process, during that CapX instruction. Thereby sensor data
are available for successful tracking right off the start of the path with process, e.g.
welding.
For more information see Operating manual - Tracking and searching with optical
sensors.

[\Time]

Data type: num
This argument is used to specify the total time in seconds during which the robot
and additional axes move. It is then substituted for the corresponding speed data.

[\T1] [\T2] [\T3] [\T4] [\T5] [\T6] [\T7] [\T8]

(Trigg x)
Data type: triggdata
Variables that refer to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggRampAO, TriggIO, TriggEquip, or
TriggInt.

[\TLoad]

Data type: loaddata
The argument \TLoad describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the
argument \TLoad is used, then the loaddata in the current tooldata is not
considered.
If the argument \TLoad is set to load0, then the argument is not considered and
the loaddata in the current tooldata is used instead. For a complete description
of the argument TLoad, see MoveL,MoveL - Moves the robot linearly on page457.

Error handling
There are several different types of errors that can be handled in the error handler
for the CapC/CapL instructions:

• supervision errors
• sensor specific errors
• errors specific to a MultiMove system
• errors inherited from TriggX functionality
• other CAP errors

Continues on next page
86 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction
Continuous Application Platform (CAP)
Continued

If one of the signals that is supposed to be supervised does not have the correct
value, or if it changes value during supervision, the system variable ERRNO is set.
If no values can be read from the track sensor, the system variable ERRNO is set.
For a MultiMove system running in synchronizedmode the error handler must take
care of two other errors. One is used to report that some other application has
detected an recoverable error. This enables recoverable error handling in
synchronized RAPID tasks. The other error, CAP_MOV_WATCHDOG, is reported if
the time between the order of the process start and the actual start of the robots
TCP movement in a MultiMove system in synchronized mode expires. The time
used is specified in the optional parameter Movestart_timer in the CapC
instruction.
If anything abnormal is detected, program execution will stop. If, however, an error
handler is programmed, the errors defined below can be remedied without stopping
production. However, a recommendation is that some of the errors (the errors with
CAP_XX) these errors should not be presented for the end user. Map those errors
to a application specific error. For the supervision errors the instruction
CapGetFailSigs can be used to get which specific signal that failed.

Supervision errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

This error occurs when there is an error in the PRE supervi-
sion list, that is, when the conditions in the list are not met
within the specified time frame (specified in pre_cond time-
out).

CAP_PRE_ERR

This error occurs when there is an error during the supervi-
sion of the PRE phase.

CAP_PRESTART_ERR

This event occurs when there is an error in the END_PRE
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
start_cond time-out).

CAP_END_PRE_ERR

This event occurs when there is an error in the START super-
vision list, that is, when the conditions in the list are not met
within the specified time frame (specified in start_cond
time-out).

CAP_START_ERR

This error occurs when there is an error during the supervi-
sion of the main phase.

CAP_MAIN_ERR

This error occurs when there is an error in the END_MAIN
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_ENDMAIN_ERR

This event occurs when there is an error in the START_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_START_POST1_ERR

This error occurs when there is an error during the supervi-
sion of the POST1 phase.

CAP_POST1_ERR

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 87
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction

Continuous Application Platform (CAP)
Continued

This error occurs when there is an error in the END_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_POST1END_ERR

This event occurs when there is an error in the START_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_START_POST2_ERR

This error occurs when there is an error during the supervi-
sion of the POST2 phase.

CAP_POST2_ERR

This error occurs when there is an error in the END_POST2
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_POST2END_ERR

If supervision is done on two different signals in the same
phase, and both of them fails, the first one that is setup with
SetupSuperv is the one that generates the error.

Sensor related errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Track error occurs when reading data from sensor and after
a time no valid data are received. One reason for this could
be that the sensor cannot indicate the seam.

CAP_TRACK_ERR

Track start error occurs when no valid data has been read
from the laser track sensor.

CAP_TRACKSTA_ERR

Track correction error occurs when something goes wrong
in the calculation of the offset.

CAP_TRACKCOR_ERR

The communication between the robot controller and the
sensor equipment is broken.

CAP_TRACKCOM_ERR

It is not possible to continue tracking, if a power failure oc-
curred during tracking.

CAP_TRACKPFR_ERR

The controller did not get a valid measurement from sensor.CAP_SEN_NO_MEAS

The sensor is not ready yet.CAP_SEN_NOREADY

A general sensor error occurred.CAP_SEN_GENERRO

The sensor is busy and cannot answer the request.CAP_SEN_BUSY

The command sent to the sensor is unknown to sensor.CAP_SEN_UNKNOWN

The variable or block number sent to the sensor is illegal.CAP_SEN_ILLEGAL

An external alarm occurred in the sensor.CAP_SEN_EXALARM

A camera alarm occurred in the sensor.CAP_SEN_CAALARM

The sensor temperature is out of range.CAP_SEN_TEMP

The value sent to the sensor is out of range.CAP_SEN_VALUE

The camera check failed.CAP_SEN_CAMCHECK

The sensor did not respond within the time out time.CAP_SEN_TIMEOUT

Continues on next page
88 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction
Continuous Application Platform (CAP)
Continued

Errors possible in MultiMove systems
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

When using synchronizedmotion this error is reported when
an application controlling one mechanical unit detects a re-
coverable error and notifies other applications that something
went wrong. If this error code is received from a CapC instruc-
tion, the error is a reaction on another error. All tasks using
motion instructions in synchronized mode in a MultiMove
system should have this ERRNO value defined in the error
handler.

ERR_PATH_STOP

Errors inherited from TriggX

The instruction CapC is based on the instruction TriggC. As a consequence you
can get and handle the errors ERR_AO_LIM and ERR_DIPLAG_LIM, as in TriggC.
The system variable ERRNO will be set to:

If the programmed ScaleValue/SetValue argument for
the specified analog output signal AOp/AOutput in some
of the connected TriggSpeed/TriggRampAO instructions,
results are out of limit for the analog signal together with the
programmed Speed in this instruction. The system variable
ERRNO is set to ERR_AO_LIM.

ERR_AO_LIM

If the programmed DipLag argument in some of the connec-
ted TriggSpeed instructions, is too big in relation to the
used system parameter Event Preset Time, the system
variable ERRNO is set to ERR_DIPLAG_LIM.

ERR_DIPLAG_LIM

Other CAP errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

This recoverable error is generated at the end of the first
CapC/L instruction of a sequence if the optional argument
\PreProcessTracking is used. It can be handled in the
error handler to start the process.

CAP_ATPROC_START

For more information see Operating manual - Tracking and
searching with optical sensors.

This error occurs when the instruction CapNoProcess is
used to run a certain distance without application process
and the end of this distance is reached. This is not really an
error, but it uses the mechanisms of error recovery.

CAP_NOPROC_END

This error occurs when the switch \Movestart_timer is
specified and the time between the process start
(MAIN_STARTED) and the start of the robot movement ex-
ceeds the time specified with the switch.

CAP_MOV_WATCHDOG

Program execution
See MoveL - Moves the robot linearly on page 457 for information about linear
movement.
See TriggL - Linear robot movements with events on page917 for information about
linear movement with trigg events.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 89
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction

Continuous Application Platform (CAP)
Continued

CAP process
During continuous execution in both Automode andManualmode, the CAP process
is running, unless it is blocked. That means, that all data controlling the CAP
process (that is, Cdata, Weavestart, Weave and Movestart_timer), are used.
In these modes all CAP trigger activities are carried out, see ICap - connect CAP
events to trap routines on page 270.
In all other execution modes the CAP process is not running, and the CapC
instruction behaves like a MoveC instruction.

Trigger conditions [\T1] to [\T8]
As the trigger conditions are fulfilled when the robot is positioned closer and closer
to the end point, the defined trigger activities are carried out. The trigger conditions
are fulfilled either at a certain distance before the end point of the instruction, or
at a certain distance after the start point of the instruction, or at a certain point in
time (limited to a short time) before the end point of the instruction.
During stepping execution forwards, the I/O activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at
all are carried out.

Limitations
There are some limitations in how the CirPoint and the ToPoint can be placed, as
shown in the figure below.

xx1200000175

• Minimum distance between start and ToPoint is 0.1 mm.
• Minimum distance between start and CirPoint is 0.1 mm.
• Minimum angle between CirPoint and ToPoint from the start point is 1 degree.

The accuracy can be poor near the limits, for example, if the start point and the
ToPoint on the circle are close to each other, the fault caused by the leaning of the
circle can be much greater than the accuracy with which the points have been
programmed.
A change of execution mode from forward to backward or vice versa, while the
robot is stopped on a circular path, is not permitted and will result in an error
message.

Continues on next page
90 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction
Continuous Application Platform (CAP)
Continued

The instruction CapC (or any other instruction including circular movement) should
never be started from the beginning, with TCP between the circle point and the
end point. Otherwise the robot will not take the programmed path (positioning
around the circular path in another direction compared with that programmed).
Make sure that the robot can reach the circle point during program execution and
divide the circle segment if necessary.
If the current start point deviates from the usual, so that the total positioning length
of the instruction CapC is shorter than usual, it may happen that several or all of
the trigger conditions are fulfilled immediately and at the same position. In such
cases, the sequence in which the trigger activities are carried out will be undefined.
The program logic in the user program may not be based on a normal sequence
of trigger activities for an "incomplete movement".

Syntax
CapC

[CirPoint ':='] < expression (IN) of robtarget >

[ToPoint ':='] < expression (IN) of robtarget >

['\' Id ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

[Cdata ':='] < persistent (PERS) of capdata >

['\' Movestart_timer ':=' < expression (IN) of num >] ','

[Weavestart ':='] <persistent (PERS) of weavestartdata >

[Weave ':='] < persistent (PERS) of capweavedata >

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos ':=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

['\' Track ':=' < persistent (PERS) of captrackdata >]

|['\' Corr]

|['\' PreProcessTracking]

['\' Time ':=' < expression (IN) of num >]

['\' T1 ':=' < variable (VAR) of triggdata >]

['\' T2 ':=' < variable (VAR) of triggdata >]

['\' T3 ':=' < variable (VAR) of triggdata >]

['\' T4 ':=' < variable (VAR) of triggdata >]

['\' T5 ':=' < variable (VAR) of triggdata >]

['\' T6 ':=' < variable (VAR) of triggdata >]

['\' T7 ':=' < variable (VAR) of triggdata >]

['\' T8 ':=' < variable (VAR) of triggdata >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

MoveC - Moves the robot circularly on
page 402

Circular movement

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 91
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction

Continuous Application Platform (CAP)
Continued

SeeFor information about

TriggC - Circular robot movement with events
on page 873

Circular movement with triggers

capdata - CAP data on page 1576Definition of CAP data

weavestartdata -weavestart data onpage1768Definition of weave start data

capweavedata - Weavedata for CAP on
page 1589

Definition of weave data

captrackdata - CAP track data on page 1586Definition of track data

Applicationmanual - Controller software IRC5Path Offset

Operating manual - Tracking and searching
with optical sensors

Using optical sensors for tracking or search-
ing.

92 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.30 CapC - Circular CAP motion instruction
Continuous Application Platform (CAP)
Continued

1.31 CapCondSetDO - Set a digital output signal at TCP stop

Usage
CapCondSetDO is used to define a digital output signal and its value, which will
be set when the TCP of the robot that runs CAP, stops moving during a CAP
instruction (CapL or CapC) before the CAP sequence is finished.
An existing definition of such signals, is cleared with the CAP instruction
InitSuperv.

Basic example
CapCondSetDO do15, 1;

The signal do15 is set to 1 when the TCP stops.
CapCondSetDO weld, off;

The signal weld is set to off when the TCP stops.

Arguments
CapCondSetDO Signal Value

Signal
Data type: signaldo
The name of the signal to be changed.

Value
Data type: dionum
The desired value of the signal 0 or 1.

Set digital output toSpecified Value

00

1Any value except 0

Limitations
The final value of the signal depends on the configuration of the signal. If the signal
is inverted in the system parameters, the value of the physical channel is the
opposite.
A maximum of 10 signals per RAPID task may be set up.

Syntax
CapCondSetDO

[Signal ':='] < variable (VAR) of signaldo > ','

[Value ':='] < expression (IN) of dionum > ';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

InitSuperv - Reset all supervision for CAP on
page 305

InitSuperv instruction

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 93
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.31 CapCondSetDO - Set a digital output signal at TCP stop

Continuous Application Platform (CAP)

SeeFor information about

SetupSuperv - Setup conditions for signal
supervision in CAP on page 709

SetupSuperv instruction

RemoveSuperv - Remove condition for one
signal on page 598

RemoveSuperv instruction

94 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.31 CapCondSetDO - Set a digital output signal at TCP stop
Continuous Application Platform (CAP)
Continued

1.32 CapEquiDist - Generate equidistant event

Usage
CapEquiDist is used to tell CAP to generate an equidistant RAPID event
(EQUIDIST) on the CAP path. The first event is generated at the startpoint of the
first CAP instruction in a sequence of CAP instructions. From RAPID it is possible
to subscribe this event using ICap.

Basic example
VAR intnum intno_equi;

PROC main()

......

IDelete intno_equi;

Connect intno_equi equi_trp;

ICap intno_equi, EQUIDIST

......

CapEquiDist\Distance:=5.0;

MoveL p60, v1000, fine, tWeldGun;

CapL p_fig3_l_1, v500, cd, wsd, cwd, z10, tWeldGun;

CapL p_fig3_l_2, v500, cd, wsd, cwd, fine, tWeldGun;

......

CapEquiDist\Reset;

MoveL p70, v1000, fine, tWeldGun;

CapL p_fig3_l_3, v500, cd, wsd, cwd, fine, tWeldGun;

......

ERROR

Retry;

ENDPROC

TRAP equi_trp

! do whatever you want, but it must not take too long time

ENDTRAP

In this example, the event EQUIDIST will be generated on the first CAP path. It will
be sent every 5 mm on the path over several CAP instructions with zones.

Arguments
CapEquiDist [\Distance] [\Reset]

[\Distance]
Distance in mm
Data type: num
The data provided with this optional argument defines the distance in mm between
two consecutive equidistant events.

[\Reset]
Reset event generation

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 95
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.32 CapEquiDist - Generate equidistant event

Continuous Application Platform (CAP)

Data type: switch
If this switch is present, the event generation is reset, that is, the equidistant event
will not be generated any longer on a CapL/CapC path. This switch has precedence
before the \Distance switch.

Limitations
If the CAP path is long compared to the event distance, the system can run out of
event resources, and the error message 50368 Too Short distance between
equidistant events.

Syntax
CapEquiDist

['\' Distance ':=' < expression (IN) of num >]

['\' Reset] ';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

96 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.32 CapEquiDist - Generate equidistant event
Continuous Application Platform (CAP)
Continued

1.33 CapL - Linear CAP motion instruction

Usage
CapL is used to move the tool center point (TCP) linearly to a given destination
and at the same time control a continuous process. Furthermore it is possible to
connect up to eight events to CapL. The events are defined using the instructions
TriggRampAO, TriggIO, TriggEquip, TriggInt, TriggCheckIO, or
TriggSpeed.

Basic examples

Example1
Linear movements with CapL.

CapL p1, v100, cdata, weavestart, weave, z50, gun1;

The TCP of the tool, gun1, is moved linearly to the position p1, with speed defined
in cdata, and zone data z50.

Example 2
Circular movement with user event and CAP event.

VAR intnum start_intno;

...

PROC main()

VAR triggdata gunon;

IDelete start_intno;

CONNECT start_intno WITH start_trap;

ICap start_intno, CAP_START;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveJ p1, v500, z50, gun1;

CapL p2, v500, cdata, wstart, w1, fine, gun1 \T1:=gunon;

ENDPROC

TRAP start_trap

!This routine is executed when event CAP_START arrives

ENDTRAP

The digital output signal gun is set when the robot TCP passes the midpoint of the
corner path of the point p1. The trap routine start_trap is executed when the
CAP process is starting.

xx1200000173

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 97
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.33 CapL - Linear CAP motion instruction

Continuous Application Platform (CAP)

Arguments
CapLToPoint [\Id] Speed Cdata [\MoveStartTimer] Weavestart Weave

Zone [\Inpos] Tool [\WObj] [\Track] | [\Corr]
[\PreProcessTracking] [\Time] [\T1] [\T2] [\T3] [\T4] [\T5]
[\T6] [\T7] [\T8] [\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and additional axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\Id]

(Sync identity)
Data type: identno
Synchronization identity for RAPID movement instructions in a MultiMove system
in synchronized mode.

Speed

Data type: speeddata
The speed data that applies to movements without active CAP process. Speed
data defines the velocity of the tool center point, the additional axes and of the tool
reorientation. If a CAP process is active (not blocked), then the Cdata argument
defines the TCP velocity.

Cdata

(CAP process Data)
Data type: capdata
CAP process data, see capdata - CAP data on page1576 for a detailed description.

[\Movestart_timer]

(Time in s)
Data type: num
Upper limit for the time difference between the order of the process start and the
actual start of the robots TCP movement in a MultiMove system in synchronized
mode.

Weavestart

(Weavestart Data)
Data type: weavestartdata
Weave start data for the CAP process, see weavestartdata - weave start data on
page 1768 for a detailed description.

Weave

(Weave Data)
Data type: capweavedata
Weaving data for the CAP process, see capweavedata - Weavedata for CAP on
page 1589 for a detailed description.

Continues on next page
98 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.33 CapL - Linear CAP motion instruction
Continuous Application Platform (CAP)
Continued

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

(In position)
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point (TCP) is the point that
is moved to the specified destination position.

[\WObj]

Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated additional
axes are used, this argument must be specified for a linear movement relative to
the work object to be performed.

[\Track]

(Track Sensor Data)
Data type: captrackdata
This data structure contains data needed for use of path correction generating
sensors together with CapL, see captrackdata - CAP track data on page1586. This
argument is not allowed together with the argument \Corr.

[\Corr]

(Use Correction Generator)
Data type: switch
This argument tells CapL to read path corrections from a correction generator, see
CorrCon - Connects to a correction generator on page 162. This argument is not
allowed together with the argument \Track.
The RobotWare option Path Offset is required when using this argument.

[\PreProcessTracking]

Data type: switch
This argument is effective only if first_instruction is set to TRUE and the
\Track argument is present.
This argument activates Pre Process Tracking, which means that the robot will be
tracking only, without process, during that CapX instruction. Thereby sensor data

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 99
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.33 CapL - Linear CAP motion instruction

Continuous Application Platform (CAP)
Continued

are available for successful tracking right off the start of the path with process, e.g.
welding.
For more information see Operating manual - Tracking and searching with optical
sensors.

[\Time]

Data type: num
This argument is used to specify the total time in seconds during which the robot
and additional axes move. It is then substituted for the corresponding speed data.

[\T1] to [\T8]
(Trigg x)
Data type: triggdata
Variables that refer to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggRampAO, TriggIO, TriggEquip, or
TriggInt.

[\TLoad]

Data type: loaddata
The argument \TLoad describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the
argument \TLoad is used, then the loaddata in the current tooldata is not
considered.
If the argument \TLoad is set to load0, then the argument is not considered and
the loaddata in the current tooldata is used instead. For a complete description
of the argument TLoad, see MoveL,MoveL - Moves the robot linearly on page457.

Error handling
There are several different types of errors that can be handled in the error handler
for the CapC/CapL instructions:

• supervision errors
• sensor specific errors
• errors specific to a MultiMove system
• errors inherited from TriggX functionality
• other CAP errors

If one of the signals that is supposed to be supervised does not have the correct
value, or if it changes value during supervision, the system variable ERRNO is set.
If no values can be read from the track sensor, the system variable ERRNO is set.
For a MultiMove system running in synchronizedmode the error handler must take
care of two other errors. One is used to report that some other application has
detected an recoverable error. This enables recoverable error handling in
synchronized RAPID tasks. The other error, CAP_MOV_WATCHDOG, is reported if
the time between the order of the process start and the actual start of the robots
TCP movement in a MultiMove system in synchronized mode expires. The time
used is specified in the optional parameter Movestart_timer in the CapL
instruction.

Continues on next page
100 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.33 CapL - Linear CAP motion instruction
Continuous Application Platform (CAP)
Continued

If anything abnormal is detected, program execution will stop. If, however, an error
handler is programmed, the errors defined below can be remedied without stopping
production. However, a recommendation is that some of the errors (the errors with
CAP_XX) these errors should not be presented for the end user. Map those errors
to a application specific error. For the supervision errors the instruction
CapGetFailSigs can be used to get which specific signal that failed.

Supervision errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

This error occurs when there is an error in the PRE supervi-
sion list, that is, when the conditions in the list are not met
within the specified time frame (specified in pre_cond time-
out).

CAP_PRE_ERR

This error occurs when there is an error during the supervi-
sion of the PRE phase.

CAP_PRESTART_ERR

This event occurs when there is an error in the END_PRE
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
start_cond time-out).

CAP_END_PRE_ERR

This event occurs when there is an error in the START super-
vision list, that is, when the conditions in the list are not met
within the specified time frame (specified in start_cond
time-out).

CAP_START_ERR

This error occurs when there is an error during the supervi-
sion of the main phase.

CAP_MAIN_ERR

This error occurs when there is an error in the END_MAIN
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_ENDMAIN_ERR

This event occurs when there is an error in the START_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_START_POST1_ERR

This error occurs when there is an error during the supervi-
sion of the POST1 phase.

CAP_POST1_ERR

This error occurs when there is an error in the END_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_POST1END_ERR

This event occurs when there is an error in the START_POST1
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_START_POST2_ERR

This error occurs when there is an error during the supervi-
sion of the POST2 phase.

CAP_POST2_ERR

This error occurs when there is an error in the END_POST2
supervision list, that is, when the conditions in the list are
not met within the specified time frame (specified in
end_main_cond time-out).

CAP_POST2END_ERR

If supervision is done on two different signals in the same
phase, and both of them fails, the first one that is setup with
SetupSuperv is the one that generates the error.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 101
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.33 CapL - Linear CAP motion instruction

Continuous Application Platform (CAP)
Continued

Sensor related errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Track error occurs when reading data from sensor and after
a time no valid data are received. One reason for this could
be that the sensor cannot indicate the seam.

CAP_TRACK_ERR

Track start error occurs when no valid data has been read
from the laser track sensor.

CAP_TRACKSTA_ERR

Track correction error occurs when something goes wrong
in the calculation of the offset.

CAP_TRACKCOR_ERR

The communication between the robot controller and the
sensor equipment is broken.

CAP_TRACKCOM_ERR

It is not possible to continue tracking, if a power failure oc-
curred during tracking.

CAP_TRACKPFR_ERR

The controller did not get a valid measurement from sensor.CAP_SEN_NO_MEAS

The sensor is not ready yet.CAP_SEN_NOREADY

A general sensor error occurred.CAP_SEN_GENERRO

The sensor is busy and cannot answer the request.CAP_SEN_BUSY

The command sent to the sensor is unknown to sensor.CAP_SEN_UNKNOWN

The variable or block number sent to the sensor is illegal.CAP_SEN_ILLEGAL

An external alarm occurred in the sensor.CAP_SEN_EXALARM

A camera alarm occurred in the sensor.CAP_SEN_CAALARM

The sensor temperature is out of range.CAP_SEN_TEMP

The value sent to the sensor is out of range.CAP_SEN_VALUE

The camera check failed.CAP_SEN_CAMCHECK

The sensor did not respond within the time out time.CAP_SEN_TIMEOUT

Errors possible in MultiMove systems
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

When using synchronizedmotion this error is reported when
an application controlling one mechanical unit detects a re-
coverable error and notifies other applications that something
went wrong. If this error code is received from a CapL instruc-
tion, the error is a reaction on another error. All tasks using
motion instructions in synchronized mode in a MultiMove
system should have this ERRNO value defined in the error
handler.

ERR_PATH_STOP

Continues on next page
102 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.33 CapL - Linear CAP motion instruction
Continuous Application Platform (CAP)
Continued

Errors inherited from TriggX

The instruction CapL is based on the instruction TriggL. As a consequence you
can get and handle the errors ERR_AO_LIM and ERR_DIPLAG_LIM, as in TriggL.
The system variable ERRNO will be set to:

If the programmed ScaleValue/SetValue argument for
the specified analog output signal AOp/AOutput in some
of the connected TriggSpeed/TriggRampAO instructions,
results are out of limit for the analog signal together with the
programmed Speed in this instruction. The system variable
ERRNO is set to ERR_AO_LIM.

ERR_AO_LIM

If the programmed DipLag argument in some of the connec-
ted TriggSpeed instructions, is too big in relation to the
used system parameter Event Preset Time, the system
variable ERRNO is set to ERR_DIPLAG_LIM.

ERR_DIPLAG_LIM

Other CAP errors
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

This recoverable error is generated at the end of the first
CapC/L instruction of a sequence if the optional argument
\PreProcessTracking is used. It can be handled in the
error handler to start the process.

CAP_ATPROC_START

For more information see Operating manual - Tracking and
searching with optical sensors.

This error occurs when the instruction CapNoProcess is
used to run a certain distance without application process
and the end of this distance is reached. This is not really an
error, but it uses the mechanisms of error recovery.

CAP_NOPROC_END

This error occurs when the switch \Movestart_timer is
specified and the time between the process start
(MAIN_STARTED) and the start of the robot movement ex-
ceeds the time specified with the switch.

CAP_MOV_WATCHDOG

Program execution
See MoveL - Moves the robot linearly on page 457 for information about linear
movement.
See TriggL - Linear robot movements with events on page917 for information about
linear movement with trigg events.

CAP process
During continuous execution in both Automode andManualmode, the CAP process
is running, unless it is blocked. That means, that all data controlling the CAP
process (that is, Cdata, Weavestart, Weave and Movestart_timer), are used.
In these modes all CAP trigger activities are carried out, see ICap - connect CAP
events to trap routines on page 270.
In all other execution modes the CAP process is not running, and the CapL
instruction behaves like a MoveL instruction.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 103
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.33 CapL - Linear CAP motion instruction

Continuous Application Platform (CAP)
Continued

Trigger conditions [\T1] to [\T8]
As the trigger conditions are fulfilled when the robot is positioned closer and closer
to the end point, the defined trigger activities are carried out. The trigger conditions
are fulfilled either at a certain distance before the end point of the instruction, or
at a certain distance after the start point of the instruction, or at a certain point in
time (limited to a short time) before the end point of the instruction.
During stepping execution forwards, the I/O activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at
all are carried out.

Limitations
If the current start point deviates from the usual, so that the total positioning length
of the instruction CapL is shorter than usual (for example, at the start of CapL with
the robot position at the end point), it may happen that several or all of the trigger
conditions are fulfilled immediately and at the same position. In such cases, the
sequence in which the trigger activities are carried out will be undefined. The
program logic in the user program may not be based on a normal sequence of
trigger activities for an "incomplete movement".
The behavior of the CAP process may be undefined if an error occurs during CapL
or CapC instructions with extremely short TCP movements (< 1 mm).

Syntax
CapL

[ToPoint ':='] < expression (IN) of robtarget >

['\' Id ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata > ','

[Cdata ':='] < persistent (PERS) of capdata >

['\' Movestart_timer ':=' < expression (IN) of num >] ','

[Weavestart ':='] <persistent (PERS) of weavestartdata > ','

[Weave ':='] < persistent (PERS) of capweavedata > ','

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos ':=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

['\' Track ':=' < persistent (PERS) of captrackdata >]

|['\' Corr]

|['\' PreProcessTracking]

['\' Time ':=' < expression (IN) of num >]

['\' T1 ':=' < variable (VAR) of triggdata >]

['\' T2 ':=' < variable (VAR) of triggdata >]

['\' T3 ':=' < variable (VAR) of triggdata >]

['\' T4 ':=' < variable (VAR) of triggdata >]

['\' T5 ':=' < variable (VAR) of triggdata >]

['\' T6 ':=' < variable (VAR) of triggdata >]

['\' T7 ':=' < variable (VAR) of triggdata >]

['\' T8 ':=' < variable (VAR) of triggdata >]

['\' TLoad':=' < persistent (PERS) of loaddata >] ';'

Continues on next page
104 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.33 CapL - Linear CAP motion instruction
Continuous Application Platform (CAP)
Continued

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

MoveL - Moves the robot linearly on page457Linear movement

TriggL - Linear robot movements with events
on page 917

Linear movement with triggers

capdata - CAP data on page 1576Definition of CAP data

weavestartdata -weavestart data onpage1768Definition of weave start data

capweavedata - Weavedata for CAP on
page 1589

Definition of weave data

captrackdata - CAP track data on page 1586Definition of track data

Applicationmanual - Controller software IRC5Path Offset

Operating manual - Tracking and searching
with optical sensors

Using optical sensors for tracking or search-
ing.

Technical reference manual - RAPID Instructions, Functions and Data types 105
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.33 CapL - Linear CAP motion instruction

Continuous Application Platform (CAP)
Continued

1.34 CapLATrSetup - Set up a Look-Ahead-Tracker

Usage
CapLATrSetup (Set up a Look-Ahead-Tracker) is used to set up a
Look-Ahead-Tracker type of sensor, for example, Laser Tracker.
The sensor interface communicates with a maximum of two sensors over serial
channels using the RTP1 transport protocol. The two channels must be named
laser1: and swg:.

Basic example
SIO.cfg:

COM_TRP:

-Name "SCOUT:" -Type "RTP1"

-Name "digi-ip:" -Type "SOCKDEV" -PhyChannel "LAN1" -RemoteAdress
"192.168.125.5"

RAPID code:
! Define variable numbers

CONST num SensorOn := 6;

CONST num XCoord := 8;

CONST num YCoord := 9;

CONST num ZCoord := 10;

! Sensor calibration frame

PERS pose calibFrame := [[236.4,0.3,96.3],[1,0,0,0]];

! Trackdata

PERS captrackdata captrack1 := ["digi-ip:", [1,10,1,0,0,0,0,0]];

! Set up a Laser Tracker

CapLATrSetup “digi-ip:”,
calibFrame\SensorFreq:=20\CorrFilter:=5\MaxBlind:=100\MaxIncCorr:=2;

! Request start of sensor measurements

WriteVar "digi-ip:", SensorOn, 1;

! Track using Cap

CapL p_fig1_l_1, v200, cd_event1, wsd_event, cwd_event, z20,
tWeldGun\Track:=captrack1;

! Stop sensor

WriteVar "digi-ip:", SensorOn, 0;

Arguments
CapLATrSetup device CalibFrame CalibPos [\WarnMaxCorr] [\LogFile]

[\LogSize] [\SensorFreq] [\IpolServoDelay] [\IpolCorrGain]
[\ServoSensFactor] [\CorrFilter] [\IpolCorrFilter]
[\ServoCorrFilter] [\ErrRampIn] [\ErrRampOut] [\CBAngle]
[\MaxBlind] [\MaxIncCorr] [\CalibFrame2] [\CalibFrame3]

device
Data type: string

Continues on next page
106 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.34 CapLATrSetup - Set up a Look-Ahead-Tracker
Continuous Application Platform (CAP)

Device name as defined in sio.cfg.

calibframe
Data type: pose
LATR calibration frame (position and orientation relative the predefined tool tool0.

CalibPos
Data type: pose
LATR calibration offset. Adjustment of the sensor frame which places the origo of
the path correction frame near the level of the tool frame used during calibration.

[\WarnMaxCorr]
Data type: switch
If this switch is present, program execution is not interrupted, when the limit for
maximum correction, specified in the trackdata, is exceeded. Only a warning will
be sent.

[\Logfile]
Data type: string
Name of tracklog log file.

[\LogSize]
Data type: num
Size of the tracklog ring buffer, that is the number of sensor measurements that
can be buffered during tracking.
Default: 1000.

[\SensorFreq]
Data type: num
Defines the sample frequency of the sensor used (for example, M-Spot-90 has 5Hz
sampling frequency).
The highest available value is dependent on the communication link and its speed.
We recommend not to use values higher than 20Hz.
Default: 5 Hz.

[\IpolServoDelay]
Data type: num
Defines an robot controller internal time delay between ipol task and servo task.
Default: 74 ms.

Note

Do not change the default value!

[\IpolCorrGain]
Data type: num
Defines, the gain factor for the correction imposed on ipol.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 107
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.34 CapLATrSetup - Set up a Look-Ahead-Tracker

Continuous Application Platform (CAP)
Continued

Default: 0.0.

Note

Do not change the default value!

[\ServoSensFactor]
Data type: num
Defines the number of servo corrections per sensor reading.
Default: 0.

Note

Do not change the default value!

[\CorrFilter]
Data type: num
Defines filtering of the correction calculated, using mean value over corr filter
values.
Default: 1.

Note

Do not change the default value!

[\IpolCorrFilter]
Data type: num
Defines filtering of the ipol correction, using mean value over path filter values.
Default: 1.

Note

Do not change the default value!

[\ServoCorrFilter]
Data type: num
Defines filtering of the servo correction, using mean value over path servo filter
values.
Default: 1.

Note

Do not change the default value!

[\ErrRampIn]
Data type: num
Defines during how many sensor readings ramp in is done after error caused by
sensor reading.

Continues on next page
108 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.34 CapLATrSetup - Set up a Look-Ahead-Tracker
Continuous Application Platform (CAP)
Continued

Default: 1.

[\ErrorRampOut]
Data type: num
Defines during how many sensor readings ramp out is done when an error caused
by sensor reading occurred.
Default: 1.

[\CBAngle]
Data type: num
Defines the angle between a 3D sensor beam and the sensor z-axis
Default: 0.0.

[\MaxBlind]
Data type: num
Maximum distance the TCP may move assuming, that the latest correction is still
valid.
At the start of the tracking, the MaxBlind distance is automatically increased by
the look ahead of the sensor.
Default: no limit.

[\MaxIncCorr]
Data type: num
Maximum incremental correction allowed.
If the incremental TCP correction is bigger than \MaxIncCorr and \WarnMaxCorr
was specified, the robot will continue its path but the applied incremental correction
will not exceed \MaxIncCorr. If \WarnMaxCorr was not specified, a track error
is reported and program execution is stopped.
Default: 5 mm.

[\CalibFrame2]
Data type: pose
Alternative LATR calibration frame number 2 (position and orientation relative the
predefined tool tool0).

[\CalibFrame3]
Data type: pose
Alternative LATR calibration frame number 3 (position and orientation relative the
predefined tool tool0).

Syntax
CapLATrSetup

[device ':='] < expression (IN) of string> ','

[CalibFrame ':='] < persistent (PERS) of pose > ','

[CalibPos ':='] < persistent (PERS) of pos >

[\WarnMaxCorr]

[\LogFile ':=' < expression (IN) of string >]

[\LogSize ':=' < expression (IN) of num >]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 109
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.34 CapLATrSetup - Set up a Look-Ahead-Tracker

Continuous Application Platform (CAP)
Continued

[\SensorFreq ':=' < expression (IN) of num >]

[\IpolServoDelay ':=' < expression (IN) of num >]

[\IpolCorrGain ':=' < expression (IN) of num >]

[\ServoSensFactor ':=' < expression (IN) of num >]

[\CorrFilter ':=' < expression (IN) of num >]

[\IpolCorrFilter ':=' < expression (IN) of num >]

[\ServoCorrFilter ':=' < expression (IN) of num >]

[\ErrRampIn ':=' < expression (IN) of num >]

[\ErrRampOut ':=' < expression (IN) of num >]

[\CBAngle ':=' < expression (IN) of num >]

[\MaxBlind ':=' < expression (IN) of num >]

[\MaxIncCorr ':=' < expression (IN) of num >]

[\CalibFrame2 ':=' < persistent (PERS) of pose >]

[\CalibFrame3 ':=' < persistent (PERS) of pose >] ';'

Related information

SeeFor information about

Applicationmanual - Controller software IRC5Sensor Interface

Application manual - Continuous Application
Platform

Continuous Application Platform

110 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.34 CapLATrSetup - Set up a Look-Ahead-Tracker
Continuous Application Platform (CAP)
Continued

1.35 CapNoProcess - Run CAP without process

Usage
CapNoProcess is used to run CAP a certain distance without process.
With CapNoProcess, it is possible to tell CAP to execute a certain distance (in
mm) without process. This is useful, if there was a recoverable process error, which
in some way makes it impossible to restart the process at the error location.
In the beginning and at the end of the skip distance, backing on the path
(restart_dist component in capdata) is suppressed.
At the end of the skip distance a error with errno CAP_NOPROC_END is generated.

Basic example
VAR num skip_dist := 0.0;

VAR bool cap_skip := FALSE;

PROC main()

......

skip_dist := 25.0;

CapL p_fig3_l_1, v500, cd, wsd, cwd, fine, tWeldGun;

......

skip_dist := 15.0;

CapL p_fig3_l_3, v500, cd, wsd, cwd, fine, tWeldGun;

......

ERROR

StorePath;

TEST ERRNO

CASE CAP_NOPROC_END:

IF cap_skip THEN

! This is the end of the skip distance

cap_skip := FALSE;

ENDIF

CASE CAP_MAIN_ERR:

IF skip_dist > 0.0 THEN

! This is the start of the skip distance

CapNoProcess skip_dist;

cap_skip := TRUE;

ENDIF

DEFAULT:

ENDTEST

RestoPath;

StartMoveRetry;

ENDPROC

ENDMODULE

In this example, the recoverable error CAP_MAIN_ERR is followed by 25 mm
movement (at 10 mm/s) without process for the first CapL instruction and by 15

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 111
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.35 CapNoProcess - Run CAP without process

Continuous Application Platform (CAP)

mm for the second. At the end of that distance, CAP_NOPROC_END is generated
and the process is restarted.

Arguments
CapNoProcess skip_distance

skip_distance
Distance in mm
Data type: num
CapNoProcess has a num variable as input parameter, that defines the skip distance
in mm.

Limitations
The speed of the TCP during skip is predefined with 10 mm/s. The shortest skip
distance is predefined with 10 mm.
In synchronized MultiMove systems, the shortest distance of all skip distances
defined for the different synchronized process robots will be the actual one.
If the skip distance is longer than the distance from the current TCP position to
the end of the current sequence of CAP instructions, nothing special will happen:
RAPID execution continues as usual, without stopping the robot.

Syntax
CapNoProcess

[skip_dist ':='] < variable (IN) of num >';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

InitSuperv - Reset all supervision for CAP on
page 305

InitSuperv instruction

SetupSuperv - Setup conditions for signal
supervision in CAP on page 709

SetupSuperv instruction

RemoveSuperv - Remove condition for one
signal on page 598

RemoveSuperv instruction

112 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.35 CapNoProcess - Run CAP without process
Continuous Application Platform (CAP)
Continued

1.36 CapRefresh - Refresh CAP data

Usage
CapRefresh is used to tell the CAP process to refresh its process data. It can for
example, be used to tune CAP process parameters during program execution.

Basic example
PROC PulseSpeed()

! Setup a 1 Hz timer interrupt

CONNECT intno1 WITH TuneTrp;

ITimer 1, intno1;

CapL p1, v100, cdata, wstartdata, wdata, fine, gun1;

IDelete intno1;

ENDPROC

TRAP TuneTrp

! Modify the main speed component of active cdata

IF HighValueFlag = TRUE THEN

cdata.speed_data.start := 10;

HighValueFlag := FALSE;

ELSE

cdata.speed_data.start := 15;

HighValueFlag := TRUE;

ENDIF

! Order the process control to refresh process parameters

CapRefresh;

ENDTRAP

In this example the speed will be switched between 10 and 15 mm/s at a rate of 1
Hz.

Arguments
CapRefresh [\MainSpeed] [\MainWeave] [\StartWeave] [\RestartDist]

Without optional argument the CAP data capdata, capweavedata,
weavestartdata, captrackdata, and movestarttimer are - if present - re-read
from the PERSISTENT RAPID variable specified in the currently active CAP
instruction.

[\MainSpeed]
Data type: switch
If this switch is present, CAP will reread the component
capdata.speed_data.main of the currently active CAP instruction.

[\MainWeave]
Data type: switch
If this switch is present, CAP will reread the components capweavedata.width,
capweavedata. length, capweavedata.bias, and capweavedata.active
of the currently active CAP instruction.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 113
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.36 CapRefresh - Refresh CAP data

Continuous Application Platform (CAP)

[\StartWeave]
Data type: bool
If this switch is present, CAPwill use its value instead of weavestartdata.active
of the currently active CAP instruction. The data of the currently active CAP
instruction remain untouched.

[\RestartDist]
Data type: num
If this switch is present, CAPwill use its value instead of weavestartdata.active
of the currently active CAP instruction. The data of the currently active CAP
instruction remain untouched.

Syntax
CapRefresh

['\' MainSpeed]

['\' MainWeave]

['\' Startweave ':=' < expression (IN) of bool >]

['\' RestartDist ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

114 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.36 CapRefresh - Refresh CAP data
Continuous Application Platform (CAP)
Continued

1.37 CapWeaveSync - set up signals and levels for weave synchronization

Usage
CapWeaveSync is used to setup weaving synchronization signals without sensors.
The I/O signals must be defined in EIO.cfg.

Basic example
RAPID program:

PROC main()

...

CapWeaveSync \DoLeft:=do_sync_left \LevelLeft:=80
\DoRight:=do_sync_right \LevelRight:=80;

...

ENDPROC

In this example the signals do_sync_left and do_sync_right are set up with
weaving level 80%.
The CapWeaveSync instruction should be executed only once, for example, from
the startup shelf.

Arguments
CapWeaveSync [\Reset] [\DoLeft] [\LevelLeft] [\DoRight]

[\LevelRight]

[\Reset]
Data type: switch
Clear weave synchronization data.

[\DoLeft]
Data type: signaldo
Digital output signal for weave synchronization on the left weave cycle.

[\LevelLeft]
Data type: num
The coordination position on the left side of the weaving pattern. The value specified
is a percentage of the width on the left of the weaving centre. When weaving is
carried out beyond this point, a digital output signal is automatically set high (if the
signal is defined).
This type of coordination can be used for seam tracking using Through-the-Arc
Tracker.

xx1200000176

[\LevelLeft]
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 115
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.37 CapWeaveSync - set up signals and levels for weave synchronization

Continuous Application Platform (CAP)

The coordination position on the left side of the weaving pattern. The value specified
is a percentage of the width on the left of the weaving centre. When weaving is
carried out beyond this point, a digital output signal is automatically set high (if the
signal is defined).
This type of coordination can be used for seam tracking using Through-the-Arc
Tracker.

xx1200000176

[\DoRight]
Data type: signaldo
Digital output signal for weave synchronization on the right weave cycle.

[\LevelRight]
Data type: num
The coordination position on the right side of the weaving pattern. The value
specified is a percentage of the width on the right of the weaving centre. When
weaving is carried out beyond this point, a digital output signal is automatically set
high (provided the signal is defined).
This type of coordination can be used for seam tracking using Through-the-Arc
Tracker.

xx1200000177

Program execution
The defined signals are checked and set when running without a sensor.

Limitations
The signals must be defined in EIO.cfg.
It is not possible to use only either level or corresponding signal. It will not result
in errors when loading the RAPID file, but it will result in RAPID run-time errors for
the instruction CapWeaveSynch.

Syntax
CapWeaveSync

['\' Reset]

[DoLeft ':=' < expression (IN) of signaldo >]

[LevelLeft ':=' < expression (IN) of num >]

[DoRight ':=' < expression (IN) of signaldo >]

[LevelRight ':=' < expression (IN) of num >] ';'

Continues on next page
116 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.37 CapWeaveSync - set up signals and levels for weave synchronization
Continuous Application Platform (CAP)
Continued

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

capweavedata - Weavedata for CAP on
page 1589

capweavedata data type

Technical reference manual - RAPID Instructions, Functions and Data types 117
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.37 CapWeaveSync - set up signals and levels for weave synchronization

Continuous Application Platform (CAP)
Continued

1.38 CheckProgRef - Check program references

Usage
CheckProgRef is used to check for unresolved references at any time during
execution.

Basic examples
The following example illustrates the instruction CheckProgRef:

Example 1
Load \Dynamic, diskhome \File:="PART_B.MOD" \CheckRef;

Unload "PART_A.MOD";

CheckProgRef;

In this case the program contains a module called PART_A.MOD. A new module
PART_B.MOD is loaded, which checks if all references are OK. Then PART_A.MOD
is unloaded. To check for unresolved references after unload, a call to
CheckProgRef is done.

Program execution
Program execution forces a new link of the program task and checks for unresolved
references.
If an error occurs during CheckProgRef, the program is not affected, it just tells
you that an unresolved reference exists in the program task. Therefore, use
CheckProgRef immediately after changing the number of modules in the program
task (loading or unloading) to be able to know which module caused the link error.
This instruction can also be used as a substitute for using the optional argument
\CheckRef in instruction Load or WaitLoad.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The program task contains unresolved references.ERR_LINKREF

Syntax
CheckProgRef';'

Related information

SeeFor information about

Load - Load a programmodule during execu-
tion on page 362

Load of a program module

UnLoad - UnLoad a program module during
execution on page 992

Unload of a program module

StartLoad - Load a program module during
execution on page 777

Start loading of a program module

Continues on next page
118 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.38 CheckProgRef - Check program references
RobotWare - OS

SeeFor information about

WaitLoad - Connect the loadedmodule to the
task on page 1035

Finish loading of a program module

Technical reference manual - RAPID Instructions, Functions and Data types 119
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.38 CheckProgRef - Check program references

RobotWare - OS
Continued

1.39 CirPathMode - Tool reorientation during circle path

Usage
CirPathMode (Circle Path Mode) makes it possible to select different modes to
reorientate the tool during circular movements.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system in Motion tasks.

Basic examples
The following examples illustrate the instruction CirPathMode:

Example 1
CirPathMode \PathFrame;

Standard mode for tool reorientation in the actual path frame from the start point
to the ToPoint during all succeeding circular movements. This is default in the
system.

Example 2
CirPathMode \ObjectFrame;

Modified mode for tool reorientation in actual object frame from the start point to
the ToPoint during all succeeding circular movements.

Example 3
CirPathMode \CirPointOri;

Modified mode for tool reorientation from the start point via the programmed
CirPoint orientation to the ToPoint during all succeeding circular movements.

Example 4
CirPathMode \Wrist45;

Modified mode such that the projection of the tool’s z-axis onto the cut plane will
follow the programmed circle movement order. Only wrist axes 4 and 5 are used.
This mode should only be used when cutting thin objects.

Example 5
CirPathMode \Wrist46;

Modified mode such that the projection of the tool’s z-axis onto the cut plane will
follow the programmed circle movement order. Only wrist axes 4 and 6 are used.
This mode should only be used for thin objects.

Example 6
CirPathMode \Wrist56;

Modified mode such that the projection of the tool’s z-axis onto the cut plane will
follow the programmed circle movement order. Only wrist axes 5 and 6 are used.
This mode should only be used for thin objects.

Continues on next page
120 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.39 CirPathMode - Tool reorientation during circle path
RobotWare - OS

Description

PathFrame
The figure in the table shows the tool reorientation for the standard mode
\PathFrame.

DescriptionIllustration

The arrows shows the tool from wrist center
point to tool center point for the programmed
points. The path for the wrist center point is
dotted in the figure.

xx0500002152

The \PathFramemodemakes it easy to get
the same angle of the tool around the cylin-
der. The robot wrist will not go through the
programmed orientation in the CirPoint

The figure in the table shows the use of standard mode \PathFrame with fixed
tool orientation.

DescriptionIllustration

This picture shows the obtained orientation of the
tool in the middle of the circle using a leaning tool
and \PathFrame mode.

xx0500002153

Compare with the figure below when
\ObjectFrame mode is used.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 121
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.39 CirPathMode - Tool reorientation during circle path

RobotWare - OS
Continued

ObjectFrame
The figure in the table shows the use of modified mode \ObjectFrame with fixed
tool orientation.

DescriptionIllustration

This figure shows the obtained orientation of the
tool in the middle of the circle using a leaning tool
and \ObjectFrame mode.

xx0500002151

This mode will make a linear reorientation of the
tool in the sameway as for MoveL. The robot wrist
will not go through the programmed orientation
in the CirPoint.
Compare with the previous figure when
\PathFrame mode is used.

CirPointOri
The figure in the table shows the different tool reorientation between the standard
mode \PathFrame and the modified mode \CirPointOri.

DescriptionIllustration

The arrows show the tool fromwrist center point
to tool center point for the programmed points.
The different paths for the wrist center point are
dashed in the figure.

xx0500002150

The \CirPointOri mode will make the robot
wrist to go through the programmed orientation
in the CirPoint.
The path is always the same in xyz but the ori-
entation is different.

Continues on next page
122 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.39 CirPathMode - Tool reorientation during circle path
RobotWare - OS
Continued

Wrist45 / Wrist46 / Wrist56
The figure in the table shows the frames involved when cutting a shape using axes
4 and 5.

DescriptionIllustration

It is assumed that the cutting beam is aligned
with the tool’s z axis. The coordinate frame of
the cut plane is defined by the robot’s starting
position when executing the MoveC instruction.

xx0800000294

Arguments
CirPathMode [\PathFrame] | [\ObjectFrame] | [\CirPointOri] |

[\Wrist45] | [\Wrist46] | [\Wrist56]

[\PathFrame]

Data type: switch
During the circular movement the reorientation of the tool is done continuously
from the start point orientation to the ToPoint orientation in the actual path frame.
This is the standard mode in the system.

Note

Using CirPathModewithout any switch gives the same result is as CirPathMode
\PathFrame.

[\ObjectFrame]

Data type: switch
During the circular movement the reorientation of the tool is done continuously
from the start point orientation to the ToPoint orientation in the actual object
frame.

[\CirPointOri]

Data type: switch
During the circular movement the reorientation of the tool is done continuously
from the start point orientation to the programmed CirPoint orientation and further
to the ToPoint orientation.

[\Wrist45]

Data type: switch
The robot will move axes 4 and 5 such that the projection of the tool’s z-axis onto
the cut plane will follow the programmed circle movement order. This mode should

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 123
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.39 CirPathMode - Tool reorientation during circle path

RobotWare - OS
Continued

only be used for thin objects as only 2 wrist axes are used and thus give us
increased accuracy but also less control.

Note

This switch requires the RobotWare optionWristMove.

[\Wrist46]

Data type: switch
The robot will move axes 4 and 6 such that the projection of the tool’s z-axis onto
the cut plane will follow the programmed circle movement order. This mode should
only be used for thin objects as only 2 wrist axes are used and thus give us
increased accuracy but also less control.

Note

This switch requires the RobotWare optionWristMove.

[\Wrist56]

Data type: switch
The robot will move axes 5 and 6 such that the projection of the tool’s z-axis onto
the cut plane will follow the programmed circle movement order. This mode should
only be used for thin objects as only 2 wrist axes are used and thus give us
increased accuracy but also less control.

Note

This switch requires the RobotWare optionWristMove.

Program execution
The specified circular tool reorientationmode applies for the next executed circular
movement instruction of any type (MoveC, SearchC, TriggC, MoveCDO,
MoveCSync, ArcC, PaintC, etc.) and is valid until a new CirPathMode

instruction is executed.
The standard circular reorientation mode (CirPathMode \PathFrame) is
automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Continues on next page
124 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.39 CirPathMode - Tool reorientation during circle path
RobotWare - OS
Continued

Limitations
The instruction only affects circular movements.
When using the \CirPointOrimode, the CirPointmust be between the points
A and B according to the figure below to make the circle movement to go through
the programmed orientation in the CirPoint.

xx0500002149

\Wrist45, \Wrist46, and \Wrist56 mode should only be used for cutting thin
objects as the ability to control the angle of the tool is lost when using only two
wrist axes. Coordinatedmovements are not possible since the main axis is locked.
If working in wrist singularity area and the instruction SingArea\Wrist has been
executed, the instruction CirPathMode has no effect because the system then
selects another tool reorientationmode for circular movements (joint interpolation).

Syntax
CirPathMode

['\'PathFrame]

| ['\'ObjectFrame]

| ['\'CirPointOri]

| ['\'Wrist45]

| ['\'Wrist46]

| ['\'Wrist56] ';'

Related information

SeeFor information about

motsetdata - Motion settings data on page 1660Motion settings data

MoveC - Moves the robot circularly on page 402Circular move instruction

SingArea - Defines interpolation around singular
points on page 719

Define interpolation around singular
points

Technical reference manual - RAPID OverviewInterpolation

Application manual - Controller software IRC5,
sectionWristMove

Wrist movements

Technical reference manual - RAPID Instructions, Functions and Data types 125
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.39 CirPathMode - Tool reorientation during circle path

RobotWare - OS
Continued

1.40 Clear - Clears the value

Usage
Clear is used to clear a numeric variable or persistent , that is, set it to 0.

Basic examples
The following examples illustrate the instruction Clear:

Example 1
Clear reg1;

Reg1 is cleared, i.e. reg1:=0.

Example 2
CVAR dnum mydnum:=5;

Clear mydnum;

mydnum is cleared, i.e. mydnum:=0.

Arguments
Clear Name | Dname

Name

Data type: num
The name of the variable or persistent to be cleared.

Dname

Data type: dnum
The name of the variable or persistent to be cleared.

Syntax
Clear

[Name ':='] < var or pers (INOUT) of num >

| [Dname ':='] < var or pers (INOUT) of dnum > ';'

Related information

SeeFor information about

Incr - Increments by 1 on page 283Incrementing a variable by 1

Decr - Decrements by 1 on page 174Decrementing a variable by 1

Add - Adds a numeric value on page 28Adding any value to a variable

":=" - Assigns a value on page 37Changing data using arbitrary

126 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.40 Clear - Clears the value
RobotWare - OS

1.41 ClearIOBuff - Clear input buffer of a serial channel

Usage
ClearIOBuff (Clear I/O Buffer) is used to clear the input buffer of a serial channel.
All buffered characters from the input serial channel are discarded.

Basic examples
The following example illustrates the instruction ClearIOBuff:

Example 1
VAR iodev channel1;

...

Open "com1:", channel1 \Bin;

ClearIOBuff channel1;

WaitTime 0.1;

The input buffer for the serial channel referred to by channel1 is cleared. The wait
time guarantees the clear operation enough time to finish.

Arguments
ClearIOBuff IODevice

IODevice

Data type: iodev
The name (reference) of the serial channel whose input buffer is to be cleared.

Program execution
All buffered characters from the input serial channel are discarded. Next read
instructions will wait for new input from the channel.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Limitations
This instruction can only be used for serial channels. Do not wait for
acknowledgement of the operation to finish. Allow a wait time 0.1 after the
instruction is recommended to give the operation enough time in every application.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The instruction is used on a file.ERR_FILEACC

Syntax
ClearIOBuff

[IODevice ':='] <variable (VAR) of iodev>';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 127
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.41 ClearIOBuff - Clear input buffer of a serial channel

RobotWare - OS

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening a serial channel

Application manual - Controller software IRC5File and serial channel handling

128 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.41 ClearIOBuff - Clear input buffer of a serial channel
RobotWare - OS
Continued

1.42 ClearPath - Clear current path

Usage
ClearPath (Clear Path) clears the whole motion path on the current motion path
level (base level or StorePath level).
With motion path, meaning all the movement orders from any move instructions
which have been executed in RAPID but not performed by the robot at the execution
time of ClearPath.
The robot must be in a stop point position or must be stopped with StopMove
before the instruction ClearPath can be executed.

Basic examples
The following example illustrates the instruction ClearPath:

xx0500002154

In the following program example, the robot moves from the position home to the
position p1. At the point px the signal di1 will indicate that the payload has been
dropped. The execution continues in the trap routine gohome. The robot will stop
moving (start the braking) at px, the path will be cleared, the robot will move to
position home. The error will be raised up to the calling routine minicycle and
the whole user defined program cycle proc1 ... proc2 will be executed from
the beginning one more time.

Example 1
VAR intnum drop_payload;

VAR errnum ERR_DROP_LOAD := -1;

PROC minicycle()

BookErrNo ERR_DROP_LOAD;

proc1;

...

ERROR (ERR_DROP_LOAD)

! Restart the interupted movement on motion base path level

StartMove;

RETRY;

ENDPROC

PROC proc1()

...

proc2;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 129
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.42 ClearPath - Clear current path

Robot Ware - OS

...

ENDPROC

PROC proc2()

CONNECT drop_payload WITH gohome;

ISignalDI \Single, di1, 1, drop_payload;

MoveL p1, v500, fine, gripper;

...........

IDelete drop_payload;

ENDPROC

TRAP gohome

StopMove \Quick;

ClearPath;

IDelete drop_payload;

StorePath;

MoveL home, v500, fine, gripper;

RestoPath;

RAISE ERR_DROP_LOAD;

ERROR

RAISE;

ENDTRAP

If the same program is being run but without StopMove and ClearPath in the
trap routine gohome, the robot will continue to position p1 before going back to
position home.

Limitations
Limitation examples of the instruction ClearPath are illustrated below.

Example 1 - Limitation
VAR intnum int_move_stop;

...

PROC test_move_stop()

CONNECT int_move_stop WITH trap_move_stop;

ISignalDI di1, 1, int_move_stop;

MoveJ p10, v200, z20, gripper;

MoveL p20, v200, z20, gripper;

ENDPROC

TRAP trap_move_stop

StopMove;

ClearPath;

StorePath;

MoveJ p10, v200, z20, gripper;

RestoPath;

StartMove;

ENDTRAP

This is an example of ClearPath limitation. During the robot movement to p10
and p20, the ongoing movement is stopped and the motion path is cleared, but no
action is done to break off the active instruction MoveJ p10 or MoveL p20 in the

Continues on next page
130 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.42 ClearPath - Clear current path
Robot Ware - OS
Continued

PROC test_move_stop. So the ongoing movement will be interrupted and the
robot will go to p10 in the TRAP trap_move_stop, but no further movement to
p10 or p20 in the PROC test_move_stop will be done. The program execution
will be hanging.
This problem can be solved with either error recovery with long jump as described
in example 2 below or with asynchronously raised error with instruction
ProcerrRecovery.

Example 2 - No limitations
VAR intnum int_move_stop;

VAR errnum err_move_stop := -1;

...

PROC test_move_stop()

BookErrNo err_move_stop;

CONNECT int_move_stop WITH trap_move_stop;

ISignalDI di1, 1, int_move_stop;

MoveJ p10, v200, z20, gripper;

MoveL p20, v200, z20, gripper;

ERROR (err_move_stop)

StopMove;

ClearPath;

StorePath;

MoveJ p10, v200, z20, gripper;

RestoPath;

! Restart the interupted movement on motion base path level

StartMove;

RETRY;

ENDPROC

TRAP trap_move_stop

RAISE err_move_stop;

ERROR

RAISE;

ENDTRAP

This is an example of how to use error recovery with long jump together with
ClearPath without any limitation. During the robot movement to p10 and p20,
the ongoing movement is stopped. The motion path is cleared, and because of
error recovery through execution level boundaries, break off is done of the active
instruction MoveJ p10 or MoveL p20. So the ongoingmovement will be interrupted
and the robot will go to p10 in the ERROR handler, and once more execute the
interrupted instruction MoveJ p10 or MoveL p20 in the PROC test_move_stop.

Syntax
ClearPath ';'

Related information

SeeFor information about

StopMove - Stops robot movement on page 810Stop robot movements

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 131
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.42 ClearPath - Clear current path

Robot Ware - OS
Continued

SeeFor information about

Technical reference manual - RAPID OverviewError recovery
Technical reference manual manual - RAPID kernel

ProcerrRecovery - Generate and recover from process-move
error on page 542

Asynchronously raised error

132 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.42 ClearPath - Clear current path
Robot Ware - OS
Continued

1.43 ClearRawBytes - Clear the contents of rawbytes data

Usage
ClearRawBytes is used to set all the contents of a rawbytes variable to 0.

Basic examples
The following example illustrates the instruction ClearRawBytes:

Example 1
VAR rawbytes raw_data;

VAR num integer := 8

VAR num float := 13.4;

PackRawBytes integer, raw_data, 1 \IntX := DINT;

PackRawBytes float, raw_data, (RawBytesLen(raw_data)+1) \Float4;

ClearRawBytes raw_data \FromIndex := 5;

In the first 4 bytes the value of integer is placed (from index 1) and in the next 4
bytes starting from index 5 the value of float.
The last instruction in the example clears the contents of raw_data, starting at
index 5, that is, float will be cleared, but integer is kept in raw_data.
Current length of valid bytes in raw_data is set to 4.

Arguments
ClearRawBytes RawData [\FromIndex]

RawData

Data type: rawbytes
RawData is the data container which will be cleared.

[\FromIndex]

Data type: num
With \FromIndex it is specified where to start clearing the contents of RawData.
Everything is cleared to the end.
If \FromIndex is not specified, all data starting at index 1 is cleared.

Program execution
Data from index 1 (default) or from \FromIndex in the specified variable is reset
to 0.
The current length of valid bytes in the specified variable is set to 0 (default) or to
(FromIndex - 1) if \FromIndex is programmed.

Syntax
ClearRawBytes

[RawData ':='] < variable (VAR) of rawbytes>

['\'FromIndex ':=' <expression (IN) of num>]';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 133
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.43 ClearRawBytes - Clear the contents of rawbytes data

RobotWare - OS

Related information

SeeFor information about

rawbytes - Raw data on page 1689rawbytes data

RawBytesLen - Get the length of rawbytes data
on page 1390

Get the length of rawbytes data

CopyRawBytes - Copy the contents of rawbytes
data on page 157

Copy the contents of rawbytes data

PackDNHeader - Pack DeviceNet Header into
rawbytes data on page 503

Pack DeviceNet header into rawbytes
data

PackRawBytes - Pack data into rawbytes data
on page 506

Pack data into rawbytes data

WriteRawBytes -Write rawbytes data onpage1082Write rawbytes data

ReadRawBytes - Read rawbytes data on page586Read rawbytes data

UnpackRawBytes - Unpack data from rawbytes
data on page 995

Unpack data from rawbytes data

Application manual - Controller software IRC5File and serial channel handling

134 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.43 ClearRawBytes - Clear the contents of rawbytes data
RobotWare - OS
Continued

1.44 ClkReset - Resets a clock used for timing

Usage
ClkReset is used to reset a clock that functions as a stop-watch used for timing.
This instruction can be used before using a clock to make sure that it is set to 0.

Basic examples
The following example illustrates the instruction ClkReset:

Example 1
ClkReset clock1;

The clock clock1 is reset.

Arguments
ClkReset Clock

Clock

Data type: clock
The name of the clock to reset.

Program execution
When a clock is reset, it is set to 0.
If a clock is running it will be stopped and then reset.

Syntax
ClkReset

[Clock ':='] < variable (VAR) of clock > ';'

Related Information

SeeFor information about

Technical reference manual - RAPID OverviewOther clock instructions

Technical reference manual - RAPID Instructions, Functions and Data types 135
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.44 ClkReset - Resets a clock used for timing

RobotWare - OS

1.45 ClkStart - Starts a clock used for timing

Usage
ClkStart is used to start a clock that functions as a stop-watch used for timing.

Basic examples
The following example illustrates the instruction ClkStart:

Example 1
ClkStart clock1;

The clock clock1 is started.

Arguments
ClkStart Clock

Clock

Data type: clock
The name of the clock to start.

Program execution
When a clock is started, it will run and continue counting seconds until it is stopped.
A clock continues to run when the program that started it is stopped. However, the
event that you intended to timemay no longer be valid. For example, if the program
was measuring the waiting time for an input, the input may have been received
while the program was stopped. In this case, the program will not be able to “see”
the event that occurred while the program was stopped.
A clock continues to run when the robot is powered down as long as the battery
back-up retains the program that contains the clock variable.
If a clock is running it can be read, stopped, or reset.

More examples
More examples of the instruction ClkStart are illustrated below.

Example 1
VAR clock clock2;

VAR num time;

ClkReset clock2;

ClkStart clock2;

WaitUntil di1 = 1;

ClkStop clock2;

time:=ClkRead(clock2);

The waiting time for di1 to become 1 is measured.

Continues on next page
136 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.45 ClkStart - Starts a clock used for timing
RobotWare - OS

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The clock runs for 4,294,967 seconds (49 days 17 hours 2
minutes 47 seconds), then it is overflowed.

ERR_OVERFLOW.

Syntax
ClkStart

[Clock ':='] < variable (VAR) of clock >';'

Related Information

SeeFor information about

Technical reference manual - RAPID OverviewOther clock instructions

Technical reference manual - RAPID Instructions, Functions and Data types 137
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.45 ClkStart - Starts a clock used for timing

RobotWare - OS
Continued

1.46 ClkStop - Stops a clock used for timing

Usage
ClkStop is used to stop a clock that functions as a stop-watch used for timing.

Basic examples
The following example illustrates the instruction ClkStop:

ClkStop clock1;

The clock clock1 is stopped.

Arguments
ClkStop Clock

Clock

Data type: clock
The name of the clock to stop.

Program execution
When a clock is stopped, it will stop running.
If a clock is stopped, it can be read, started again, or reset.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The clock runs for 4,294,967 seconds (49 days 17 hours 2
minutes 47 seconds) it becomes overflowed.

ERR_OVERFLOW

Syntax
ClkStop

[Clock ':='] < variable (VAR) of clock >';'

Related Information

SeeFor information about

Technical reference manual - RAPID OverviewOther clock instructions

ClkStart - Starts a clock used for timing on page136More examples

138 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.46 ClkStop - Stops a clock used for timing
RobotWare - OS

1.47 Close - Closes a file or serial channel

Usage
Close is used to close a file or serial channel.

Basic examples
The following example illustrates the instruction Close:

Example 1
Close channel2;

The serial channel referred to by channel2 is closed.

Arguments
Close IODevice

IODevice

Data type: iodev
The name (reference) of the file or serial channel to be closed.

Program execution
The specified file or serial channel is closed andmust be re-opened before reading
or writing. If it is already closed the instruction is ignored.

Syntax
Close

[IODevice ':='] <variable (VAR) of iodev>';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening a file or serial channel

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 139
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.47 Close - Closes a file or serial channel

RobotWare - OS

1.48 CloseDir - Close a directory

Usage
CloseDir is used to close a directory in balance with OpenDir.

Basic examples
The following example illustrates the instruction CloseDir:

Example 1
PROC lsdir(string dirname)

VAR dir directory;

VAR string filename;

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

TPWrite filename;

ENDWHILE

CloseDir directory;

ENDPROC

This example prints out the names of all files or subdirectories under the specified
directory.

Arguments
CloseDir Dev

Dev

Data type: dir
A variable with reference to the directory fetched with instruction OpenDir.

Syntax
CloseDir

[Dev ':='] < variable (VAR) of dir>';'

Related information

SeeFor information about

dir - File directory structure on page 1610Directory

MakeDir - Create a new directory on page 372Make a directory

OpenDir - Open a directory on page 501Open a directory

ReadDir - Read next entry in a directory on page 1394Read a directory

RemoveDir - Delete a directory on page 595Remove a directory

RemoveFile - Delete a file on page 597Remove a file

RenameFile - Rename a file on page 600Rename a file

Application manual - Controller software IRC5File and serial channel handling

140 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.48 CloseDir - Close a directory
RobotWare - OS

1.49 Comment - Comment

Usage
Comment is only used to make the program easier to understand. It has no effect
on the execution of the program.

Basic examples
The following example illustrates the instruction Comment:

Example 1
! Goto the position above pallet

MoveL p100, v500, z20, tool1;

A comment is inserted into the program to make it easier to understand.

Arguments
! Comment

Comment

Text string
Any text.

Program execution
Nothing happens when you execute this instruction.

Limitations

Comments in a record
In a record definition, it is not allowed to have a comment in a separate line unless
it is the last line.

RECORD my_rec

! DISALLOWED COMMENT

num mynum; ! allowed comment (not separate line)

string mystring;

! allowed comment on last line

ENDRECORD

Syntax
'!' {<character>} <newline>

Related information

SeeFor information about

Technical reference manual - RAPID OverviewCharacters permitted in a comment

Technical reference manual - RAPID OverviewComments within data and routine de-
clarations

Technical reference manual - RAPID Instructions, Functions and Data types 141
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.49 Comment - Comment

RobotWare - OS

1.50 Compact IF - If a condition is met, then... (one instruction)

Usage
Compact IF is used when a single instruction is only to be executed if a given
condition is met.
If different instructions are to be executed, depending on whether the specified
condition is met or not, the IF instruction is used.

Basic examples
The following examples illustrate the instruction CompactIF:

Example 1
IF reg1 > 5 GOTO next;

If reg1 is greater than 5, program execution continues at the next label.

Example 2
IF counter > 10 Set do1;

The do1 signal is set if counter > 10.

Arguments
IF Condition ...

Condition
Data type: bool
The condition that must be satisfied for the instruction to be executed.

Syntax
IF <conditional expression> (<instruction> | <SMT>) ';'

Related information

SeeFor information about

Technical referencemanual - RAPID OverviewConditions (logical expressions

IF - If a condition is met, then ...; otherwise ...
on page 281

IF with several instructions

142 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.50 Compact IF - If a condition is met, then... (one instruction)
RobotWare - OS

1.51 ConfJ - Controls the configuration during joint movement

Usage
ConfJ (Configuration Joint) is used to specify whether or not the robot’s
configuration is to be controlled during joint movement. If it is not controlled, the
robot can sometimes use a different configuration than that which was programmed.
With ConfJ \Off, the robot cannot switch main axis configuration - it will search
for a solution with the samemain axis configuration as the current one, but it moves
to the closest wrist configuration for axes 4 and 6.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction ConfJ:

Example 1
ConfJ \Off;

MoveJ *, v1000, fine, tool1;

The robot moves to the programmed position and orientation. If this position can
be reached in several different ways, with different axis configurations, the closest
possible position is chosen.

Example 2
ConfJ \On;

MoveJ *, v1000, fine, tool1;

The robot moves to the programmed position, orientation and axis configuration.

Arguments
ConfJ [\On] | [\Off]

[\On]

Data type: switch
The robot moves to the programmed position with configuration parameters equal
or close to the the given configuration parameters in the confdata.
If a program displacement or path correction is active, the risk for large movements
is increased since the programmed configuration data is based on the original
position.
The IRB 5400 robot will move to the programmed axis configuration or to an axis
configuration close to the programmed one.

[\Off]

Data type: switch
The robot moves to the programmed position using the closest axis configuration.

Program execution
The configuration applies for the next executed movement instruction until a new
ConfJ instruction is executed.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 143
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.51 ConfJ - Controls the configuration during joint movement

RobotWare - OS

If the argument \On (or no argument) is chosen, the robotmoves to the programmed
position with configuration parameters equal or close to the the given configuration
parameters.
If a program displacement or path correction is active, the risk for large movements
is increased since the programmed configuration data is based on the original
position.
If the argument \Off is chosen, the robot always moves to the closest axis
configuration. This may be different to the programmed one if the configuration
has been incorrectly specified manually, or if a program displacement has been
carried out.
Control of the configuration (ConfJ \On) is active by default. This is automatically
set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Syntax
ConfJ

['\' On] | ['\' Off]';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewHandling different configurations

ConfL - Monitors the configuration during linear
movement on page 145

Robot configuration during linear
movement

motsetdata - Motion settings data on page 1660Motion settings data

confdata - Robot configuration data on page 1599Robot configuration data

144 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.51 ConfJ - Controls the configuration during joint movement
RobotWare - OS
Continued

1.52 ConfL - Monitors the configuration during linear movement

Usage
ConfL (Configuration Linear) is used to specify whether or not the robot’s
configuration is to be monitored during linear or circular movement. If it is not
monitored, the configuration at execution time may differ from that at programmed
time. It may also result in unexpected sweeping robot movements when the mode
is changed to joint movement.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Note

For the IRB 5400, the robot monitoring is always off independent of what is
specified in ConfL.

Basic examples
The following examples illustrate the instruction ConfL:

Example 1
ConfL \On;

MoveL *, v1000, fine, tool1;

Program execution stops when the programmed configuration is not possible to
reach from the current position.

Example 2
SingArea \Wrist;

ConfL \On;

MoveL *, v1000, fine, tool1;

The robot moves to the programmed position, orientation and wrist axis
configuration. If this is not possible, program execution stops.

Example 3
ConfL \Off;

MoveL *, v1000, fine, tool1;

The robot moves to the programmed position and orientation but to the closest
possible axis configuration, which can be different from the programmed.

Arguments
ConfL [\On]|[\Off]

[\On]

Data type: switch
The robot configuration is monitored.

[\Off]

Data type: switch
The robot configuration is not monitored.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 145
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.52 ConfL - Monitors the configuration during linear movement

RobotWare - OS

Program execution
The configuration applies for the next executed movement instruction until a new
ConfL instruction is executed.
During linear or circular movement, the robot always moves to the programmed
position and orientation that has the closest possible axis configuration. If the
argument \On (or no argument) is used, then the program execution stops as soon
as there is a risk that the configuration of the programmed position will not be
attained from the current position. The way that this is decided varies between
robot types, see confdata - Robot configuration data on page 1599.
Before an orderedmovement is started, a verification is made to see if it is possible
to achieve the programmed configuration. If it is not possible, the program is
stopped. When the movement is finished (in a zone or in a finepoint), it is also
verified that the robot has reached the programmed configuration.
If SingArea \Wrist is used, the robot always moves to the programmed wrist
axis configuration.
If the argument \Off is used, there is no monitoring.
After a stop caused by a configuration error it is possible to restart the RAPID
program in manual mode. Note that in this case, due to the reported error, the robot
will most likely not move to the correct configuration.
If ConfL \Off is used with a big movement, it can cause stops directly or later in
the program with error 50050 Position outside reach or 50080 Position
not compatible.
Monitoring of the configuration (ConfL \On) is active by default. This is
automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Tip

A simple rule of thumb to avoid problems, both for ConfL\On and \Off, is to
insert intermediate points to make the movement of each axis less than 180
degrees between points.

Tip

In a programwith ConfL \Off it is recommended to have start points with known
configurations points with “ConfJ \On and MoveJ” or “ConfL \On and SingArea
\Wrist and MoveL” before movements in different program parts.

Continues on next page
146 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.52 ConfL - Monitors the configuration during linear movement
RobotWare - OS
Continued

Syntax
ConfL

['\' On] | ['\' Off]';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewHandling different configurations

ConfJ - Controls the configuration during joint
movement on page 143

Robot configuration during joint
movement

SingArea - Defines interpolation around singular
points on page 719

Define interpolation around singular
points

motsetdata - Motion settings data on page 1660Motion settings data

confdata - Robot configuration data on page 1599Robot configuration data

Technical reference manual - RAPID Instructions, Functions and Data types 147
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.52 ConfL - Monitors the configuration during linear movement

RobotWare - OS
Continued

1.53 CONNECT - Connects an interrupt to a trap routine

Usage
CONNECT is used to find the identity of an interrupt and connect it to a trap routine.
The interrupt is defined by ordering an interrupt event and specifying its identity.
Thus, when that event occurs, the trap routine is automatically executed.

Basic examples
The following example illustrates the instruction CONNECT:

Example 1
VAR intnum feeder_low;

PROC main()

CONNECT feeder_low WITH feeder_empty;

ISignalDI di1, 1 , feeder_low;

...

An interrupt identity feeder_low is created which is connected to the trap routine
feeder_empty. There will be an interrupt when input di1 is getting high. In other
words, when this signal becomes high, the feeder_empty trap routine is executed.

Arguments
CONNECT Interrupt WITH Trap routine

Interrupt

Data type: intnum
The variable that is to be assigned the identity of the interrupt. This must not be
declared within a routine (routine data).

Trap routine

Identifier
The name of the trap routine.

Program execution
The variable is assigned an interrupt identity which shall be used when ordering
or disabling interrupts. This identity is also connected to the specified trap routine.

Note

All interrupts in a task are cancelled when program pointer is set to main for that
task and must be reconnected. The interrupts will not be affected by a power fail
or a Restart.

Limitations
An interrupt (interrupt identity) cannot be connected to more than one trap routine.
Different interrupts, however, can be connected to the same trap routine.
When an interrupt has been connected to a trap routine, it cannot be reconnected
or transferred to another routine; it must first be deleted using the instruction
IDelete.

Continues on next page
148 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.53 CONNECT - Connects an interrupt to a trap routine
RobotWare - OS

Interrupts that come or have not been handled when program execution is stopped
will be neglected. The interrupts are not considered when stopping the program.
Interrupts that has been set as safe will not be neglected at program stop. They
will be handled when the program is started again.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The interrupt variable is already connected to a TRAP
routine.

ERR_ALRDYCNT

The interrupt variable is not a variable reference.ERR_CNTNOTVAR

No more interrupt numbers are available.ERR_INOMAX

Syntax
CONNECT <connect target> WITH <trap>';'

<connect target> ::= <variable>

| <parameter>

| <VAR>

<trap> ::= <identifier>

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Summary of interrupts

Technical reference manual - RAPID Over-
view

More information on interrupt management

intnum - Interrupt identity on page 1643Data type for interrupt

IDelete - Cancels an interrupt on page 275Cancelling an interrupt

Technical reference manual - RAPID Instructions, Functions and Data types 149
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.53 CONNECT - Connects an interrupt to a trap routine

RobotWare - OS
Continued

1.54 ContactL - Linear contact movement

Usage
ContactL (Contact Linear) is used for the IRB 14000 robot to obtain contact with
an object at a desired position while moving the tool center point (TCP) linearly.
The collision detection level is raised to its maximum value, and during the
movement the robot supervises the internal torque and compares it to a torque
level given by the user. When the requested user torque level is reached, the robot
performs a stiff stop and continues with the rest of the program.
This instruction can typically be used when the tool held by the robot has to press
an object into place.
This instruction can only be used in themain task T_ROB1, or in Motion tasks when
in a MultiMove system.
The maximum speed for a ContactL instruction is 1000 mm/s.

Note

During programming it is recommended to first test with a slow speed, <100
mm/s, and then gradually increase the speed to the desired value.

Description
To find out the value for the torque level desiredTorque it is necessary to test
the application and to view an internal test signal, signal 7901, using TuneMaster.

xx1500000649

For more information about TuneMaster, see the help section included in the
application.

Basic examples
The following examples illustrate the instruction ContactL:

Continues on next page
150 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.54 ContactL - Linear contact movement
IRB 14000

See also More examples on page 153.

Example 1
desiredTorque := 0.1;

ContactL \DesiredTorque:=desiredTorque, p10, v100, tool1;

The TCP of tool1 is moved linearly towards the position p10 at a speed of v100.
When the value of the internal torque level exceeds the desiredTorque level
specified by the user, the robot will perform a stiff stop and then the program will
continue from the position where the robot is stopped.
The argument DesiredTorque is optional. When DesiredTorque is omitted, the
ContactL instruction will only raise the collision detection level to its maximum
value, i.e. giving the opportunity to keep pressure on an object while moving the
TCP.
If the desiredTorque is not reached when the robot reaches the desired position,
there will be an execution error and the system stops with an event log. Therefore
it is recommended to implement an error handler for such cases, see Error handling
on page 153.

Example 2
ContactL RelTool (CRobT(),5,5,0), v100, \Zone:=z10, tool1;

The robot is moved to a position that is 5 mm from its current position in the x
direction and 5 mm from its current position in the y direction of the tool. If the
Zone argument is omitted, the ContactL instruction will use a fine-point as default.
In the example the argument DesiredTorque is omitted. The instruction will only
raise the collision detection level to its maximum value and the ContactL
instruction will function similar to a MoveL instruction.

Example 3
desiredTorque := 0.9;

ContactL \DesiredTorque:=desiredTorque, p10, v100, tool1;

ContactL RelTool (CRobT(),5,5,0), v100, \Zone:=z10, tool1;

ContactL RelTool (CRobT(),5,5,-10), v100, \Zone:=z10, tool1;

MoveL ...

It is important to remember to use the ContactL instruction while in contact, but
also when leaving contact. A normal move instruction will most probably trigger
the motion supervision.

Arguments
ContactL [\DesiredTorque] ToPoint [\ID] Speed [\Zone] Tool [\WObj]

[\DesiredTorque]

Data type: num
User defined desired torque level.
ContactL will always use a fine-point as zone data for the destination if
DesiredTorque is defined. When DesiredTorque is omitted the ContactL
instruction will only raise the collision detection level and not supervise the internal
torque level.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 151
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.54 ContactL - Linear contact movement

IRB 14000
Continued

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity for the
tool center point, the tool reorientation, and external axes.

[\Zone]

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path and is only used when DesiredTorque is omitted.
If the [\Zone] argument is omitted the ContactL instruction will use a fine-point
as default.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified for a linear movement relative
to the work object to be performed.

Program execution
See the instruction MoveL for information about linear movement.
The robot movement stops when the internal torque level has exceeded the user
defined torque level, assuming that the argument DesiredTorque is defined.
Otherwise the robot movement always continues to the programmed destination
point.

Continues on next page
152 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.54 ContactL - Linear contact movement
IRB 14000
Continued

If the argument DesiredTorque is omitted the collision detection level is raised
to its maximum value and no supervision of the internal torque level is performed,
i.e. giving the opportunity to keep pressure on an object while moving the TCP.

Error handling
An error is reported during a ContactL when:

• ContactL reaches the point specified in the argument ToPoint without
reaching the DesiredTorque specified by the user. This generates the error
ERR_CONTACTL.

Errors can be handled in different ways depending on the selected running mode:
• Continuous forward/Instruction forward:

No position is returned and the movement always continues to the
programmed destination point. The system variable ERRNO is set to
ERR_CONTACTL and the error can be handled in the error handler of the
routine.

• Instruction backward:
During backward execution the instruction carries out themovement without
any torque supervision.

Example
VAR num desiredTorque;

...

desiredTorque := 0.1;

MoveL p10, v100, fine, tool1;

ContactL \DesiredTorque:=desiredTorque, p20, v100, tool1;

...

ERROR

IF ERRNO=ERR_CONTACTL THEN

StorePath;

MoveL p10, v100, fine, tool1;

RestoPath;

ClearPath;

StartMove;

RETRY;

ELSE

Stop;

ENDIF

ENDPROC

The robotmoves from position p10 to p20. If the robot reaches p20without reaching
the DesiredTorque specified by the user, then the robot moves back to p10 and
tries once more.

More examples
More examples of the instruction ContactL are illustrated below.

Example 1
ContactL p10, v100, \Zone:=z10, tool1;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 153
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.54 ContactL - Linear contact movement

IRB 14000
Continued

The TCP of tool1 is moved linearly towards the position p10 at a speed of v100
and a zone size of 10 mm.
Since the argument DesiredTorque is omitted, the ContactL instruction will only
raise the collision detection level to its maximum value and not supervise the
internal torque level.

Limitations
ContactL can only be used for the IRB 14000 robot (YuMi).

Syntax
ContactL

['\' DesiredTorque ',']

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

['\' Zone ':=' < expression (IN) of zonedata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >] ';'

Related information

SeeFor information about

Operating manual - IRB 14000Using the IRB 14000

CorrWrite - Writes to a correction generator on page168Writes to a corrections entry

MoveL - Moves the robot linearly on page 457Moves the robot linearly

loaddata - Load data on page 1650Definition of load

GripLoad - Defines the payload for a robot on page 266Defining the payload for a robot

Technical reference manual - RAPID OverviewUsing error handlers

Linear movement

Motion in general

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification
service routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated
mode without payload.
(Topic I/O, Type System Input,
Action values, SimMode)

SystemparameterModalPayLoad-
Mode for activating and deactivat-
ing payload.
(Topic Controller, Type General
RAPID, Action values, ModalPay-
LoadMode)

154 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.54 ContactL - Linear contact movement
IRB 14000
Continued

1.55 CopyFile - Copy a file

Usage
CopyFile is used to make a copy of an existing file.

Basic examples
The following example illustrates the instruction CopyFile:

Example 1
CopyFile "HOME:/myfile", "HOME:/yourfile";
The file myfile is copied to yourfile. Both files are then identical.

CopyFile "HOME:/myfile", "HOME:/mydir/yourfile";

The file myfile is copied to yourfile in directory mydir.

Arguments
CopyFile OldPath NewPath

OldPath

Data type: string
The complete path of the file to be copied from.

NewPath

Data type: string
The complete path where the file is to be copied to.

Program execution
The file specified in OldPath will be copied to the file specified in NewPath.

Error Handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The file specified inOldPath does not exist.ERR_FILEACC

The file specified in NewPath does already exist.ERR_FILEEXIST

Syntax
CopyFile

[OldPath ':='] < expression (IN) of string > ','

[NewPath ':='] < expression (IN) of string >';'

Related information

SeeFor information about

MakeDir - Create a new directory on page372Make a directory

RemoveDir - Delete a directory on page 595Remove a directory

RenameFile - Rename a file on page 600Rename a file

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 155
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.55 CopyFile - Copy a file

RobotWare - OS

SeeFor information about

RemoveFile - Delete a file on page 597Remove a file

IsFile - Check the type of a file on page 1314Check file type

FileSize - Retrieve the size of a file on
page 1251

Check file size

FSSize - Retrieve the size of a file system on
page 1257

Check file system size

Applicationmanual - Controller software IRC5File and serial channel handling

156 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.55 CopyFile - Copy a file
RobotWare - OS
Continued

1.56 CopyRawBytes - Copy the contents of rawbytes data

Usage
CopyRawBytes is used to copy all or part of the contents from one rawbytes
variable to another.

Basic examples
The following example illustrates the instruction CopyRawBytes:

Example 1
VAR rawbytes from_raw_data;

VAR rawbytes to_raw_data;

VAR num integer := 8

VAR num float := 13.4;

ClearRawBytes from_raw_data;

PackRawBytes integer, from_raw_data, 1 \IntX := DINT;

PackRawBytes float, from_raw_data, (RawBytesLen(from_raw_data)+1)
\Float4;

CopyRawBytes from_raw_data, 1, to_raw_data, 3,
RawBytesLen(from_raw_data);

In this example the variable from_raw_data of type rawbytes is first cleared,that
is all bytes set to 0. Then in the first 4 bytes the value of integer is placed and
in the next 4 bytes the value of float.
After having filled from_raw_data with data, the contents (8 bytes) is copied to
to_raw_data, starting at position 3.

Arguments
CopyRawBytes FromRawData FromIndex ToRawData ToIndex[\NoOfBytes]

FromRawData

Data type: rawbytes
FromRawData is the data container fromwhich the rawbytes data shall be copied.

FromIndex

Data type: num
FromIndex is the position in FromRawData where the data to be copied starts.
Indexing starts at 1.

ToRawData

Data type: rawbytes
ToRawData is the data container to which the rawbytes data shall be copied.

ToIndex

Data type: num
ToIndex is the position in ToRawData where the data to be copied will be placed.
Everything is copied to the end. Indexing starts at 1.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 157
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.56 CopyRawBytes - Copy the contents of rawbytes data

RobotWare - OS

[\NoOfBytes]

Data type: num
The value specified with \NoOfBytes is the number of bytes to be copied from
FromRawData to ToRawData.
If \NoOfBytes is not specified, all bytes from FromIndex to the end of current
length of valid bytes in FromRawData is copied.

Program execution
During program execution data is copied from one rawbytes variable to another.
The current length of valid bytes in the ToRawData variable is set to:

• (ToIndex + copied_number_of_bytes - 1)
• The current length of valid bytes in the ToRawData variable is not changed,

if the complete copy operation is done inside the old current length of valid
bytes in the ToRawData variable.

Limitations
CopyRawBytes cannot be used to copy some data from one rawbytes variable
to other part of the same rawbytes variable.

Syntax
CopyRawBytes

[FromRawData ':='] < variable (VAR) of rawbytes> ','

[FromIndex ':='] < expression (IN) of num> ','

[ToRawData ':='] < variable (VAR) of rawbytes> ','

[ToIndex ':='] < expression (IN) of num>

['\'NoOfBytes ':=' < expression (IN) of num>]';'

Related information

SeeFor information about

rawbytes - Raw data on page 1689rawbytes data

RawBytesLen - Get the length of rawbytes data on
page 1390

Get the length of rawbytes data

ClearRawBytes - Clear the contents of rawbytes data
on page 133

Clear the contents of rawbytes data

PackDNHeader - Pack DeviceNet Header into raw-
bytes data on page 503

Pack DeviceNet header into
rawbytes data

PackRawBytes - Pack data into rawbytes data on
page 506

Pack data into rawbytes data

WriteRawBytes - Write rawbytes data on page 1082Write rawbytes data

ReadRawBytes - Read rawbytes data on page 586Read rawbytes data

UnpackRawBytes - Unpack data from rawbytes data
on page 995

Unpack data from rawbytes data

Application manual - Controller software IRC5File and serial channel handling

158 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.56 CopyRawBytes - Copy the contents of rawbytes data
RobotWare - OS
Continued

1.57 CornerPathWarning - Show or hide corner path warnings

Usage
CornerPathWarning is used to activate/deactivate corner path failure warnings
(50024 event log) for all subsequent movement instructions.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction CornerPathWarning.

Example 1
CornerPathWarning TRUE;

Activating corner path warnings.

Example 2
PROC main()

! Deactivate corner path warning on all

! subsequent movement instructions

CornerPathWarning FALSE;

...

! Check if warning is suppressed

IF C_MOTSET.corner_path_warn_suppress=TRUE THEN

CornerPathWarning TRUE;

ENDIF

MyProcess;

Deactivate corner path warnings in start of program. Later on, check if the corner
path warning is suppressed. If it is, activate corner path warning before calling
MyProcess.

Arguments
CornerPathWarning Active

Active

Data type: bool
Specifies if the corner path warnings should be active.

Program execution
The setting applies for the next executed movement instruction, for both the robot
and external axes, until a new CornerPathWarning instruction is executed.
A corner path failure occurs when the robot is executing a corner zone move
instruction and the RAPID program execution does not provide a new move
instruction in time. This forces the system to convert the programmed fly-by point
to a fine point.
If set to true, any succeedingmove instruction with a corner path failure will display
a warning in the event log.
If set to false, corner path failures will still be executed as fine points but the warning
will not be shown in the event log.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 159
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.57 CornerPathWarning - Show or hide corner path warnings

RobotWare - OS

To get the same behavior as in earlier versions of Robotware, where the warning
could be removed in the configuration, the recommendation is to put
CornerPathWarning FALSE; in the event routine executed at program start
(event START).
The default value (report corner path error) is automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Note

The recommendation is to have the corner path warning activated. Turn off the
corner path warning only in situations where a warning sometimes occur. Such
situations can be when waiting for some input (from I/O, cameras, sensors or
other external equipment). A corner path warning can result in bad process
performance and will lead to worse cycle times. All those situations needs to be
analyzed before removing the corner path warning.

Syntax
CornerPathWarning

[Active' :='] < expression (IN) of bool > ';'

Related information

SeeFor information about

MoveL - Moves the robot linearly on page 457Move instruction

Section Interpolation of corner paths in Technical
reference manual - RAPID Overview

Corner path behavior

motsetdata - Motion settings data on page 1660Motion settings

Technical referencemanual - System parametersDefining event routines

160 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.57 CornerPathWarning - Show or hide corner path warnings
RobotWare - OS
Continued

1.58 CorrClear - Removes all correction generators

Descriptions
CorrClear is used to remove all connected correction generators. The instruction
can be used to remove all offsets provided earlier by all correction generators.

Basic examples
The following example illustrates the instruction CorrClear:

Example 1
CorrClear;
The instruction removes all connected correction generators.

Note

An easy way to ensure that all correction generators (with corrections) are
removed at program start, is to run CorrClear in a START event routine.
See Technical reference manual - System parameters, topic Controller.

Syntax
CorrClear ';'

Related information

SeeFor information about

CorrCon - Connects to a correction generator
on page 162

Connects to a correction generator

CorrDiscon - Disconnects from a correction
generator on page 167

Disconnects from a correction generator

CorrWrite - Writes to a correction generator on
page 168

Writes to a correction generator

CorrRead - Reads the current total offsets on
page 1200

Reads the current total offsets

corrdescr - Correction generator descriptor on
page 1606

Correction descriptor

Technical reference manual - RAPID Instructions, Functions and Data types 161
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.58 CorrClear - Removes all correction generators

Path Offset

1.59 CorrCon - Connects to a correction generator

Usage
CorrCon is used to connect to a correction generator.

Basic examples
The following example illustrates the instruction CorrCon:
See also More examples on page 162.

Example1
VAR corrdescr id;

...

CorrCon id;

The correction generator reference corresponds to the variable id reservation.

Arguments
CorrCon Descr

Descr

Data type: corrdescr
Descriptor of the correction generator.

More examples
More examples of the instruction CorrCon are illustrated below.

Path coordinate system
All path corrections (offsets on the path) are added in the path coordinate system.
The path coordinate system is defined as illustrated below:

xx0500002156

Path directionA

ToolB

Path coordinate systemP

Tool coordinate systemT

• Path coordinate axis X is given as the tangent of the path.
• Path coordinate axis Y is derived as the cross product of path coordinate

axis X and tool coordinate axis Z.

Continues on next page
162 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.59 CorrCon - Connects to a correction generator
Path Offset

• Path coordinate axis Z is derived as the cross product of path coordinate
axis X and path coordinate axis Y.

Application example
An example of an application using path corrections is a robot holding a tool with
two sensors mounted on it to detect the vertical and horizontal distances to a work
object. The figure below illustrates a path correction device.

xx0500002155

Sensor for horizontal correctionA

Sensor for vertical correctionB

Path coordinate systemC

ToolT

Program example

Note

hori_sig and vert_sig are analog signals defined in system parameters.

CONST num TARGET_DIST := 5;

CONST num SCALE_FACTOR := 0.5;

VAR intnum intno1;

VAR corrdescr hori_id;

VAR corrdescr vert_id;

VAR pos total_offset;

VAR pos write_offset;

VAR bool conFlag;

PROC PathRoutine()

! Connect to the correction generators for horizontal

! and vertical correction.

CorrCon hori_id;

CorrCon vert_id;

conFlag := TRUE;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 163
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.59 CorrCon - Connects to a correction generator

Path Offset
Continued

! Setup a 5 Hz timer interrupt. The trap routine will read the

! sensor values and compute the path corrections.

CONNECT intno1 WITH ReadSensors;

ITimer\Single, 0.2, intno1;

! Position for start of contour tracking

MoveJ p10, v100, z10, tool1;

! Run MoveL with both vertical and horizontal correction.

MoveL p20, v100, z10, tool1 \Corr;

! Read the total corrections added by all connected

! correction generators.

total_offset := CorrRead();

! Write the total vertical correction on the FlexPendant.

TPWrite "The total vertical correction is:" \Num:=total_offset.z;

! Disconnect the correction generator for vertical correction.

! Horizontal corrections will be unaffected.

CorrDiscon vert_id;

conFlag := FALSE;

! Run MoveL with only horizontal interrupt correction.

MoveL p30, v100, fine, tool1 \Corr;

! Remove all outstanding connected correction generators.

! In this case, the only connected correction generator is

! the one for horizontal correction.

CorrClear;

! Remove the timer interrupt.

IDelete intno1;

ENDPROC

TRAP ReadSensors

VAR num horiSig;

VAR num vertSig;

! Compute the horizontal correction values and execute

! the correction.

horiSig := hori_sig;

write_offset.x := 0;

write_offset.y := (hori_sig - TARGET_DIST)*SCALE_FACTOR;

write_offset.z := 0;

CorrWrite hori_id, write_offset;

IF conFlag THEN

! Compute the vertical correction values and execute

! the correction.

write_offset.x := 0;

write_offset.y := 0;

write_offset.z := (vert_sig - TARGET_DIST)*SCALE_FACTOR;

CorrWrite vert_id, write_offset;

ENDIF

!Setup interrupt again

IDelete intnol;

Continues on next page
164 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.59 CorrCon - Connects to a correction generator
Path Offset
Continued

CONNECT intno1 WITH ReadSensors;

ITimer\single, 0.2, intno1;

ENDTRAP

Program explanation
Two correction generators are connected with the instruction CorrCon. Each
correction generator is referenced by a unique descriptor (hori_id and vert_id)
of the type corrdescr. The two sensors will use one correction generator each.
A timer interrupt is set up to call the trap routine ReadSensors with a frequency
of 5 Hz. The offsets, needed for path correction, are computed in the trap routine
andwritten to the corresponding correction generator (referenced by the descriptors
hori_id and vert_id) by the instruction CorrWrite. All the corrections will have
immediate effect on the path.
The MoveL instruction must be programmed with the switch argument Corr when
path corrections are used. Otherwise, no corrections will be executed.
When the first MoveL instruction is ready, the function CorrRead is used to read
the sum of all the corrections (the total path correction) given by all the connected
correction generators. The result of the total vertical path correction is written to
the FlexPendant with the instruction TPWrite.
CorrDiscon will then disconnect the correction generator for vertical correction
(referenced by the descriptor vert_id). All corrections added by this correction
generator will be removed from the total path correction. The corrections added
by the correction generator for horizontal correction will still be preserved.
Finally, the function CorrClear will remove all remaining connected correction
generators and their previously added corrections. In this case, it is only the
correction generator for horizontal correction that will be removed. The timer
interrupt will also be removed by the instruction IDelete.

The correction generators
The table below illustrates the correction generators.

Path codinate axisZYX

Vertical correction generator with the sum of all its own path corrections300

Horizontal correction generator with the sum of all its own path corrections010

Not connected correction generator---

Not connected correction generator---

Not connected correction generator---

The sum of all corrections done by all connected correction generators310

Limitations
• A maximum number of 5 correction generators can be connected

simultaneously.
• Connected correction generators do not survive a controller restart.
• Sharp corners and backward execution should be avoided when using a

correction generator, since correction is added in the path coordinate system.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 165
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.59 CorrCon - Connects to a correction generator

Path Offset
Continued

Syntax
CorrCon

[Descr ':='] < variable (VAR) of corrdescr > ';'

Related information

SeeFor information about

CorrDiscon - Disconnects from a correction
generator on page 167

Disconnects from a correction generator

CorrWrite - Writes to a correction generator
on page 168

Writes to a correction generator

CorrRead - Reads the current total offsets
on page 1200

Reads the current total offsets

CorrClear - Removes all correction gener-
ators on page 161

Removes all correction generators

corrdescr - Correction generator descriptor
on page 1606

Correction generator descriptor

166 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.59 CorrCon - Connects to a correction generator
Path Offset
Continued

1.60 CorrDiscon - Disconnects from a correction generator

Description
CorrDiscon is used to disconnect from a previously connected correction
generator. The instruction can be used to remove corrections given earlier.

Basic examples
The following example illustrates the instruction CorrDiscon:
See also More examples on page 167.

Example 1
VAR corrdescr id;

...

CorrCon id;

...

CorrDiscon id;

CorrDiscon disconnects from the previously connected correction generator
referenced by the descriptor id.

Arguments
CorrDiscon Descr

Descr

Data type: corrdescr
Descriptor of the correction generator.

More examples
For more examples of the instruction CorrDiscon, see CorrCon - Connects to a
correction generator on page 162.

Syntax
CorrDiscon

[Descr ':='] < variable (VAR) of corrdescr > ';'

Related information

SeeFor information about

CorrCon - Connects to a correction generator on
page 162

Connects to a correction generator

CorrWrite - Writes to a correction generator on
page 168

Writes to a correction generator

CorrRead - Reads the current total offsets on
page 1200

Reads the current total offsets

CorrClear - Removes all correction generators on
page 161

Removes all correction generators

corrdescr - Correction generator descriptor on
page 1606

Correction descriptor

Technical reference manual - RAPID Instructions, Functions and Data types 167
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.60 CorrDiscon - Disconnects from a correction generator

Path Offset

1.61 CorrWrite - Writes to a correction generator

Description
CorrWrite is used to write offsets in the path coordinate system to a correction
generator.

Basic examples
The following example illustrates the instruction CorrWrite:

Example 1
VAR corrdescr id;

VAR pos offset;

...

CorrWrite id, offset;

The current offsets, stored in the variable offset, are written to the correction
generator referenced by the descriptor id.

Arguments
CorrWrite Descr Data

Descr
Data type: corrdescr
Descriptor of the correction generator.

Data
Data type: pos
The offset to be written.

More examples
For more examples of the instruction CorrWrite, see CorrCon - Connects to a
correction generator on page 162.

Limitations
The best performance is achieved on straight paths. As the speed and angles
between consecutive linear paths increase, the deviation from the expected path
will also increase. The same applies to circles with decreasing circle radius.

Syntax
CorrWrite

[Descr ':='] < variable (VAR) of corrdescr > ','

[Data ':='] < expression (IN) of pos > ';'

Related information

SeeFor information about

CorrCon - Connects to a correction generator on
page 162

Connects to a correction generator

CorrDiscon - Disconnects from a correction
generator on page 167

Disconnects from a correction generator

Continues on next page
168 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.61 CorrWrite - Writes to a correction generator
Path Offset

SeeFor information about

CorrRead - Reads the current total offsets on
page 1200

Reads the current total offsets

CorrClear - Removes all correction generators
on page 161

Removes all correction generators

corrdescr - Correction generator descriptor on
page 1606

Correction generator descriptor

Technical reference manual - RAPID Instructions, Functions and Data types 169
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.61 CorrWrite - Writes to a correction generator

Path Offset
Continued

1.62 DeactEventBuffer - Deactivation of event buffer

Description
DeactEventBuffer is used to deactivate the use of the event buffer in current
motion program task.
The instructions DeactEventBuffer and ActEventBuffer should be used when
combining an application using finepoints and a continuous application where
signals needs to be set in advance due to slow process equipment.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction DeactEventBuffer:

Example 1
..

DeactEventBuffer;

! Use an application that use finepoints, such as SpotWelding

..

! Activate the event buffer again

ActEventBuffer;

! Now it is possible to use an application that needs

! to set signals in advance, such as Dispense

..

The DeactEventBuffer deactivates the configured event buffer. When using an
application with finepoints, the start of the robot from the finepoint will be faster.
When activating the the event buffer with ActEventBuffer, it is possible to set
signals in advance for an application with slow process equipment.

Program execution
The deactivation of an event buffer applies for the next executed robot movement
instruction of any type and is valid until a ActEventBuffer instruction is executed.
The instruction will wait until the robot and external axes has reached the stop
point (ToPoint of current move instruction) before the deactivation of the event
buffer. Therefore it is recommended to program themovement instruction preceding
DeactEventBuffer with a fine point.
The default value (ActEventBuffer) is automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Continues on next page
170 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.62 DeactEventBuffer - Deactivation of event buffer
RobotWare - OS

Limitations
DeactEventBuffer cannot be executed in a RAPID routine connected to any of
the following special system events: PowerOn, Stop, QStop, Restart or Step.

Syntax
DeactEventBuffer ';'

Related information

SeeFor information about

ActEventBuffer - Activation of event buffer on
page 24

Activation of event buffer

Technical referencemanual - SystemparametersConfiguration of Event preset time

motsetdata - Motion settings data on page 1660Motion settings data

Technical reference manual - RAPID Instructions, Functions and Data types 171
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.62 DeactEventBuffer - Deactivation of event buffer

RobotWare - OS
Continued

1.63 DeactUnit - Deactivates a mechanical unit

Usage
DeactUnit is used to deactivate a mechanical unit.
It can be used to determine which unit is to be active when, for example, common
drive units are used.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Examples
The following examples illustrate the instruction DeactUnit:

Example 1
DeactUnit orbit_a;

Deactivation of the orbit_a mechanical unit.

Example 2
MoveL p10, v100, fine, tool1;

DeactUnit track_motion;

MoveL p20, v100, z10, tool1;

MoveL p30, v100, fine, tool1;

ActUnit track_motion;

MoveL p40, v100, z10, tool1;

The unit track_motion will be stationary when the robot moves to p20 and p30.
After this, both the robot and track_motion will move to p40.

Example 3
MoveL p10, v100, fine, tool1;

DeactUnit orbit1;

ActUnit orbit2;

MoveL p20, v100, z10, tool1;

The unit orbit1 is deactivated and orbit2 is activated.

Arguments
DeactUnit MechUnit

MechUnit
Mechanical Unit
Data type: mecunit
The name of the mechanical unit that is to be deactivated.

Program execution
When the robot’s and external axes’ actual path is ready, the path on current path
level is cleared and the specified mechanical unit is deactivated. This means that
it will neither be controlled nor monitored until it is re-activated.
If several mechanical units share a common drive unit, deactivation of one of the
mechanical units will also disconnect that unit from the common drive unit.

Continues on next page
172 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.63 DeactUnit - Deactivates a mechanical unit
RobotWare - OS

Limitations
Instruction DeactUnit cannot be used when one of the mechanical unit is in
independent mode.
If this instruction is preceded by a move instruction, that move instruction must be
programmed with a stop point (zonedata fine), not a fly-by point, otherwise restart
after power failure will not be possible.
DeactUnit cannot be executed in a RAPID routine connected to any of following
special system events: PowerOn, Stop, QStop, Restart or Step.
It is possible to use ActUnit - DeactUnit on StorePath level, but the same
mechanical units must be active when doing RestoPath as when StorePathwas
done. If such operation the Path Recorder and the path on the base level will be
intact, but the path on the StorePath level will be cleared.

Syntax
DeactUnit

[MechUnit ':='] < variable (VAR) of mecunit> ';'

Related information

SeeFor information about

ActUnit - Activates a mechanical unit on page26Activating mechanical units

mecunit - Mechanical unit on page 1658Mechanical units

IsMechUnitActive - Is mechanical unit active on
page 1320

Check if a mechanical unit is activated or
not.

PathRecMoveBwd - Move path recorder back-
wards on page514mecunit - Mechanical unit on
page 1658

Path Recorder

Technical reference manual - RAPID Instructions, Functions and Data types 173
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.63 DeactUnit - Deactivates a mechanical unit

RobotWare - OS
Continued

1.64 Decr - Decrements by 1

Usage
Decr is used to subtract 1 from a numeric variable or persistent.

Basic examples
The following example illustrates the instruction Decr:
See also More examples on page 174.

Example 1
Decr reg1;

1 is subtracted from reg1, that is reg1:=reg1-1.

Arguments
Decr Name | Dname

Name

Data type: num
The name of the variable or persistent to be decremented.

Dname

Data type: dnum
The name of the variable or persistent to be decremented.

More examples
More examples of the instruction Decr are illustrated below.

Example 1
VAR num no_of_parts:=0;

...

TPReadNum no_of_parts, "How many parts should be produced? ";

WHILE no_of_parts>0 DO

produce_part;

Decr no_of_parts;

ENDWHILE

The operator is asked to input the number of parts to be produced. The variable
no_of_parts is used to count the number that still have to be produced.

Example 2
VAR dnum no_of_parts:=0;

...

TPReadDnum no_of_parts, "How many parts should be produced? ";

WHILE no_of_parts>0 DO

produce_part;

Decr no_of_parts;

ENDWHILE

The operator is asked to input the number of parts to be produced. The variable
no_of_parts is used to count the number that still have to be produced.

Continues on next page
174 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.64 Decr - Decrements by 1
RobotWare - OS

Syntax
Decr

[Name ':='] < var or pers (INOUT) of num >

| [Dname ':='] < var or pers (INOUT) of dnum >' ;'

Related information

SeeFor information about

Incr - Increments by 1 on page 283Incrementing a variable by 1

Add - Adds a numeric value on page 28Subtracting any value from a variable

":=" - Assigns a value on page 37Changing data using an arbitrary expres-
sion, e.g. multiplication

Technical reference manual - RAPID Instructions, Functions and Data types 175
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.64 Decr - Decrements by 1

RobotWare - OS
Continued

1.65 DropSensor - Drop object on sensor

Usage
DropSensor is used to disconnect from the current object and the program is
ready for the next.
DropSensor is used for sensor synchronization, but not for analog synchronization.

Basic example
MoveL *, v1000, z10, tool, \WObj:=wobj0;

SyncToSensor Ssync1\Off;

MoveL *, v1000, fine, tool, \WObj:=wobj0;

DropSensor Ssync1;

MoveL *, v1000, z10, tool, \WObj:=wobj0;

Arguments
DropSensor MechUnit

MechUnit

Mechanical Unit
Data type: mecunit
Themoving mechanical unit to which the robot position in the instruction is related.

Program execution
Dropping the object means that the encoder unit no longer tracks the object. The
object is removed from the object queue and cannot be recovered.

Limitations
If the instruction is issued while the robot is actively using the sensor object then
the motion stops. The instruction must be issued after the robot has passed the
last synchronized robtarget.
The instruction may be issued only after a non synchronized movement has been
used in the preceding motion instructions with either a fine point or several (>1)
corner zones.

Syntax
DropSensor

[MechUnit ':='] < variable (VAR) of mecunit> ';'

Related information

SeeFor information about

WaitSensor -Wait for connection on sensor on page1041Wait for connection on sensor

SyncToSensor - Sync to sensor on page 844Sync to sensor

Application manual - Controller software IRC5Machine Synchronization

176 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.65 DropSensor - Drop object on sensor
Machine Synchronization

1.66 DropWObj - Drop work object on conveyor

Usage
DropWObj (Drop Work Object) is used to disconnect from the current object and
the program is ready for the next object on the conveyor.

Basic examples
The following example illustrates the instruction DropWObj:

Example 1
MoveL *, v1000, z10, tool, \WObj:=wobj_on_cnv1;

MoveL *, v1000, fine, tool, \WObj:=wobj0;

DropWObj wobj_on_cnv1;

MoveL *, v1000, z10, tool, \WObj:=wobj0;

Arguments
DropWObj WObj

WObj

Work Object
Data type: wobjdata
The moving work object (coordinate system) to which the robot position in the
instruction is related. The mechanical unit conveyor is to be specified by the ufmec
in the work object.

Program execution
Dropping the work object means that the encoder unit no longer tracks the object.
The object is removed from the object queue and cannot be recovered.

Limitations
If the instruction is issued while the robot is actively using the conveyor coordinated
work object, then the motion stops.
The instruction may be issued only after a fixed work object has been used in the
preceding motion instructions with either a fine point or several (>1) corner zones.

Syntax
DropWObj

[WObj ':='] < persistent (PERS) of wobjdata>';'

Related information

SeeFor information about

WaitWObj - Wait for work object on conveyor on
page 1060

Wait for work objects

Application manual - Conveyor trackingConveyor tracking

Technical reference manual - RAPID Instructions, Functions and Data types 177
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.66 DropWObj - Drop work object on conveyor

Conveyor Tracking

1.67 EGMActJoint - Prepare an EGM movement for a joint target

Usage
EGMActJoint activates a specific EGM process and defines static data for the
sensor guidedmovement to a joint target, that is, data that is not changed frequently
between different EGM movements.

Basic examples
VAR egmident egmID1;

PERS pose pose1:=[[0,0,0], [1,0,0,0]];

CONST egm_minmax egm_minmax1:=[-1,1];

EGMGetId egmID1;

EGMSetupAI ROB_1, egmID1, "default" \Pose \aiR1x:=ai_01
\aiR2y:=ai_02 \aiR3z:=ai_03 \aiR4rx:=ai_04 \aiR5ry:=ai_05
\aiR6rz:=ai_06;

EGMActJoint egmID1 \J1:=egm_minmax1 \J3:=egm_minmax1
\J4:=egm_minmax1;

Arguments
EGMActJoint EGMid [\Tool] [\WObj] [\TLoad] [\J1] [\J2] [\J3] [\J4]

[\J5] [\J6] [\J7] [\LpFilter] [\SampleRate] [\MaxPosDeviation]
[\MaxSpeedDeviation]

EGMid

Data type: egmident
EGM identity.

[\Tool]

Data type: tooldata
The tool in use for movements performed with the instruction EGMRunJoint.
The argument [\Tool] is optional. The default value when the argument is omitted
is tool0.

[\Wobj]

Data type: wobjdata
Thework object in use formovements performedwith the instruction EGMRunJoint.
The argument [\Wobj] is optional. The default value when the argument is omitted
is wobj0.

[\TLoad]

Total load
Data type: loaddata
The load in use for movements performed with the instruction EGMRunJoint.
The argument [\TLoad] is optional. The default value when the argument is
omitted is load0.

Continues on next page
178 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.67 EGMActJoint - Prepare an EGM movement for a joint target
Externally Guided Motion

The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

[\J1] [\J2] [\J3] [\J4] [\J5] [\J6] [\J7]

Data type: egm_minmax
Convergence criteria for joint 1 to 6 in degrees for 6-axis robots, and joint 1 to 7
in degrees for 7-axis robots. The default value is ±0.5 degrees.
The convergence criteria data is used to decide if the robot has reached the ordered
joint positions. If the difference between the ordered joint position and the actual
joint position is within the range of egm_minmax.min and egm_minmax.max, the
joint is regarded to have reached its ordered position. If no convergence criteria
is specified for a joint, that was selected in EGMRunJoint, the default value is
used.
As soon as all joints that were specified in EGMRunJoint have reached their ordered
positions, the robot itself has reached its ordered position and RAPID execution
continues with the next RAPID instruction.

[\LpFilter]

Data type: num
Low pass filter bandwidth, in Hertz (Hz), used to filter sensor noise.

[\SampleRate]

Data type: num
Input data reading sample rate in multiples of 4 milliseconds. Valid values are 4,
8, 12, 16, etc.
The default value is 4 milliseconds.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 179
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.67 EGMActJoint - Prepare an EGM movement for a joint target

Externally Guided Motion
Continued

[\MaxPosDeviation]

Data type: num
Maximum joint deviation from the programmed position in degrees, i.e. the fine
point the EGM movement started at. The same value is used for all joints.
The default value is 1000 degrees.

[\MaxSpeedDeviation]

Data type: num
Maximum admitted joint speed change in degrees/second, i.e. this is a factor to
trim acceleration/deceleration with.
The default value is 1.0 degrees/second.

Limitations
• If EGMActJoint is executed several times with the same EGMid, the latest

activation data is used for EGMRunJoint instructions that follow until a new
EGMActJoint is run.

• EGMActJoint can only be used in RAPID motion tasks.

Syntax
EGMActJoint

[EGMid ':='] <variable (VAR) of egmident>

['\'Tool ':=' <persistent (PERS) of tooldata>]

['\'Wobj ':=' <persistent (PERS) of wobjdata>

['\'TLoad ':=' <persistent (PERS) of loaddata>]

['\'J1 ':=' <expression (IN) of egm_minmax>]

['\'J2 ':=' <expression (IN) of egm_minmax>]

['\'J3 ':=' <expression (IN) of egm_minmax>]

['\'J4 ':=' <expression (IN) of egm_minmax>]

['\'J5 ':=' <expression (IN) of egm_minmax>]

['\'J6 ':=' <expression (IN) of egm_minmax>]

['\'J7 ':=' <expression (IN) of egm_minmax>]

['\'LpFilter ':=' <expression (IN) of num>]

['\'SampleRate ':=' <expression (IN) of num>]

['\'MaxPosDeviation ':=' <expression (IN) of num>]

['\'MaxSpeedDeviation ':=' <expression (IN) of num>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

egm_minmax - Convergence criteria for EGM on
page 1616

Data type egm_minmax

EGMRunJoint - Perform an EGM movement with a
joint target on page 196

Instruction EGMRunJoint

180 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.67 EGMActJoint - Prepare an EGM movement for a joint target
Externally Guided Motion
Continued

1.68 EGMActMove - Prepare an EGM movement with path correction

Usage
EGMActMove is used to activate a specific EGM process and defines static data
for the movement with path correction, i.e. data that is not changed frequently
between different EGM path correction movements.

Basic examples
The following example illustrates the instruction EGMActMove.

Example 1
VAR egmident EGMid1;

PERS tooldata tLaser := [TRUE, [[148,50,326],
[0.3902618,-0.589657,-0.589656,0.3902630]],
[1,[-0.92,0,-0.39], [1,0,0,0], 0,0,0]];

EGMGetId EGMid1;

EGMSetupLTAPP ROB_1, EGMid1, "pathCorr", "OptSim", 1\LATR;

EGMActMove EGMid1, tLaser.tframe\SampleRate:=48;

This program registers an EGM process, and sets up a sensor that uses the
communication protocol LTAPP and is of the type look-ahead as data source
(sensor). The sensor shall use the joint type definition number 1 for the tracking.
The rate at which the controller will access the device and the sensor frame of the
device are also setup.

Arguments
EGMActMove EGMid, SensorFrame [\SampleRate]

EGMid

Data type: egmident
EGM identity.

SensorFrame

Data type: pose
Sensor frame.

[\SampleRate]

Data type: num
Input data reading sample rate in multiples of 24 ms. Valid values: 24, 48, 72,
etcetera.

Program execution
The sensor frame and the sensor sampling rate are connected to an EGM identity
until they are either reset with EGMReset or changed by another EGMActMove
instruction.

Syntax
EGMActMove

[EGMid ':='] <variable (VAR) of egmident> ','

[SensorFrame ':='] < expression (IN) of pose>

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 181
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.68 EGMActMove - Prepare an EGM movement with path correction

Externally Guided Motion

['\'SampleRate ':=' <expression (IN) of num>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

182 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.68 EGMActMove - Prepare an EGM movement with path correction
Externally Guided Motion
Continued

1.69 EGMActPose - Prepare an EGM movement for a pose target

Usage
EGMActPose activates a specific EGM process and defines static data for the
sensor guided movement to a pose target, that is, data that is not changed
frequently between different EGM movements.

Basic examples
VAR egmident egmID1;

PERS pose pose1:=[[0,0,0], [1,0,0,0]];

CONST egm_minmax egm_minmax_lin:=[-0.1,0.1];

CONST egm_minmax egm_minmax_rot:=[-0.1,0.2];

CONST pose posecor:=[[1200,400,900], [0,0,1,0]];

CONST pose posesens:=[[12.3313,-0.108707,416.142],
[0.903899,-0.00320735,0.427666,0.00765917]];

EGMGetId egmID1;

EGMSetupAI ROB_1, egmID1, "default" \Pose \aiR1x:=ai_01
\aiR2y:=ai_02 \aiR3z:=ai_03 \aiR4rx:=ai_04 \aiR5ry:=ai_05
\aiR6rz:=ai_06;

EGMActPose egmID1 \Tool:=tool0 \WObj:=wobj0, posecor,
EGM_FRAME_WOBJ, posesens, EGM_FRAME_TOOL \x:=egm_minmax_lin
\y:=egm_minmax_lin \z:=egm_minmax_lin \rx:=egm_minmax_rot
\ry:=egm_minmax_rot \rz:=egm_minmax_rot \LpFilter:=20;

Arguments
EGMActPose EGMid [\Tool] [\WObj] [\TLoad], CorrFrame, CorrFrType,

SensorFrame, SensorFrType [\x] [\y] [\z] [\rx] [\ry] [\rz]
[\LpFilter] [\SampleRate] [\MaxPosDeviation]
[\MaxSpeedDeviation]

EGMid

Data type: egmident
EGM identity.

[\Tool]

Data type: tooldata
The tool in use for movements performed with the instruction EGMRunPose.
The argument [\Tool] is optional. The default value when the argument is omitted
is tool0.

[\Wobj]

Data type: wobjdata
The work object in use for movements performed with the instruction EGMRunPose.
The argument [\Wobj] is optional. The default value when the argument is omitted
is wobj0.

[\TLoad]

Total load

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 183
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.69 EGMActPose - Prepare an EGM movement for a pose target

Externally Guided Motion

Data type: loaddata
The load in use for movements performed with the instruction EGMRunPose.
The argument [\TLoad] is optional. The default value when the argument is
omitted is load0.
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

CorrFrame

Data type: pose
Correction frame.

CorrFrType

Data type: egmframetype
Frame type of the correction frame.

SensorFrame

Data type: pose
Sensor frame.

SensFrType

Data type: egmframetype
Frame type of the sensor frame.

[\x] [\y] [\z]

Data type: egm_minmax
Convergence criteria for x, y, and z in millimeters. The default value is ±1.0
millimeters.

Continues on next page
184 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.69 EGMActPose - Prepare an EGM movement for a pose target
Externally Guided Motion
Continued

The convergence criteria data is used to decide if the robot has reached the ordered
position in the specified axis direction. If the difference between the ordered position
and the actual position is within the range of egm_minmax.min and
egm_minmax.max, the robot is regarded to have reached its ordered position. If
no convergence criteria is specified for an axis direction, that was selected in
EGMRunPose, the default value is used.
As soon as all axes that were specified in EGMRunPose have reached their ordered
positions, the robot itself has reached its ordered position and RAPID execution
continues with the next RAPID instruction.

[\rx] [\ry] [\rz]

Data type: egm_minmax
Convergence criteria for rotation x, y, and z in degrees. The default value is ±0.5
degrees.
The convergence criteria data is used to decide if the robot has reached the ordered
orientation along the specified axis. If the difference between the ordered orientation
and the actual orientation is within the range of egm_minmax.min and
egm_minmax.max, the robot is regarded to have reached its ordered orientation.
If no convergence criteria is specified for an axis orientation, that was selected in
EGMRunPose, the default value is used.
As soon as all axes orientations that were specified in EGMRunPose have reached
their ordered orientation, the robot itself has reached its ordered position and
RAPID execution continues with the next RAPID instruction.

[\LpFilter]

Data type: num
Low pass filter bandwidth, in Hertz (Hz), used to filter sensor noise.
The default value is taken from the configuration of the EGMSetupXX instruction.

[\SampleRate]

Data type: num
Input data reading sample rate in multiples of 4 milliseconds. Valid values are 4,
8, 12, 16, etc.
The default value is 4 milliseconds.

[\MaxPosDeviation]

Data type: num
Maximum joint deviation from the programmed position in degrees, i.e. the fine
point the EGM movement started at. The same value is used for all joints.
The default value is 1000 degrees.

[\MaxSpeedDeviation]

Data type: num
Maximum admitted joint speed change in degrees/second, i.e. this is a factor to
trim acceleration/deceleration with.
The default value is 1.0 degrees/second.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 185
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.69 EGMActPose - Prepare an EGM movement for a pose target

Externally Guided Motion
Continued

Limitations
• If EGMActPose is executed several times with the same EGMid, the latest

activation data is used for EGMRunPose instructions that follow until a new
EGMActPose is run.

• EGMActPose can only be used in RAPID motion tasks.

Syntax
EGMActPose

[EGMid ':='] <variable (VAR) of egmident>

['\'Tool ':=' <persistent (PERS) of tooldata>]

['\'Wobj ':=' <persistent (PERS) of wobjdata>]

['\'TLoad ':=' <persistent (PERS) of loaddata>] ','

[CorrFrame ':='] < expression (IN) of pose> ','

[CorrFrType ':='] < expression (IN) of egmframetype> ','

[SensorFrame ':='] < expression (IN) of pose> ','

[SensorFrType ':='] < expression (IN) of egmframetype>

['\'x ':=' <expression (IN) of egm_minmax>]

['\'y ':=' <expression (IN) of egm_minmax>]

['\'z ':=' <expression (IN) of egm_minmax>]

['\'rx ':=' <expression (IN) of egm_minmax>]

['\'ry ':=' <expression (IN) of egm_minmax>]

['\'rz ':=' <expression (IN) of egm_minmax>]

['\'LpFilter ':=' <expression (IN) of num>]

['\'SampleRate ':=' <expression (IN) of num>]

['\'MaxPosDeviation ':=' <expression (IN) of num>]

['\'MaxSpeedDeviation ':=' <expression (IN) of num>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

egm_minmax - Convergence criteria for EGM on
page 1616

Data type egm_minmax

EGMRunPose - Perform an EGMmovement with a
pose target on page 199

Instruction EGMRunPose

186 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.69 EGMActPose - Prepare an EGM movement for a pose target
Externally Guided Motion
Continued

1.70 EGMGetId - Gets an EGM identity

Usage
EGMGetId is used to reserve an EGM identity (EGMid). That identity is then used
in all other EGMRAPID instructions and functions to identify a certain EGM process
connected to the RAPID motion task from which it is used.
An egmident is identified by its name, that is, a second or third call of EGMGetId
with the same egmident will neither reserve a new EGM process nor change its
content.
To release an egmident for use by other EGM processes, the RAPID instruction
EGMReset has to be used.
It is possible to use maximum 4 different EGM identities at the same time.

Basic examples
VAR egmident egmID1;

EGMGetId egmID1;

Arguments
EGMGetId EGMid

EGMid

Data type: egmident
EGM identity.

Limitations
• EGMGetId can only be used in RAPID motion tasks.

Syntax
EGMGetId

[EGMid ':='] <variable (VAR) of egmident> ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

EGMReset - Reset an EGM process on page 195Instruction EGMReset

Technical reference manual - RAPID Instructions, Functions and Data types 187
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.70 EGMGetId - Gets an EGM identity

Externally Guided Motion

1.71 EGMMoveC - Circular EGM movement with path correction

Usage
EGMMoveC is used to move the tool center point (TCP) circularly to a given
destination with path correction. During the movement the orientation normally
remains unchanged relative to the circle.

Basic examples
The following example illustrates the instruction EGMMoveC.

Example 1
VAR egmident EGMid1;

PERS tooldata tReg := [TRUE, [[148,0,326],
[0.8339007,0,0.551914,0]], [1,[0,0,100], [1,0,0,0], 0,0,0]];

PERS tooldata tLaser := [TRUE, [[148,50,326],
[0.3902618,-0.589657,-0.589656,0.3902630]],
[1,[-0.92,0,-0.39], [1,0,0,0], 0,0,0]];

EGMGetId EGMid1;

EGMSetupLTAPP ROB_1, EGMid1, "pathCorr", "OptSim", 1\LATR;

EGMActMove EGMid1, tLaser.tframe\SampleRate:=50;

MoveL p6, v10, fine, tReg\WObj:=wobj0;

EGMMoveL EGMid1, p12, v10, z5, tReg\WObj:=wobj0;

EGMMoveL EGMid1, p7, v10, z5, tReg\WObj:=wobj0;

EGMMoveC EGMid1, p13, p14, v10, z5, tReg\WObj:=wobj0;

EGMMoveL EGMid1, p15, v10, fine, tReg\WObj:=wobj0;

MoveL p8, v1000, z10, tReg\WObj:=wobj0;

EGMReset EGMid1;

This program registers an EGM process, and sets up a sensor that uses the
communication protocol LTAPP and is of the type look-ahead as data source
(sensor). The sensor shall use the joint type definition number 1 for the tracking.
The rate at which the controller will access the device and the sensor frame of the
device are also setup.
The robot is moved to the start point of the tracking path with a MoveL instruction.
The EGMMove instructions perform the robot movement with corrections from the
sensor.
Finally the robot is moved to a departure position, and the EGM identity is released.

Arguments
EGMMoveC EGMid, CirPoint, ToPoint, Speed, Zone, Tool, [\Wobj]

[\TLoad] [\NoCorr]

EGMid

Data type: egmident
EGM identity.

CirPoint

Data type:robtarget
The circle point of the robot. The circle point is a position on the circle between
the start point and the destination point. To obtain the best accuracy it should be

Continues on next page
188 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.71 EGMMoveC - Circular EGM movement with path correction
Externally Guided Motion

placed about halfway between the start and destination points. If it is placed too
close to the start or destination point, the robot may give a warning. The circle
point is defined as a named position or stored directly in the instruction (marked
with an * in the instruction). The position of the external axes are not used.

ToPoint

Data type:robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation, and external axes.

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (object coordinate system) to which the robot position in the
instruction is related.
This argument can be omitted and if it is then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used this argument must be specified in order for a circle relative to the
work object to be executed.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 189
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.71 EGMMoveC - Circular EGM movement with path correction

Externally Guided Motion
Continued

The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

[\NoCorr]

Data type: switch
Path correction is switched off.

Program execution
EGMMoveCmoves the robot along a programmed circular path with superimposed
corrections from a sensor. During themovement the instruction requests correction
data from the sensor at the rate set up with EGMActMove. If the optional argument
\NoCorr is present, no correction is added to the programmed path.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurred in the communication with the UdpUc
device.

ERR_UDPUC_COMM

Limitations
• EGMMoveC can only be used in RAPID motion tasks.

Syntax
EGMMoveC

[GMid ':='] <variable (VAR) of egmident> ','

[CirPoint ':='] < expression (IN) of robtarget> ','

[ToPoint ':='] < expression (IN) of robtarget> ','

[Speed ':='] < expression (IN) of speeddata> ','

[Zone ':='] < expression (IN) of zonedata> ','

[Tool ':='] < persistent (PERS) of tooldata>

['\'WObj ':=' < persistent (PERS) of wobjdata>]

['\'TLoad ':=' < persistent (PERS) of loaddata>]

['\'NoCorr] ';'

Continues on next page
190 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.71 EGMMoveC - Circular EGM movement with path correction
Externally Guided Motion
Continued

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

Technical reference manual - RAPID Instructions, Functions and Data types 191
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.71 EGMMoveC - Circular EGM movement with path correction

Externally Guided Motion
Continued

1.72 EGMMoveL - Linear EGM movement with path correction

Usage
EGMMoveL is used tomove the tool center point (TCP) linearly to a given destination
with path correction. When the TCP is to remain stationary then this instruction
can also be used to reorient the tool.

Basic examples
The following example illustrates the instruction EGMMoveL.

Example 1
VAR egmident EGMid1;

PERS tooldata tReg := [TRUE, [[148,0,326],
[0.8339007,0,0.551914,0]], [1,[0,0,100], [1,0,0,0], 0,0,0]];

PERS tooldata tLaser := [TRUE, [[148,50,326],
[0.3902618,-0.589657,-0.589656,0.3902630]],
[1,[-0.92,0,-0.39], [1,0,0,0], 0,0,0]];

EGMGetId EGMid1;

EGMSetupLTAPP ROB_1, EGMid1, "pathCorr", "OptSim", 1\LATR;

EGMActMove EGMid1, tLaser.tframe\SampleRate:=50;

MoveL p6, v10, fine, tReg\WObj:=wobj0;

EGMMoveL EGMid1, p12, v10, z5, tReg\WObj:=wobj0;

EGMMoveL EGMid1, p7, v10, z5, tReg\WObj:=wobj0;

EGMMoveC EGMid1, p13, p14, v10, z5, tReg\WObj:=wobj0;

EGMMoveL EGMid1, p15, v10, fine, tReg\WObj:=wobj0;

MoveL p8, v1000, z10, tReg\WObj:=wobj0;

EGMReset EGMid1;

This program registers an EGM process, and sets up a sensor that uses the
communication protocol LTAPP and is of the type look-ahead as data source
(sensor). The sensor shall use the joint type definition number 1 for the tracking.
The rate at which the controller will access the device and the sensor frame of the
device are also setup.
The robot is moved to the start point of the tracking path with a MoveL instruction.
The EGMMove instructions perform the robot movement with corrections from the
sensor.
Finally the robot is moved to a departure position, and the EGM identity is released.

Arguments
EGMMoveL EGMid, ToPoint, Speed, Zone, Tool, [\Wobj] [\TLoad]

[\NoCorr]

EGMid

Data type: egmident
EGM identity.

ToPoint

Data type:robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Continues on next page
192 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.72 EGMMoveL - Linear EGM movement with path correction
Externally Guided Motion

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation, and external axes.

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (object coordinate system) to which the robot position in the
instruction is related.
This argument can be omitted and if it is then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used this argument must be specified in order for a circle relative to the
work object to be executed.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 193
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.72 EGMMoveL - Linear EGM movement with path correction

Externally Guided Motion
Continued

input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

[\NoCorr]

Data type: switch
Path correction is switched off.

Program execution
EGMMoveL moves the robot along a programmed linear path with superimposed
corrections from a sensor. During themovement the instruction requests correction
data from the sensor at the rate set up with EGMActMove. If the optional argument
\NoCorr is present, no correction is added to the programmed path.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurred in the communication with the UdpUc
device.

ERR_UDPUC_COMM

Limitations
• EGMMoveL can only be used in RAPID motion tasks.

Syntax
EGMMoveL

[EGMid ':='] <variable (VAR) of egmident> ','

[ToPoint ':='] < expression (IN) of robtarget> ','

[Speed ':='] < expression (IN) of speeddata> ','

[Zone ':='] < expression (IN) of zonedata> ','

[Tool ':='] < persistent (PERS) of tooldata>

['\'WObj ':=' < persistent (PERS) of wobjdata>]

['\'TLoad ':=' < persistent (PERS) of loaddata>]

['\'NoCorr] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

194 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.72 EGMMoveL - Linear EGM movement with path correction
Externally Guided Motion
Continued

1.73 EGMReset - Reset an EGM process

Usage
EGMReset resets a specific EGM process (EGMid), that is, the reservation is
canceled.

Basic examples
VAR egmident egmID1;

PERS pose pose1:=[[0,0,0], [1,0,0,0]];

CONST egm_minmax egm_minmax_lin:=[-0.1,0.1];

CONST egm_minmax egm_minmax_rot:=[-0.1,0.2];

CONST pose posecor:=[[1200,400,900], [0,0,1,0]];

CONST pose posesens:=[[12.3313,-0.108707,416.142],
[0.903899,-0.00320735,0.427666,0.00765917]];

EGMGetId egmID1;

EGMSetupAI ROB_1, egmID1, "default" \Pose \aiR1x:=ai_01
\aiR2y:=ai_02 \aiR3z:=ai_03 \aiR4rx:=ai_04 \aiR5ry:=ai_05
\aiR6rz:=ai_06;

EGMActPose egmID1 \Tool:=tool0 \WObj:=wobj0, posecor,
EGM_FRAME_WOBJ, posesens, EGM_FRAME_TOOL \x:=egm_minmax_lin
\y:=egm_minmax_lin \z:=egm_minmax_lin \rx:=egm_minmax_rot
\ry:=egm_minmax_rot \rz:=egm_minmax_rot \LpFilter:=20;

EGMRunPose egmID1, EGM_STOP_HOLD \x \y \z \rx \ry \rz
\RampInTime:=0.05;

EGMReset egmID1;

Arguments
EGMReset EGMid

EGMid

Data type: egmident
EGM identity.

Syntax
EGMReset

[EGMid ':='] <variable (VAR) of egmident>';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

Technical reference manual - RAPID Instructions, Functions and Data types 195
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.73 EGMReset - Reset an EGM process

Externally Guided Motion

1.74 EGMRunJoint - Perform an EGM movement with a joint target

Usage
EGMRunJoint performs a sensor guided movement to a joint target from a fine
point for a specific EGM process (EGMid) and defines which joints will be moved.

Basic examples
VAR egmident egmID1;

PERS pose pose1:=[[0,0,0],[1,0,0,0]];

CONST egm_minmax egm_minmax1:=[-1,1];

EGMGetId egmID1;

EGMSetupAI ROB_1, egmID1, "default" \Joint \aiR1x:=ai_01
\aiR2y:=ai_02 \aiR3z:=ai_03 \aiR4rx:=ai_04 \aiR5ry:=ai_05
\aiR6rz:=ai_06;

EGMActJoint egmID1, \J1:=egm_minmax1 \J3:=egm_minmax1
\J4:=egm_minmax1;

EGMRunJoint egmID1, EGM_STOP_HOLD \J1 \J3 \RampInTime:=0.05;

Arguments
EGMRunJoint EGMid, Mode [\NoWaitCond] [\J1] [\J2] [\J3] [\J4] [\J5]

[\J6] [\J7] [\CondTime] [\RampInTime] [\RampOutTime]
[\PosCorrGain]

EGMid

Data type: egmident
EGM identity.

Mode

Data type: egmstopmode
Defines how the movement is ended (EGM_STOP_HOLD, EGM_STOP_RAMP_DOWN)

[\NoWaitCond]

Data type: switch
If this optional argument is used, EGMRunJoint will release the RAPID program
pointer before the movement is completed. It is then mandatory to use the RAPID
instruction EGMWaitCond to complete the EGM Position Guidance movement.
Between EGMRunJoint and EGMWaitCond no other movement instruction is
allowed.

[\J1] [\J2] [\J3] [\J4] [\J5] [\J6] [\J7]

Data type: switch
Move joint 1 to 6 for 6-axis robots, and joint 1 to 7 for 7-axis robots.

[\CondTime]

Data type: num
The time in seconds that the convergence criteria defined in EGMActJoint has to
be fulfilled before the target point is considered to be reached and EGMRunJoint
releases RAPID execution to continue to the next instruction.

Continues on next page
196 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.74 EGMRunJoint - Perform an EGM movement with a joint target
Externally Guided Motion

The default value is 1 s.

[\RampInTime]

Data type: num
Defines in seconds how fast the movement is started.

[\RampOutTime]

Data type: num
Defines in seconds how fast a ramp down of EGM will be performed.
This parameter has no meaning if the parameter Mode is set to EGM_STOP_HOLD.

[\PosCorrGain]

Data type: num
Position correction gain. A value between 0 and 1, default 1.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurred in the communication with the UdpUc
device.

ERR_UDPUC_COMM

Limitations
• Before the first use of EGMRunJoint the robot must have been moved since

the controller was started by the execution of a Move instruction from RAPID.
• The starting point for an EGMRunJoint movement has to be a fine point.
• EGMRunJoint can only be used in RAPID motion tasks.
• If the instruction EGMActPose was executed instead of EGMActJoint, the

following error will occur: 41826 EGM mode mismatch.
• If none of the switches \J1 to \J7 are specified, no movement is performed

and RAPID execution continues to the next RAPID instruction.

Syntax
EGMRunJoint

[EGMid ':='] <variable (VAR) of egmident> ','

[Mode ':='] < expression (IN) of egmstopmode>

['\'NoWaitCond]

['\'J1]

['\'J2]

['\'J3]

['\'J4]

['\'J5]

['\'J6]

['\'J7]

['\'CondTime ':=' <expression (IN) of num>]

['\'RampInTime ':=' <expression (IN) of num>]

['\'RampOutTime ':=' <expression (IN) of num>]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 197
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.74 EGMRunJoint - Perform an EGM movement with a joint target

Externally Guided Motion
Continued

['\'PosCorrGain ':=' <expression (IN) of num>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

egmstopmode - Defines stop modes for EGM on
page 1618

Data type egmstopmode

198 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.74 EGMRunJoint - Perform an EGM movement with a joint target
Externally Guided Motion
Continued

1.75 EGMRunPose - Perform an EGM movement with a pose target

Usage
EGMRunPose performs a sensor guided movement to a pose target from a fine
point for a specific EGM process (EGMid) and defines which directions and
orientations may be changed.

Basic examples
VAR egmident egmID1;

PERS pose pose1:=[[0,0,0],[1,0,0,0]];

CONST egm_minmax egm_minmax_lin:=[-0.1,0.1];

CONST egm_minmax egm_minmax_rot:=[-0.1,0.2];

CONST pose posecor:=[[1200,400,900],[0,0,1,0]];

CONST pose posesens:=[[12.3313,-0.108707,416.142],
[0.903899,-0.00320735,0.427666,0.00765917]];

EGMGetId egmID1;

EGMSetupAI ROB_1, egmID1, "default" \Pose \aiR1x:=ai_01
\aiR2y:=ai_02 \aiR3z:=ai_03 \aiR4rx:=ai_04 \aiR5ry:=ai_05
\aiR6rz:=ai_06;

EGMActPose egmID1 \Tool:=tool0 \WObj:=wobj0, posecor,
EGM_FRAME_WOBJ, posesens, EGM_FRAME_TOOL \x:=egm_minmax_lin
\y:=egm_minmax_lin \z:=egm_minmax_lin \rx:=egm_minmax_rot
\ry:=egm_minmax_rot \rz:=egm_minmax_rot \LpFilter:=20;

EGMRunPose egmID1, EGM_STOP_HOLD \x \y \z \rx \ry \rz
\RampInTime:=0.05;

Arguments
EGMRunPose EGMid, Mode [\NoWaitCond] [\x] [\y] [\z] [\rx] [\ry]

[\rz] [\CondTime] [\RampInTime] [\RampOutTime] [\Offset]
[\PosCorrGain]

EGMid

Data type: egmident
EGM identity.

Mode

Data type: egmstopmode
Defines how the movement is ended (EGM_STOP_HOLD, EGM_STOP_RAMP_DOWN)

[\NoWaitCond]

Data type: switch
If this optional argument is used, EGMRunPose will release the RAPID program
pointer before the movement is completed. It is then mandatory to use the RAPID
instruction EGMWaitCond to complete the EGM Position Guidance movement.
Between EGMRunPose and EGMWaitCond no othermovement instruction is allowed.

[\x] [\y] [\z]

Data type: switch
Movement in x, y, and z direction.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 199
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.75 EGMRunPose - Perform an EGM movement with a pose target

Externally Guided Motion

[\rx] [\ry] [\rz]

Data type: switch
Reorientation around x, y, and z axes.

[\CondTime]

Data type: num
The time in seconds that the convergence criteria defined in EGMActPose has to
be fulfilled before the target point is considered to be reached and EGMRunPose
releases RAPID execution to continue to the next instruction.
The default value is 1 s.

[\RampInTime]

Data type: num
Defines in seconds how fast the movement is started.

[\RampOutTime]

Data type: num
Defines in seconds how fast a ramp down of EGM will be performed.
This parameter has no meaning if the parameter Mode is set to EGM_STOP_HOLD.

[\Offset]

Data type: pose
Possibility to define a static offset on top of the value given by the sensor.

[\PosCorrGain]

Data type: num
Position correction gain. A value between 0 and 1, default 1.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurred in the communication with the UdpUc
device.

ERR_UDPUC_COMM

Limitations
• Before the first use of EGMRunPose the robot must have been moved since

the controller was started by the execution of a Move instruction from RAPID.
• The starting point for an EGMRunPose movement has to be a fine point.
• EGMRunPose can only be used in RAPID motion tasks.
• If the instruction EGMActJoint was executed instead of EGMRunPose, the

following error will occur: 41826 EGM mode mismatch.
• If none of the switches \x to \rz are specified, no movement is performed

and RAPID execution continues to the next RAPID instruction.

Continues on next page
200 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.75 EGMRunPose - Perform an EGM movement with a pose target
Externally Guided Motion
Continued

Syntax
EGMRunPose

[EGMid ':='] <variable (VAR) of egmident>','

[Mode ':='] < expression (IN) of egmstopmode>

['\'NoWaitCond]

['\'x]

['\'y]

['\'z]

['\'rx]

['\'ry]

['\'rz]

['\'CondTime ':=' <expression (IN) of num>]

['\'RampInTime ':=' <expression (IN) of num>]

['\'RampOutTime ':=' <expression (IN) of num>]

['\'Offset ':=' <expression (IN) of pose>]

['\'PosCorrGain ':=' <expression (IN) of num>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

egmstopmode - Defines stop modes for EGM on
page 1618

Data type egmstopmode

Technical reference manual - RAPID Instructions, Functions and Data types 201
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.75 EGMRunPose - Perform an EGM movement with a pose target

Externally Guided Motion
Continued

1.76 EGMSetupAI - Setup analog input signals for EGM

Usage
EGMSetupAI is used to set up analog input signals for a specific EGM process
(EGMid), as the source for position destination values to which the robot, and up
to 6 additional axis, is to be guided.
EGM joint mode is the only EGM mode that supports 7-axis robots. For 7-axis
robots, the first additional axis input provides the position for the additional robot
axis.

Basic examples
VAR egmident egmID1;

EGMGetId egmID1;

EGMSetupAI ROB_1, egmID1, "default" \Pose \aiR1x:=ai_01
\aiR2y:=ai_02 \aiR3z:=ai_03 \aiR4rx:=ai_04 \aiR5ry:=ai_05
\aiR6rz:=ai_06;

Arguments
EGMSetupAI MecUnit, EGMid, ExtConfigName [\Joint] | [\Pose] |

[\PathCorr] [\APTR] | [\LATR] [\aiR1x] [\aiR2y] [\aiR3z]
[\aiR4rx] [\aiR5ry] [\aiR6rz] [\aiE1] [\aiE2] [\aiE3] [\aiE4]
[\aiE5] [\aiE6]

MecUnit

Data type: mecunit
Mechanical unit name.

EGMid

Data type: egmident
EGM identity.

ExtConfigName

Data type: string
The name of the external motion interface data as defined in the system parameters.
For more information see Technical reference manual - System parameters, type
External Motion Interface Data, topic Motion.

[\Joint]

Data type: switch
Selects joint movement for position guidance.
At least one of the switches \Joint, \Pose, or \PathCorr has to be present.

[\Pose]

Data type: switch
Selects pose movement for position guidance.
At least one of the switches \Joint, \Pose, or \PathCorr has to be present.

Continues on next page
202 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.76 EGMSetupAI - Setup analog input signals for EGM
Externally Guided Motion

[\PathCorr]

Data type: switch
Selects path correction.
At least one of the switches \Joint, \Pose, or \PathCorr has to be present.

[\APTR]

Data type: switch
Setup an at-point-tracker type of sensor for path correction. For exampleWeldGuide
or AWC.
Either \APTR or \LATR has to be present.

[\LATR]

Data type: switch
Setup an Look-ahead-tracker type of sensor for path correction. For example Laser
Tracker.
Either \APTR or \LATR has to be present.

[\aiR1x] [\aiR2y] [\aiR3z]

Data type: signalai
Specifies the signal that provides the x, y, and z value in millimeters for pose
movement.
Specifies the signal that provides the robot joint 1 to 3 angle in degrees for joint
movement.

[\aiR4rx] [\aiR5ry] [\aiR6rz]

Data type: signalai
Specifies the signal that provides the rotation x, y, and z value of the robot in
degrees for pose movement.
Specifies the signal that provides the robot joint 4 to 6 angle in degrees for joint
movement.

[\aiE1] [\aiE2] [\aiE3] [\aiE4] [\aiE5] [\aiE6]

Data type: signalai
Specifies the signal that provides the position of the additional axis joint 1 to 6.
When using EGM joint mode with a 7-axis robot, then \aiE1 provides the position
for the additional robot axis.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 203
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.76 EGMSetupAI - Setup analog input signals for EGM

Externally Guided Motion
Continued

Cause of errorName

The I/O signal cannot be accessed (only valid for ICI field
bus).

ERR_SIG_NOT_VALID

Limitations
• EGMSetupAI can only be used in RAPID motion tasks.
• The mechanical unit has to be a TCP robot.
• At least one signal has to be specified, otherwise an error is sent and RAPID

execution is stopped.

Syntax
EGMSetupAI

[MecUnit ':='] <variable (VAR) of mecunit> ','

[EGMid ':='] <variable (VAR) of egmident> ','

[ExtConfigName ':='] <expression (IN) of string>

[['\'Joint] | ['\'Pose] | ['\'PathCorr]]

[['\'APTR] | ['\'LAT]] ','

['\'aiR1x ':=' <variable (VAR) of signalai>]

['\'aiR2y ':=' <variable (VAR) of signalai>]

['\'aiR3z ':=' <variable (VAR) of signalai>]

['\'aiR4rx ':=' <variable (VAR) of signalai>]

['\'aiR5ry ':=' <variable (VAR) of signalai>]

['\'aiR6rz ':=' <variable (VAR) of signalai>]

['\'aiE1 ':=' <variable (VAR) of signalai>]

['\'aiE2 ':=' <variable (VAR) of signalai>]

['\'aiE3 ':=' <variable (VAR) of signalai>]

['\'aiE4 ':=' <variable (VAR) of signalai>]

['\'aiE5 ':=' <variable (VAR) of signalai>]

['\'aiE6 ':=' <variable (VAR) of signalai>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

204 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.76 EGMSetupAI - Setup analog input signals for EGM
Externally Guided Motion
Continued

1.77 EGMSetupAO - Setup analog output signals for EGM

Usage
EGMSetupAO is used to set up AO signals for a specific EGM process (EGMid) as
the source for position destination values to which the robot, and up to 6 additional
axis, is to be guided.
EGM joint mode is the only EGM mode that supports 7-axis robots. For 7-axis
robots, the first additional axis input provides the position for the additional robot
axis.

Basic examples
VAR egmident egmID1;

EGMGetId egmID1;

EGMSetupAO ROB_1, egmID1, "default" \Pose \aoR1x:=ao_01
\aoR2y:=ao_02 \aoR3z:=ao_03 \aoR4rx:=ao_04 \aoR5ry:=ao_05
\aoR6rz:=ao_06;

Arguments
EGMSetupAO MecUnit, EGMid, ExtConfigName [\Joint] | [\Pose] |

[\PathCorr] [\APTR] | [\LATR] [\aoR1x] [\aoR2y] [\aoR3Z]
[\aoR4rx] [\aoR5ry] [\aoR6rz] [\aoE1] [\aoE2] [\aoE3] [\aoE4]
[\aoE5] [\aoE6]

MecUnit

Data type: mecunit
Mechanical unit name.

EGMid

Data type: egmident
EGM identity.

ExtConfigName

Data type: string
The name of the external motion interface data as defined in the system parameters.
For more information see Technical reference manual - System parameters, type
External Motion Interface Data, topic Motion.

[\Joint]

Data type: switch
Selects joint movement.
At least one of the switches \Joint or \Pose has to be present.

[\Pose]

Data type: switch
Selects pose movement.
At least one of the switches \Joint or \Pose has to be present.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 205
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.77 EGMSetupAO - Setup analog output signals for EGM

Externally Guided Motion

[\PathCorr]

Data type: switch
Selects path correction.
At least one of the switches \Joint, \Pose, or \PathCorr has to be present.

[\APTR]

Data type: switch
Setup an at-point-tracker type of sensor for path correction. For exampleWeldGuide
or AWC.
Either \APTR or \LATR has to be present.

[\LATR]

Data type: switch
Setup an Look-ahead-tracker type of sensor for path correction. For example Laser
Tracker.
Either \APTR or \LATR has to be present.

[\aoR1x] [\aoR2y] [\aoR3z]

Data type: signalao
Specifies the signal that provides the x, y, and z value in millimeters for pose
movement.
Specifies the signal that provides the robot joint 1 to 3 angle in degrees for joint
movement.

[\aoR4rx] [\aoR5ry] [\aoR6rz]

Data type: signalao
Specifies the signal that provides the rotation x, y, and z value of the robot in
degrees for pose movement.
Specifies the signal that provides the robot joint 4 to 6 angle in degrees for joint
movement.

[\aoE1] [\aoE2] [\aoE3] [\aoE4] [\aoE5] [\aoE6]

Data type: signalao
Specifies the signal that provides the position of the additional axis joint 1 to 6.
When using EGM joint mode with a 7-axis robot, then \aoE1 provides the position
for the additional robot axis.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Continues on next page
206 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.77 EGMSetupAO - Setup analog output signals for EGM
Externally Guided Motion
Continued

Cause of errorName

The I/O signal cannot be accessed (only valid for ICI field
bus).

ERR_SIG_NOT_VALID

Limitations
• EGMSetupAO can only be used in RAPID motion tasks.
• The mechanical unit has to be a TCP robot.
• At least one signal has to be specified, otherwise an error is sent and RAPID

execution is stopped.

Syntax
EGMSetupAO

[MecUnit ':='] <variable (VAR) of mecunit> ','

[EGMid ':='] <variable (VAR) of egmident> ','

[ExtConfigName ':='] <expression (IN) of string>

[['\'Joint] | ['\'Pose] | ['\'PathCorr]]

[['\'APTR] | ['\'LATR]]

['\'aoR1x ':=' <variable (VAR) of signalao>]

['\'aoR2y ':='] <variable (VAR) of signalao>]

['\'aoR3z ':='] <variable (VAR) of signalao>]

['\'aoR4rx ':='] <variable (VAR) of signalao>]

['\'aoR5ry ':='] <variable (VAR) of signalao>]

['\'aoR6rz ':='] <variable (VAR) of signalao>]

['\'aoE1 ':='] <variable (VAR) of signalao>]

['\'aoE2 ':='] <variable (VAR) of signalao>]

['\'aoE3 ':='] <variable (VAR) of signalao>]

['\'aoE4 ':='] <variable (VAR) of signalao>]

['\'aoE5 ':='] <variable (VAR) of signalao>]

['\'aoE6 ':='] <variable (VAR) of signalao>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

Technical reference manual - RAPID Instructions, Functions and Data types 207
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.77 EGMSetupAO - Setup analog output signals for EGM

Externally Guided Motion
Continued

1.78 EGMSetupGI - Setup group input signals for EGM

Usage
EGMSetupGI is used to set up group input signals for a specific EGM process
(EGMid) as the source for position destination values to which the robot, and up
to 6 additional axis, is to be guided.
EGM joint mode is the only EGM mode that supports 7-axis robots. For 7-axis
robots, the first additional axis input provides the position for the additional robot
axis.

Basic examples
VAR egmident egmID1;

EGMGetId egmID1;

EGMSetupGI ROB_1, egmID1, "default" \Pose \giR1x:=gi_01
\giR2y:=gi_02 \giR3z:=gi_03 \giR4rx:=gi_04 \giR5ry:=gi_05
\giR6rz:=gi_06;

Arguments
EGMSetupGI MecUnit, EGMid, ExtConfigName [\Joint] | [\Pose] |

[\PathCorr] [\APTR] | [\LATR] [\giR1x] [\giR2y] [\giR3Z]
[\giR4rx] [\giR5ry] [\giR6rz] [\giE1] [\giE2] [\giE3] [\giE4]
[\giE5] [\giE6]

MecUnit

Data type: mecunit
Mechanical unit name.

EGMid

Data type: egmident
EGM identity.

ExtConfigName

Data type: string
The name of the external motion interface data as defined in the system parameters.
For more information see Technical reference manual - System parameters, type
External Motion Interface Data, topic Motion.

[\Joint]

Data type: switch
Selects joint movement.
At least one of the switches \Joint or \Pose has to be present.

[\Pose]

Data type: switch
Selects pose movement.
At least one of the switches \Joint or \Pose has to be present.

Continues on next page
208 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.78 EGMSetupGI - Setup group input signals for EGM
Externally Guided Motion

[\PathCorr]

Data type: switch
Selects path correction.
At least one of the switches \Joint, \Pose, or \PathCorr has to be present.

[\APTR]

Data type: switch
Setup an at-point-tracker type of sensor for path correction. For exampleWeldGuide
or AWC.
Either \APTR or \LATR has to be present.

[\LATR]

Data type: switch
Setup an Look-ahead-tracker type of sensor for path correction. For example Laser
Tracker.
Either \APTR or \LATR has to be present.

[\giR1x] [\giR2y] [\giR3z]

Data type: signalgi
Specifies the signal that provides the x, y, and z value in millimeters for pose
movement.
Specifies the signal that provides the robot joint 1 to 3 angle in degrees for joint
movement.

[\giR4rx] [\giR5ry] [\giR6rz]

Data type: signalgi
Specifies the signal that provides the rotation x, y, and z value of the robot in
degrees for pose movement.
Specifies the signal that provides the robot joint 4 to 6 angle in degrees for joint
movement.

[\giE1] [\giE2] [\giE3] [\giE4] [\giE5] [\giE6]

Data type: signalgi
Specifies the signal that provides the position of the additional axis joint 1 to 6.
When using EGM joint mode with a 7-axis robot, then \giE1 provides the position
for the additional robot axis.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 209
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.78 EGMSetupGI - Setup group input signals for EGM

Externally Guided Motion
Continued

Cause of errorName

The I/O signal cannot be accessed (only valid for ICI field
bus).

ERR_SIG_NOT_VALID

Limitations
• EGMSetupGI can only be used in RAPID motion tasks.
• The mechanical unit has to be a TCP robot.
• Group signals can only handle positive values. Therefore their use in EGM

is limited.
• At least one signal has to be specified, otherwise an error is sent and RAPID

execution is stopped.

Syntax
EGMSetupGI

[MecUnit ':='] <variable (VAR) of mecunit> ','

[EGMid ':='] <variable (VAR) of egmident> ','

[ExtConfigName ':='] <expression (IN) of string>

[['\'Joint] | ['\'Pose] | ['\'PathCorr]]

[['\'APTR] | ['\'LATR]]

['\'giR1x ':=' <variable (VAR) of signalgi>]

['\'giR2y ':=' <variable (VAR) of signalgi>]

['\'giR3z ':=' <variable (VAR) of signalgi>]

['\'giR4rx ':=' <variable (VAR) of signalgi>]

['\'giR5ry ':=' <variable (VAR) of signalgi>]

['\'giR6rz ':=' <variable (VAR) of signalgi>]

['\'giE1 ':=' <variable (VAR) of signalgi>]

['\'giE2 ':=' <variable (VAR) of signalgi>]

['\'giE3 ':=' <variable (VAR) of signalgi>]

['\'giE4 ':=' <variable (VAR) of signalgi>]

['\'giE5 ':=' <variable (VAR) of signalgi>]

['\'giE6 ':=' <variable (VAR) of signalgi>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

210 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.78 EGMSetupGI - Setup group input signals for EGM
Externally Guided Motion
Continued

1.79 EGMSetupLTAPP - Setup the LTAPP protocol for EGM

Usage
EGMSetupLTAPP is used to set up an LTAPP protocol for a specific EGM process
(EGMid) as the source for path corrections.

Basic examples
The following example illustrates the instruction EGMSetupLTAPP.

Example 1
VAR egmident EGMid1;

EGMGetId EGMid1;

EGMSetupLTAPP ROB_1, EGMid1, "pathCorr", "OptSim", 1\LATR;

This program registers an EGM process, and sets up the sensor OptSim that uses
the communication protocol LTAPP and is of the type look-ahead as data source
(sensor). The sensor shall use the joint type definition number 1 for the tracking.

Arguments
EGMActMove MecUnit, EGMid, ExtConfigName, Device, JointType [\APTR]

| [\LATR]

MecUnit

Data type: mecunit
Mechanical unit name.

EGMid

Data type: egmident
EGM identity.

ExtConfigName

Data type: string
The name of the external motion interface data as defined in the system parameters.
For more information see Technical reference manual - System parameters, topic
Motion, type External Motion Interface Data.

Device

Data type: string
LTAPP device name.

JointType

Data type: num
Defines the joint type, expressed as a number, that the sensor equipment shall
use during path correction.

[\APTR]

Data type: switch
Setup an at-point-tracker type of sensor for path correction. For exampleWeldGuide
or AWC.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 211
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.79 EGMSetupLTAPP - Setup the LTAPP protocol for EGM

Externally Guided Motion

Either \APTR or \LATR has to be present.

[\LATR]

Data type: switch
Setup an Look-ahead-tracker type of sensor for path correction. For example Laser
Tracker.
Either \APTR or \LATR has to be present.

Program execution
EGMSetupLTAPP connects the characteristic data of the sensor that is used to an
EGM identity. That EGM identity can then be used in different EGMActMove and
EGMMove instructions.

Syntax
EGMSetupLTAPP

[MecUnit ':='] <variable (VAR) of mecunit> ','

[EGMid ':='] <variable (VAR) of egmident> ','

[ExtConfigName ':='] < expression (IN) of string> ','

[Device ':='] < expression (IN) of string> ','

[JointType ':='] < expression (IN) of num>

[['\'APTR] | ['\'LATR]] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

212 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.79 EGMSetupLTAPP - Setup the LTAPP protocol for EGM
Externally Guided Motion
Continued

1.80 EGMSetupUC - Setup the UdpUc protocol for EGM

Usage
EGMSetupUC is used to set up a UdpUc protocol for a specific EGMprocess (EGMid)
as the source for position destination values to which the robot, and up to 6
additional axis, is to be guided.
EGM joint mode is the only EGM mode that supports 7-axis robots. For 7-axis
robots, the first additional axis input provides the position for the additional robot
axis.

Basic examples
VAR egmident egmID1;

VAR string egmSensor:="egmSensor:";

EGMGetId egmID1;

EGMSetupUC ROB_1, egmID1, "default", egmSensor\Pose;

Arguments
EGMSetupUC MecUnit, EGMid, ExtConfigName, UCDevice [\Joint] |

[\Pose] | [\PathCorr] [\APTR] | [\LATR] [\CommTimeout]

MecUnit

Data type: mecunit
Mechanical unit name.

EGMid

Data type: egmident
EGM identity.

ExtConfigName

Data type: string
The name of the external motion interface data as defined in the system parameters.
For more information see Technical reference manual - System parameters, type
External Motion Interface Data, topic Motion.

UCDevice

Data type: string
UdpUc device name.

[\Joint]

Data type: switch
Selects joint movement for position guidance.
At least one of the switches \Joint, \Pose, or \PathCorr has to be present.

[\Pose]

Data type: switch
Selects pose movement for position guidance.
At least one of the switches \Joint, \Pose, or \PathCorr has to be present.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 213
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.80 EGMSetupUC - Setup the UdpUc protocol for EGM

Externally Guided Motion

[\PathCorr]

Data type: switch
Selects path correction.
At least one of the switches \Joint, \Pose, or \PathCorr has to be present.

[\APTR]

Data type: switch
Setup an at-point-tracker type of sensor for path correction. For exampleWeldGuide
or AWC.
Either \APTR or \LATR has to be present.

[\LATR]

Data type: switch
Setup an Look-ahead-tracker type of sensor for path correction. For example Laser
Tracker.
Either \APTR or \LATR has to be present.

[\CommTimeout]

Data type: num
Time-out for communication with the external UdpUC device in seconds.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurred in the communication with the UdpUc
device.

ERR_UDPUC_COMM

Limitations
• EGMSetupUC can only be used in RAPID motion tasks.
• The mechanical unit has to be a TCP robot.

Syntax
EGMSetupUC

[MecUnit ':='] <variable (VAR) of mecunit> ','

[EGMid ':='] <variable (VAR) of egmident> ','

[ExtConfigName ':='] <expression (IN) of string> ','

[UCDevice ':='] <expression (IN) of string>

[['\'Joint] | ['\'Pose] | ['\'PathCorr]]

[['\'APTR] | ['\'LATR]]

['\'CommTimeout ':=' <expression (IN) of num>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

214 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.80 EGMSetupUC - Setup the UdpUc protocol for EGM
Externally Guided Motion
Continued

1.81 EGMStop - Stop an EGM movement

Usage
EGMStop stops a specific EGM process (EGMid).

Basic examples
In the RAPID motion task:

VAR egmident egmID1;

PERS pose pose1:=[[0,0,0], [1,0,0,0]];

CONST egm_minmax egm_minmax_lin:=[-0.1,0.1];

CONST egm_minmax egm_minmax_rot:=[-0.1,0.2];

CONST pose posecor:=[[1200,400,900], [0,0,1,0]];

CONST pose posesens:=[[12.3313,-0.108707,416.142],
[0.903899,-0.00320735,0.427666,0.00765917]];

EGMGetId egmID1;

EGMSetupAI ROB_1, egmID1 \Pose \aiR1x:=ai_01 \aiR2y:=ai_02
\aiR3z:=ai_03 \aiR4rx:=ai_04 \aiR5ry:=ai_05 \aiR6rz:=ai_06;

EGMActPose egmID1 \Tool:=tool0 \WObj:=wobj0, posecor,
EGM_FRAME_WOBJ, posesens, EGM_FRAME_TOOL \x:=egm_minmax_lin
\y:=egm_minmax_lin \z:=egm_minmax_lin \rx:=egm_minmax_rot
\ry:=egm_minmax_rot \rz:=egm_minmax_rot \LpFilter:=20;

EGMRunPose egmID1, EGM_STOP_HOLD \x \y \z \rx \ry \rz
\RampInTime:=0.05;

In a TRAP routine:
EGMStop egmID1, EGM_STOP_HOLD;

Arguments
EGMStop EGMid, Mode [\RampOutTime]

EGMid

Data type: egmident
EGM identity.

Mode

Data type: egmstopmode
Defines how the movement is ended (EGM_STOP_HOLD, EGM_STOP_RAMP_DOWN)

[\RampOutTime]

Data type: num
Defines in seconds how fast a ramp down of EGM will be performed.
This parameter has no meaning if the parameter Mode is set to EGM_STOP_HOLD.

Limitations
• EGMStop can only be used in RAPID motion tasks.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 215
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.81 EGMStop - Stop an EGM movement

Externally Guided Motion

Syntax
EGMStop

[EGMid ':='] <variable (VAR) of egmident>','

[Mode ':='] < expression (IN) of egmstopmode>

['\'RampOutTime ':=' <expression (IN) of num>] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

216 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.81 EGMStop - Stop an EGM movement
Externally Guided Motion
Continued

1.82 EGMStreamStart - start EGM position streaming

Usage
EGMStreamStart starts streaming position data for a specific EGM process
(EGMid).

Basic example
The following example illustrates the instruction EGMStreamStart.

Example 1

VAR egmident egmID1;

EGMGetId egmID1;

EGMSetupUC ROB_1, egmID1, "default", "UCdevice"\Joint;

EGMStartStream egmID;

MoveAbsJ jpos20, v100, z20, Weldgun;

MoveAbsJ jpos10\NoEOffs, v1000, fine, Weldgun;

EGMStopStream egmID1;

EGMReset egmID1;

Arguments
EGMStreamStart EGMid [\SampleRate];

EGMid

Data type: egmident
EGM identity.

[\SampleRate]

Data type: num
Input data reading sample rate in multiples of 4 milliseconds. Valid values are 4,
8, 12, 16, etc.
The default value is 4 milliseconds.

Program execution
EGMStreamStart starts streaming position data to external equipment. The data
is sent at the cyclicity defined with \SampleRate and the content is according to
the protocol specification in the Google Protobuf definition file egm.proto.

Limitations
EGMStreamStart is only available if EGM is set up using EGMSetupUC, i.e. the
protocol UdpUc is used for communication with the external equipment.

Syntax
EGMStreamStart

[EGMid ':='] <variable (VAR) of egmident>';'

['\' SampleRate ':=' < expression (IN) of num >] ','

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 217
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.82 EGMStreamStart - start EGM position streaming

Externally Guided Motion

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

218 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.82 EGMStreamStart - start EGM position streaming
Externally Guided Motion
Continued

1.83 EGMStreamStop - stop EGM position streaming

Usage
EGMStreamStop stops streaming position data for a specific EGMprocess (EGMid).

Basic example
The following example illustrates the instruction EGMStreamStop.

Example 1

VAR egmident egmID1;

EGMGetId egmID1;

EGMSetupUC ROB_1, egmID1, "default", "UCdevice"\Joint;

EGMStartStream egmID;

MoveAbsJ jpos20, v100, z20, Weldgun;

MoveAbsJ jpos10\NoEOffs, v1000, fine, Weldgun;

EGMStopStream egmID1;

EGMReset egmID1;

Arguments
EGMStreamStop EGMid;

EGMid

Data type: egmident
EGM identity.

Program execution
EGMStreamStop stops streaming position data to external equipment.

Limitations
EGMStreamStop is only available if EGM is set up using EGMSetupUC, i.e. the
protocol UdpUc is used for communication with the external equipment.

Syntax
EGMStreamStop

[EGMid ':='] <variable (VAR) of egmident>';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

Technical reference manual - RAPID Instructions, Functions and Data types 219
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.83 EGMStreamStop - stop EGM position streaming

Externally Guided Motion

1.84 EGMWaitCond - wait for EGM process

Usage
EGMWaitCond is used to wait for a specific EGM process (EGMid).

Basic example
The following example illustrates the instruction EGMWaitCond.

Example 1

VAR egmident egmID1;

PERS pose pose1:=[[0,0,0],[1,0,0,0]];

CONST egm_minmax egm_minmax_lin:=[-0.1,0.1];

CONST egm_minmax egm_minmax_rot:=[-0.1,0.2];

CONST pose posecor:=[[1200,400,900],[0,0,1,0]];

CONST pose posesens:=[[12.3313,-0.108707,416.142],
[0.903899,-0.00320735,0.427666,0.00765917]];

EGMGetId egmID1;

EGMSetupAI ROB_1, egmID1, "default" \Pose \aiR1x:=ai_01
\aiR2y:=ai_02 \aiR3z:=ai_03 \aiR4rx:=ai_04 \aiR5ry:=ai_05
\aiR6rz:=ai_06;

EGMActPose egmID1 \Tool:=tool0 \WObj:=wobj0, posecor,
EGM_FRAME_WOBJ, posesens, EGM_FRAME_TOOL \x:=egm_minmax_lin
\y:=egm_minmax_lin \z:=egm_minmax_lin \rx:=egm_minmax_rot
\ry:=egm_minmax_rot \rz:=egm_minmax_rot \LpFilter:=20;

EGMRunPose egmID1, EGM_STOP_HOLD \x \y \z \rx \ry
\rz\RampInTime:=0.05;

SetDO doSignal1, 1;

…

EGMWaitCond

Arguments
EGMWaitCond EGMid;

EGMid

Data type: egmident
EGM identity.

Program execution
EGMWaitCond will wait for an EGMRunJoint/Pose instruction to complete. If the
movement has been completed before EGMWaitCond is run, program execution
will continue with the next RAPID instruction at once.

Limitations
If EGMRunJoint or EGMRunPose are usedwith the optional argument \NoWaitCond,
no movement instruction must be used before the EGM Position Guidance is
completed by using EGMWaitCond.

Continues on next page
220 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.84 EGMWaitCond - wait for EGM process
Externally Guided Motion

Syntax
EGMWaitCond

[EGMid ':='] <variable (VAR) of egmident>';'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

Technical reference manual - RAPID Instructions, Functions and Data types 221
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.84 EGMWaitCond - wait for EGM process

Externally Guided Motion
Continued

1.85 EOffsOff - Deactivates an offset for additional axes

Usage
EOffsOff (External Offset Off) is used to deactivate an offset for additional axes.
The offset for additional axes is activated by the instruction EOffsSet or EOffsOn
and applies to all movements until some other offset for additional axes is activated
or until the offset for additional axes is deactivated.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction EOffsOff:

Example 1
EOffsOff;

Deactivation of the offset for additional axes.

Example 2
MoveL p10, v500, z10, tool1;

EOffsOn \ExeP:=p10, p11;

MoveL p20, v500, z10, tool1;

MoveL p30, v500, z10, tool1;

EOffsOff;

MoveL p40, v500, z10, tool1;

An offset is defined as the difference between the position of each axis at p10 and
p11. This displacement affects the movement to p20 and p30, but not to p40.

Program execution
Active offsets for additional axes are reset.

Syntax
EOffsOff ';'

Related information

SeeFor information about

EOffsOn - Activates an offset for additional axes
on page 223

Definition of offset using two positions

EOffsSet - Activates an offset for additional axes
using known values on page 225

Definition of offset using known values

PDispOff - Deactivates program displacement on
page 531

Deactivation of the robot’s program dis-
placement

222 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.85 EOffsOff - Deactivates an offset for additional axes
RobotWare - OS

1.86 EOffsOn - Activates an offset for additional axes

Usage
EOffsOn (External Offset On) is used to define and activate an offset for additional
axes using two positions.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction EOffsOn:
See also More examples on page 224.

Example 1
MoveL p10, v500, z10, tool1;

EOffsOn \ExeP:=p10, p20;

Activation of an offset for additional axes. This is calculated for each axis based
on the difference between positions p10 and p20.

Example 2
MoveL p10, v500, fine \Inpos := inpos50, tool1;

EOffsOn *;

Activation of an offset for additional axes. Since a stop point that is accurately
defined has been used in the previous instruction, the argument \ExeP does not
have to be used. The displacement is calculated on the basis of the difference
between the actual position of each axis and the programmed point (*) stored in
the instruction.

Arguments
EOffsOn [\ExeP] ProgPoint

[\ExeP]

Executed Point
Data type: robtarget
The new position, used for calculation of the offset. If this argument is omitted, the
current position of the axes at the time of the program execution is used.

ProgPoint

Programmed Point
Data type: robtarget
The original position of the axes at the time of programming.

Program execution
The offset is calculated as the difference between \ExeP and ProgPoint for each
additional axis. If \ExeP has not been specified, the current position of the axes
at the time of the program execution is used instead. Since it is the actual position
of the axes that is used, the axes should not move when EOffsOn is executed.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 223
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.86 EOffsOn - Activates an offset for additional axes

RobotWare - OS

This offset is then used to displace the position of additional axes in subsequent
positioning instructions and remains active until some other offset is activated (the
instruction EOffsSet or EOffsOn) or until the offset for additional axes is
deactivated (the instruction EOffsOff).
Only one offset for each individual additional axis can be activated at the same
time. Several EOffsOn, on the other hand, can be programmed one after the other
and, if they are, the different offsets will be added.
The additional axes offset is automatically reset:

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

More examples
More examples of how to use the instruction EOffsOn are illustrated below.

Example 1
SearchL sen1, psearch, p10, v100, tool1;

PDispOn \ExeP:=psearch, *, tool1;

EOffsOn \ExeP:=psearch, *;

A search is carried out in which the searched position of both the robot and the
additional axes is stored in the position psearch. Any movement carried out after
this starts from this position using a program displacement of both the robot and
the additional axes. This is calculated based on the difference between the searched
position and the programmed point (*) stored in the instruction.

Syntax
EOffsOn

['\' ExeP ':=' < expression (IN) of robtarget> ',']

[ProgPoint ':='] < expression (IN) of robtarget> ';'

Related information

SeeFor information about

EOffsOff - Deactivates an offset for additional
axes on page 222

Deactivation of offset for additional axes

EOffsSet - Activates an offset for additional axes
using known values on page 225

Definition of offset using known values

PDispOn - Activates program displacement on
page 532

Displacement of the robot’s movements

Technical reference manual - RAPID OverviewCoordinate systems

224 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.86 EOffsOn - Activates an offset for additional axes
RobotWare - OS
Continued

1.87 EOffsSet - Activates an offset for additional axes using known values

Usage
EOffsSet (External Offset Set) is used to define and activate an offset for additional
axes using known values.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction EOffsSet:

Example 1
VAR extjoint eax_a_p100 := [100, 0, 0, 0, 0, 0];

...

EOffsSet eax_a_p100;

Activation of an offset eax_a_p100 for additional axes, meaning (provided that
the logical additional axis "a" is linear) that:

• The ExtOffs coordinate system is displaced 100 mm for the logical axis "a"
(see figure below).

• As long as this offset is active, all positions will be displaced 100 mm in the
direction of the x-axis.

The following figure shows displacement of an additional axis.

xx0500002162

Arguments
EOffsSet EAxOffs

EAxOffs
External Axes Offset
Data type: extjoint
The offset for additional axes is defined as data of the type extjoint, expressed
in:

• mm for linear axes
• degrees for rotating axes

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 225
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.87 EOffsSet - Activates an offset for additional axes using known values

RobotWare - OS

Program execution
The offset for additional axes is activated when the EOffsSet instruction is
executed and remains active until some other offset is activated (the instruction
EOffsSet or EOffsOn) or until the offset for additional axes is deactivated (the
instruction EOffsOff).
Only one offset for additional axes can be activated at the same time. Offsets
cannot be added to one another using EOffsSet.
The additional axes offset is automatically reset:

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Syntax
EOffsSet

[EAxOffs ':='] < expression (IN) of extjoint> ';'

Related information

SeeFor information about

EOffsOn - Activates an offset for additional axes
on page 223

Activate an offset for additional axes

EOffsOff - Deactivates an offset for additional
axes on page 222

Deactivation of offset for additional axes

PDispOn - Activates program displacement on
page 532

Displacement of the robot’s movements

extjoint - Position of external joints on page1633Definition of data of the type extjoint

Technical reference manual - RAPID OverviewCoordinate systems

226 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.87 EOffsSet - Activates an offset for additional axes using known values
RobotWare - OS
Continued

1.88 EraseModule - Erase a module

Usage
EraseModule is used to remove a module from the program memory during
execution.
There are no restrictions on how themodule was loaded. It could have been loaded
manually, from the configuration, or with a combination of the instructions Load,
StartLoad, and WaitLoad.
The module cannot be defined as Shared in the configuration.

Basic examples
The following example illustrates the instruction EraseModule:

Example 1
EraseModule "PART_A";

Erase the program module PART_A from the program memory.

Arguments
EraseModule ModuleName

ModuleName

Data type: string
The name of the module that should be removed. Please note that this is the name
of the module, not the name of the file.

Program execution
The program execution waits for the programmodule to finish the removal process
before the execution proceeds with the next instruction.
When the program module is removed the rest of the program modules will be
linked.

Limitations
It is not allowed to remove a program module that is executing.
TRAP routines, system I/O events, and other program tasks cannot execute during
the removal process.
Avoid ongoing robot movements during the removal.
Program stop during execution of EraseModule instruction results in guard stop
withmotors off and error message "20025 Stop order timeout" on the FlexPendant.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The file in the EraseModule instruction cannot be removed
because it was not found.

ERR_MODULE

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 227
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.88 EraseModule - Erase a module

RobotWare - OS

Syntax
EraseModule

[ModuleName':=']<expression (IN) of string>';'

Related information

SeeFor information about

UnLoad - UnLoad a programmodule during execu-
tion on page 992

Unload a program module

StartLoad - Load a programmodule during execu-
tion on page 777

Load a program module in parallel with
another program execution

WaitLoad - Connect the loaded module to the task
on page 1035

Technical referencemanual - System parameters,
section Controller

Accept unresolved reference

228 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.88 EraseModule - Erase a module
RobotWare - OS
Continued

1.89 ErrLog - Write an error message

Usage
ErrLog is used to display an error message on the FlexPendant and write it in
the event log. Error number and five error argumentsmust be stated. Themessage
is stored in the process domain in the robot log. ErrLog can also be used to display
warnings and information messages.

Basic examples
The following examples illustrate the instruction ErrLog:

Example 1
In case you do not want to make your own .xml file, you can use ErrorId 4800
like in the example below:

VAR errstr my_title := "myerror";

VAR errstr str1 := "errortext1";

VAR errstr str2 := "errortext2";

VAR errstr str3 := "errortext3";

VAR errstr str4 := "errortext4";

ErrLog 4800, my_title, str1,str2,str3,str4;

On the FlexPendant the message will look like this:
Event Message: 4800
myerror
errortext1
errortext2
errortext3
errortext4

Example 2
An ErrorId must be declared in an .xml file. The number must be between 5000
- 9999. The error message is written in the .xml file and the arguments to the
message is sent in by the ErrLog instruction. The ErrorId in the .xml file is the
same stated in the ErrLog instruction.
NOTE: If using an ErrorId between 5000-9999 you have to install your own xml file.
Example of message in .xml file:

<Message number="5210" eDefine="ERR_INPAR_RDONLY">

<Title>Parameter error</Title>

<Description>Task:<arg format="%s" ordinal="1" />

<p />Symbol <arg format="%s" ordinal="2" />is read-only

<p />Context:<arg format="%s" ordinal="3" /><p />

</Description>

</Message>

Example of instruction:
MODULE MyModule

PROC main()

VAR num errorid := 5210;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 229
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.89 ErrLog - Write an error message

RobotWare - OS

VAR errstr arg := "P1";

ErrLog errorid, ERRSTR_TASK, arg, ERRSTR_CONTEXT,ERRSTR_UNUSED,
ERRSTR_UNUSED;

ErrLog errorid \W, ERRSTR_TASK, arg,
ERRSTR_CONTEXT,ERRSTR_UNUSED, ERRSTR_UNUSED;

ENDPROC

ENDMODULE

On the FlexPendant the message will look like this:
Event Message: 5210
Parameter error
Task: T_ROB1
Symbol P1 is read-only.
Context: MyModule/main/ErrLog
The first ErrLog instruction generates an error message. The message is stored
in the robot log in the process domain. It is also shown on the FlexPendant display.
The second instruction is a warning. A message is stored in the robot log only.
The programwill in both cases continue its execution when the instruction is done.

Arguments
ErrLog ErrorID [\W] | [\I] Argument1 Argument2 Argument3 Argument4

Argument5

ErrorId

Data type: num
The number of a specific error that is to be monitored. The error number must be
in interval 4800-4814 if using the preinstalled xml file, and between 5000 - 9999 if
using an own xml file.

[\W]

Warning
Data type: switch
Gives a warning that is stored in the robot event log only (not shown directly on
the FlexPendant display).

[\I]

Information
Data type: switch
Gives an information message that is stored in the event log only (not shown
directly on the FlexPendant display).
If none of the arguments \W or \I are specified then the instruction will generate
an error message directly on the flexpendant and also store it in the event log.

Argument1
Data type: errstr
First argument in the error message. Any string or predefined data of type errstr
can be used.

Continues on next page
230 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.89 ErrLog - Write an error message
RobotWare - OS
Continued

Argument2

Data type: errstr
Second argument in the error message. Any string or predefined data of type
errstr can be used.

Argument3

Data type: errstr
Third argument in the error message. Any string or predefined data of type errstr
can be used

Argument4

Data type: errstr
Fourth argument in the error message. Any string or predefined data of type errstr
can be used.

Argument5

Data type: errstr
Fifth argument in the error message. Any string or predefined data of type errstr
can be used.

Program execution
An error message (max 5 lines) is displayed on the FlexPendant and written in the
event log.
In the case of argument \W or argument \I a warning or an information message
is written in the event log.
ErrLog generates program errors between 4800-4814 if using the xml file that are
installed by the system, and between 5000-9999 if installing an own xml file. The
error generated depends on the ErrorID indicated.
The message is stored in the process domain in the event log.
How to install an own xml file is described in Application manual - RobotWare
Add-Ins, see Related information below.

Limitations
Total string length (Argument1-Argument5) is limited to 195 characters.

Syntax
ErrLog

[ErrorId ':='] < expression (IN) of num> ','

['\'W] | [' \' I] ','

[Argument1 ':='] < expression (IN) of errstr> ','

[Argument2 ':='] < expression (IN) of errstr> ','

[Argument3 ':='] < expression (IN) of errstr> ','

[Argument4 ':='] < expression (IN) of errstr> ','

[Argument5 ':='] < expression (IN) of errstr> ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 231
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.89 ErrLog - Write an error message

RobotWare - OS
Continued

Related information

SeeFor information about

errstr - Error string on page 1629Predefined data of type errstr

TPWrite -Writes on the FlexPendant on page870Display message on the FlexPendant
UIMsgBox - UserMessage Dialog Box type basic
on page 974

Operating manual - IRC5 with FlexPendantEvent log

Applicationmanual - RobotWare Add-Ins, section
Event log messages

Event log messages, explanation of xml-
file

Application manual - RobotWare Add-InsHow to install XML files when using add-
ins

232 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.89 ErrLog - Write an error message
RobotWare - OS
Continued

1.90 ErrRaise - Writes a warning and calls an error handler

Usage
ErrRaise is used to create an error in the program and then call the error handler
of the routine. A warning is written in the event log. ErrRaise can also be used
in the error handler to propagate the current error to the error handler of the calling
routine.
Error name, error number, and five error arguments must be stated. The message
is stored in the process domain in the robot log.

Basic examples
The following examples illustrate the instruction ErrRaise:

Example 1
In case you do not want to make your own .xml file, you can use ErrorId 4800
like in the example below:

MODULE MyModule

VAR errnum ERR_BATT:=-1;

PROC main()

VAR num errorid := 4800;

VAR errstr my_title := "Backup battery status";

VAR errstr str1 := "Bacup battery is fully charged";

BookErrNo ERR_BATT;

ErrRaise "ERR_BATT", errorid, my_title, ERRSTR_TASK, str1,
ERRSTR_CONTEXT,ERRSTR_EMPTY;

ERROR

IF ERRNO = ERR_BATT THEN

TRYNEXT;

ENDIF

ENDPROC

ENDMODULE

On the FlexPendant the message will look like this (warning and/or an error):
Event Message: 4800
Backup battery status
Task: main
Backup battery is fully charged
Context: MyModule/main/ErrRaise
An error number must be booked with the instruction BookErrNo. Corresponding
string is stated as the first argument, ErrorName, in the ErrRaise.
ErrRaise creates an error and then calls the error handler. If the error is taken
care of, a warning is generated in the event log, in the process domain. Otherwise
a fatal error is generated and the program stops.
ErrRaise can also be used in an error handler in a subroutine. In this case the
execution continues in the error handler of the calling routine.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 233
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.90 ErrRaise - Writes a warning and calls an error handler

RobotWare - OS

Example 2
An ErrorId must be declared in an .xml file. The number must be between 5000
- 9999. The error message is written in the .xml file and the arguments to the
message are sent in by the ErrRaise instruction. The ErrorId in the .xml file is
the same stated in the ErrRaise instruction.
NOTE: If using an ErrorId between 5000-9999 you have to install your own xml file.
Example of message in .xml file:

<Message number="7055" eDefine="SYS_ERR_ARL_INPAR_RDONLY">

<Title>Parameter error</Title>

<Description>Task:<arg format="%s" ordinal="1" />

<p />Symbol <arg format="%s" ordinal="2" />is read-only

<p />Context:<arg format="%s" ordinal="3" /><p /></Description>

</Message>

Example of instruction:
MODULE MyModule

VAR errnum ERR_BATT:=-1;

PROC main()

VAR num errorid := 7055;

BookErrNo ERR_BATT;

ErrRaise "ERR_BATT", errorid, ERRSTR_TASK,
ERRSTR_CONTEXT,ERRSTR_UNUSED, ERRSTR_UNUSED,
ERRSTR_UNUSED;

ERROR

IF ERRNO = ERR_BATT THEN

TRYNEXT;

ENDIF

ENDPROC

ENDMODULE

On the FlexPendant the message will look like this (warning and/or an error):
Event Message: 7055
Backup battery status
Task: main
Backup battery is fully charged
Context: MyModule/main/ErrRaise
An error number must be booked with the instruction BookErrNo. Corresponding
string is stated as the first argument, ErrorName, in the ErrRaise.
ErrRaise creates an error and then calls the error handler. If the error is taken
care of, a warning is generated in the event log, in the process domain. Otherwise
a fatal error is generated and the program stops.
ErrRaise can also be used in an error handler in a subroutine. In this case the
execution continues in the error handler of the calling routine.

Arguments
ErrRaise ErrorName ErrorId Argument1 Argument2 Argument3 Argument4

Argument5

Continues on next page
234 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.90 ErrRaise - Writes a warning and calls an error handler
RobotWare - OS
Continued

ErrorName

Data type: string
An error number must be booked using the instruction BookErrNo. Corresponding
variable is stated as ErrorName.

ErrorId

Data type: num
The number of a specific error that is to be monitored. The error number must be
in interval 4800-4814 if using the preinstalled xml file, and between 5000 - 9999 if
using an own xml file.

Argument1

Data type: errstr
First argument in the error message. Any string or predefined data of type errstr
can be used.

Argument2

Data type: errstr
Second argument in the error message. Any string or predefined data of type
errstr can be used.

Argument3

Data type: errstr
Third argument in the error message. Any string or predefined data of type errstr
can be used

Argument4

Data type: errstr
Fourth argument in the error message. Any string or predefined data of type errstr
can be used.

Argument5

Data type: errstr
Fifth argument in the error message. Any string or predefined data of type errstr
can be used.

Program execution
ErrRaise generates program warningss between 4800-4814 if using the xml file
that are installed by the system, and between 5000-9999 if installing an own xml
file. The error generated depends on the ErrorID indicated. A warning is written
in the robot message log in the domain process.
When the ErrRaise is executed the behavior depends on where it is executed:

• When executing instruction in the routine body, a warning is generated, and
the execution continues in the error handler.

• When executing instruction in an error handler, the old warning is skipped,
a new one is generated, and the control is raised to calling instruction.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 235
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.90 ErrRaise - Writes a warning and calls an error handler

RobotWare - OS
Continued

Limitations
Total string length (Argument1-Argument5) is limited to 195 characters.

More examples
More examples of how to use the instruction ErrRaise are illustrated below.

Example 1
VAR errnum ERR_BATT:=-1;

VAR errnum ERR_NEW_ERR:=-1;

PROC main()

testerrraise;

ENDPROC

PROC testerrraise()

BookErrNo ERR_BATT;

BookErrNo ERR_NEW_ERR;

ErrRaise "ERR_BATT",7055,ERRSTR_TASK,ERRSTR_CONTEXT,
ERRSTR_UNUSED,ERRSTR_UNUSED,ERRSTR_UNUSED;

ERROR

IF ERRNO = ERR_BATT THEN

ErrRaise "ERR_NEW_ERR",7156,ERRSTR_TASK,ERRSTR_CONTEXT,
ERRSTR_UNUSED,ERRSTR_UNUSED, ERRSTR_UNUSED;

ENDIF

ENDPROC

Generate new warning 7156 from error handler. Raise control to calling routine
and stop execution.

Syntax
ErrRaise

[ErrorName ':='] < expression (IN) of string> ','

[ErrorId ':='] < expression (IN) of num> ','

[Argument1 ':='] < expression (IN) of errstr> ','

[Argument2 ':='] < expression (IN) of errstr> ','

[Argument3 ':='] < expression (IN) of errstr> ','

[Argument4 ':='] < expression (IN) of errstr> ','

[Argument5 ':='] < expression (IN) of errstr> ';'

Related information

SeeFor information about

errstr - Error string on page 1629Predefined data of type errstr

BookErrNo - Book a RAPID system error number
on page 45

Booking error numbers

Technical reference manual - RAPID OverviewError handling

Application manual - Controller software IRC5Advanced RAPID

236 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.90 ErrRaise - Writes a warning and calls an error handler
RobotWare - OS
Continued

1.91 ErrWrite - Write an error message

Usage
ErrWrite (Error Write) is used to display an error message on the FlexPendant
and write it in the event log. It can also be used to display warnings and information
messages.

Basic examples
The following examples illustrate the instruction ErrWrite:

Example 1
ErrWrite "PLC error", "Fatal error in PLC" \RL2:="Call service";

Stop;

A message is stored in the robot log. The message is also shown on the
FlexPendant display.

Example 2
ErrWrite \W, "Search error", "No hit for the first search";

RAISE try_search_again;

A message is stored in the robot log only. Program execution then continues.

Arguments
ErrWrite [\W] | [\I] Header Reason [\RL2] [\RL3] [\RL4]

[\W]

Warning
Data type: switch
Gives a warning that is stored in the robot error message log only (not shown
directly on the FlexPendant display).

[\I]

Information
Data type: switch
Gives an information message that is stored in the event log only (not shown
directly on the FlexPendant display).
If none of the arguments \W or \I are specified then the instruction will generate
an error message directly on the flexpendant and also store it in the event log.

Header

Data type: string
Error message heading (max. 46 characters).

Reason

Data type: string
Reason for error.

[\RL2]

Reason Line 2

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 237
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.91 ErrWrite - Write an error message

RobotWare - OS

Data type: string
Reason for error.

[\RL3]

Reason Line 3
Data type: string
Reason for error.

[\RL4]

Reason Line 4
Data type: string
Reason for error.

Program execution
An error message (max. 5 lines) is displayed on the FlexPendant and written in
the robot message log.
In the case of argument \W or argument \I a warning or an information message
is written in the event log.
ErrWrite generates the program error no. 80001 for an error, no. 80002 for a
warning (\W) and no. 80003 for an information message (\I).

Limitations
Total string length (Header+Reason+\RL2+\RL3+\RL4) is limited to 195 characters.

Syntax
ErrWrite

['\'W] | ['\' I] ','

[Header ':='] < expression (IN) of string>','

[Reason ':='] < expression (IN) of string>

[’\’RL2 ':=' < expression (IN) of string>]

[’\’RL3 ':=' < expression (IN) of string>]

[’\’RL4 ':=' < expression (IN) of string>] ';'

Related information

SeeFor information about

errstr - Error string on page 1629Predefined data of type errstr

TPWrite -Writes on the FlexPendant on page870Display message on the FlexPendant
UIMsgBox - UserMessage Dialog Box type basic
on page 974

Operating manual - IRC5 with FlexPendantEvent log

ErrLog - Write an error message on page 229Write error message - Err Log

238 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.91 ErrWrite - Write an error message
RobotWare - OS
Continued

1.92 EXIT - Terminates program execution

Usage
EXIT is used to terminate program execution. Program restart will then be blocked,
that is the program can only be restarted from the first instruction of the main
routine.
The EXIT instruction should be used when fatal errors occur or when program
execution is to be stopped permanently. The Stop instruction is used to temporarily
stop program execution. After execution of the instruction EXIT the program pointer
is gone. To continue program execution, the program pointer must be set.

Basic examples
The following example illustrates the instruction EXIT:

Example 1
ErrWrite "Fatal error","Illegal state";

EXIT;

Program execution stops and cannot be restarted from that position in the program.

Syntax
EXIT ';'

Related information

SeeFor information about

Stop - Stops program execution on page 805Stopping program execution temporarily

Technical reference manual - RAPID Instructions, Functions and Data types 239
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.92 EXIT - Terminates program execution

RobotWare - OS

1.93 ExitCycle - Break current cycle and start next

Usage
ExitCycle is used to break the current cycle and move the program pointer (PP)
back to the first instruction in the main routine.
If the program is executed in continuous mode, it will start to execute the next
cycle.
If the execution is in cycle mode, the execution will stop at the first instruction in
the main routine.

Basic examples
The following example illustrates the instruction ExitCycle:

Example 1
VAR num cyclecount:=0;

VAR intnum error_intno;

PROC main()

IF cyclecount = 0 THEN

CONNECT error_intno WITH error_trap;

ISignalDI di_error,1,error_intno;

ENDIF

cyclecount:=cyclecount+1;

! start to do something intelligent

...

ENDPROC

TRAP error_trap

TPWrite "ERROR, I will start on the next item";

ExitCycle;

ENDTRAP

This will start the next cycle if the signal di_error is set.

Program execution
Execution of ExitCycle in a program task controlling mechanical units results
in the following in the actual task:

• On-going robot movements stops.
• All robot paths that are not performed at all path levels (both normal and

StorePath level) are cleared.
• All instructions that are started but not finished at all execution levels (both

normal and TRAP level) are interrupted.
• The program pointer is moved to the first instruction in the main routine.
• The program execution continues to execute the next cycle.

Continues on next page
240 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.93 ExitCycle - Break current cycle and start next
RobotWare - OS

Execution of ExitCycle in some other program task, not controlling mechanical
units, results in the following in the actual task:

• All instructions that are started but not finished on all execution levels (both
normal and TRAP level) are interrupted.

• The program pointer is moved to the first instruction in the main routine.
• The program execution continues to execute the next cycle.

All other modal things in the program and system are not affected by ExitCycle
such as:

• The actual value of variables or persistents.
• Any motion settings such as StorePath-RestoPath sequence, world

zones, and so on.
• Open files, directories, and so on.
• Defined interrupts, and so on.

When using ExitCycle in routine calls and the entry routine is defined with “Move
PP to Routine ...” or “Call Routine ...”,ExitCycle breaks the current cycle and
moves the program pointer back to the first instruction in the entry routine (instead
of the main routine as specified previously).

Syntax
ExitCycle';'

Related information

SeeFor information about

EXIT - Terminates programexecution on page239Stopping after a fatal error

EXIT - Terminates programexecution on page239Terminating program execution

Stop - Stops program execution on page 805Stopping for program actions

RETURN - Finishes execution of a routine on
page 613

Finishing execution of a routine

Technical reference manual - RAPID Instructions, Functions and Data types 241
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.93 ExitCycle - Break current cycle and start next

RobotWare - OS
Continued

1.94 FitCircle - Fits a circle to 3D-points

Usage
FitCircle is used to fit a circle to a set of 3D-points.

Basic examples
The following examples illustrate the instruction FitCircle.

Example 1
VAR pos points{3}:=[[2.000264140454799, -1.948606082287765, 3],

[10.666326255802462, 1.399713485871053, 3],
[9.609499187363362, 2.265033879249959, 3]];

VAR num radius;

VAR pos center;

VAR pos normal;

FitCircle points, center, radius, normal;

With only three points specified, FitCircle calculates a circle that passes exactly
through all the points. In this example, the resulting circle is:

center = [7,-2,3]

radius = 5

normal = [0,0,1]

In this simple example, all the 3D-points have the same z-coordinate and therefore
the identified circle must be in the xy-plane. In the general case, the method will
identify the plane that contains the circle. The plane is described by the returned
normal, which is a unit vector perpendicular to the circle.
The circle and the input points are shown in the figure below.

xx1700000731

Example 2
VAR pos points{10}:=[

Continues on next page
242 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.94 FitCircle - Fits a circle to 3D-points
RobotWare - OS

[-7.2, -5.254055558738700, 3.307061712883007],

[-7.2, -3.211963764808295, 3.090792209685409],

[-7.2, -5.650784519354138, 4.074184087507510],

[-7.2, -4.261241341238363, 3.549808031134106],

[-7.2, -3.780658372123544, 12.570750298513245],

[-7.2, 1.309442476421255, 11.013856026376601],

[-7.2, -4.649041803426594, 3.435039251520052],

[-7.2, 1.403058916454365, 6.576147932013719],

[-7.2, -7.546395053424201, 9.841667138860654],

[-7.2, -2.490309697793828, 2.788705869634919]];

VAR pos center;

VAR num radius;

VAR pos normal;

VAR num rms;

VAR num maxErr;

VAR num indexWorst;

FitCircle points, center, radius, normal \RMS:=rms \MaxErr:=maxErr
\IndexWorst:=indexWorst;

In this case a circle is fitted to ten points that do not lie on a circle. The result is a
circle that fits the points in a least-squares sense. To simplify the example, the
points are all in a plane parallel to the yz-plane.
The resulting circle is:

center = [-7.2,-2.92489,7.96317]

radius = 4.88656

normal = [1,0,0]

The error parameters of the fit are:
rms = 0.2387

maxErr = 0.3418

indexWorst = 8

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 243
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.94 FitCircle - Fits a circle to 3D-points

RobotWare - OS
Continued

The circle and the input points are shown in the figure below.

xx1700000732

Arguments
FitCircle Points [\NumPoints] Center Radius Normal [\RMS] [\MaxErr]

[\IndexWorst]

Points

Data type: array of pos
Points is an array containing the 3D-points for the circle fit.

[\NumPoints]

Data type: num
With the optional argument NumPoints it is possible to specify how many of the
points that shall be used. If omitted, then all points in the array Points are used.

Center

Data type: pos
The center of the resulting circle.

Radius

Data type: num
The radius of the resulting circle.

Normal

Data type: pos
A unit-length vector that is perpendicular to the plane of the identified circle.

[\RMS]

Data type: num
Optional argument that contains the root-mean-square error of the circle fit.

Continues on next page
244 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.94 FitCircle - Fits a circle to 3D-points
RobotWare - OS
Continued

[\MaxErr]

Data type: num
Optional argument that contains the maximum distance between the resulting
circle and the input points.

[\IndexWorst]

Data type: num
Optional argument that contains the index of the point that has the maximum
distance to the circle.

Program execution
CircleFit fits a circle to a set of 3D-points.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Wrong dimensions or wrong values on optional arguments
are used.

ERR_ARRAY_SIZE

Limitations
The number of 3D-points must be between 3 and 100.

Syntax
CircleFit

[Points ':='] <array {*} expression (IN) of dnum> ','

['\' NumPoints ':=' < expression (IN) of num>] ','

[Center ':='] <variable (VAR) of pos> ','

[Radius ':='] <variable (VAR) of num> ','

[Normal ':='] <variable (VAR) of pos>

['\' RMS ':=' <variable (VAR) of num>]

['\' MaxErr ':=' <variable (VAR) of num>]

['\' IndexWorst ':=' <variable (VAR) of num>] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions.

Technical reference manual - RAPID Instructions, Functions and Data types 245
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.94 FitCircle - Fits a circle to 3D-points

RobotWare - OS
Continued

1.95 FOR - Repeats a given number of times

Usage
FOR is used when one or several instructions are to be repeated a number of times.

Basic examples
The following examples illustrate the instruction FOR:
See also More examples on page 246.

Example 1
FOR i FROM 1 TO 10 DO

routine1;

ENDFOR

Repeats the routine1 procedure 10 times.

Arguments
FOR Loop counter FROM Start value TO End value [STEP Step value]

DO ... ENDFOR

Loop counter

Identifier
The name of the data that will contain the value of the current loop counter. The
data is declared automatically.
If the loop counter name is the same as any data that already exists in the actual
scope, the existing data will be hidden in the FOR loop and not affected in any way.

Start value

Data type: Num
The desired start value of the loop counter. (usually integer values)

End value

Data type: Num
The desired end value of the loop counter. (usually integer values)

Step value

Data type: Num
The value by which the loop counter is to be incremented (or decremented) each
loop. (usually integer values)
If this value is not specified, the step value will automatically be set to 1 (or -1 if
the start value is greater than the end value).

More examples
More examples of how to use the instruction FOR are illustrated below.

Example 1
FOR i FROM 10 TO 2 STEP -2 DO

a{i} := a{i-1};

ENDFOR

Continues on next page
246 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.95 FOR - Repeats a given number of times
RobotWare - OS

The values in an array are adjusted upwards so that a{10}:=a{9}, a{8}:=a{7}
and so on.

Program execution
1 The expressions for the start, end, and step values are evaluated.
2 The loop counter is assigned the start value.
3 The value of the loop counter is checked to see whether its value lies between

the start and end value, or whether it is equal to the start or end value. If the
value of the loop counter is outside of this range, the FOR loop stops and
program execution continues with the instruction following ENDFOR.

4 The instructions in the FOR loop are executed.
5 The loop counter is incremented (or decremented) in accordance with the

step value.
6 The FOR loop is repeated, starting from point 3.

Limitations
The loop counter (of data type num) can only be accessed from within the FOR loop
and consequently hides other data and routines that have the same name. It can
only be read (not updated) by the instructions in the FOR loop.
Decimal values for start, end, or stop values, in combination with exact termination
conditions for the FOR loop, cannot be used (undefined whether or not the last loop
is running).

Remarks
If the number of repetitions is to be repeated as long as a given expression is
evaluated to a TRUE value, the WHILE instructions should be used instead.

Syntax
FOR <loop variable> FROM <expression> TO <expression>

[STEP <expression>] DO

<statement list>

ENDFOR

Related information

SeeFor information about

Technical reference manual - RAPID OverviewExpressions

WHILE - Repeats as long as ... on page 1064Repeats as long as...

Technical reference manual - RAPID OverviewIdentifiers

Technical reference manual - RAPID Instructions, Functions and Data types 247
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.95 FOR - Repeats a given number of times

RobotWare - OS
Continued

1.96 FricIdInit - Initiate friction identification

Usage
FricIdInitmarks the starting point of a sequence of move instructions that will
be repeated to calculate the robots internal friction.

Example
Basic example where a circle movement is used to calculate the robots internal
friction for this movement:

PERS num friction_levels{6};

! Start of the friction calculation sequence

FricIdInit;

! Execute the move sequence

MoveC p10, p20, Speed, z0, Tool;

MoveC p30, p40, Speed, z0, Tool;

! Repeat the sequence and calculate the friction

FricIdEvaluate friction_levels;

! Activate compensation for the calculated friction levels

FricIdSetFricLevels friction_levels;

Prerequisites
The system parameter Friction FFW On must be set to TRUE. Otherwise the
instruction FricIdInit will do nothing.

Limitations
• FricIdInit only works for TCP robots.
• Can only be executed from motion tasks.
• The robot must move on the basic path level.
• Friction tuning cannot be combined with synchronized movement. That is,

SyncMoveOn is not allowed between FricIdInit and FricIdEvaluate.
• The movement sequence for which friction tuning is done must begin and

end with a finepoint. If not, finepoints will automatically be inserted during
the tuning process.

Syntax
FricIdInit ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Advanced robot motion

248 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.96 FricIdInit - Initiate friction identification
RobotWare - OS

1.97 FricIdEvaluate - Evaluate friction identification

Usage
FricIdEvaluatemakes the robot repeat themovement between the instructions
FricIdInit and FricIdEvaluate while calculating the friction for each axis of
the robot.

Example
Basic example where a circle movement is used to calculate the robots internal
friction for this movement:

PERS num friction_levels{6};

! Start of the friction calculation sequence

FricIdInit;

! Execute the move sequence

MoveC p10, p20, Speed, z0, Tool;

MoveC p30, p40, Speed, z0, Tool;

! Repeat the sequence and calculate the friction

FricIdEvaluate friction_levels;

! Activate compensation for the calculated friction levels

FricIdSetFricLevels friction_levels;

Arguments
FricIdEvaluate FricLevels [\MechUnit] [\BwdSpeed] [\NoPrint]

[\FricLevelMax] [\FricLevelMin] [\OptTolerance]

FricLevels

Friction levels
Data type: array of num
When FricIdEvaluate is finished, the array FricLevels will contain the tuned
friction levels for all axes of the robot. This array must be declared to have asmany
elements as the robot has axes. Note that the instruction FricIdSetFricLevels
must be called for these values to have effect.

[\MechUnit]

Mechanical unit
Data type: mecunit
The argument MechUnit is optional. If it is omitted, friction tuning will be done for
the mechanical unit represented by the predefined RAPID variable ROB_ID, which
is a reference to the TCP robot in the current program task. Friction compensation
is only possible for TCP robots.

[\BwdSpeed]

Backward speed
Data type: speeddata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 249
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.97 FricIdEvaluate - Evaluate friction identification

RobotWare - OS

After each iteration in the tuning process, the robot moves backward along the
programmed path. By default the backward movement is done at the programmed
speed. To speed up the process, the optional argument BwdSpeed can be used to
specify a higher speed during the backward movement. This will not influence the
tuning result.

[\NoPrint]

Data type: switch
If the argument NoPrint is used, no text is written on the FlexPendant about the
progress of the iterations of the friction identification.

[\FricLevelMax]

Friction level max
Data type: num
Normally, the optimal friction value is found by trying values between 1% and 500%
of the configured friction value. In rare cases this can generate an error message
(Joint speed error). To avoid this, use the argument FricLevelMax and set it to
a value lower than 500. For example, if FricLevelMax is set to 400, values between
1% and 400% are tested.
Allowed values are 101-500.

[\FricLevelMin]

Friction level min
Data type: num
Normally, the optimal friction value is found by trying values between 1% and 500%
of the configured friction value. To set a higher starting value than 1% use the
argument FricLevelMin. For example, if FricLevelMin is set to 80, values
between 80% and 500% are tested.
Allowed values are 1-99.

[\OptTolerance]

Optimization tolerance
Data type: num
Normally, the optimal friction value is found by trying values until a small tolerance
is achieved. To speed up the process this value can be increased. Increasing this
value might give a less accurate result.
Allowed values are 1-10. Default value is 1.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs during the friction tuning.ERR_FRICTUNE_FATAL

Continues on next page
250 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.97 FricIdEvaluate - Evaluate friction identification
RobotWare - OS
Continued

Note

If the friction tuning has no effect at all, check that the system parameter Friction
FFW On is set to TRUE.

Prerequisites
The system parameter Friction FFW On must be set to TRUE. Otherwise the
instruction FricIdEvaluate will do nothing.

Limitations
• FricIdEvaluate only works for TCP robots.
• FricIdEvaluate can only be executed from motion tasks.
• The robot must move on the basic path level.
• For a MultiMove system, friction tuning can only be done for one robot at a

time. Several robots can execute FricIdEvaluate simultaneously, but they
will automatically stand still and wait for their turn as long as another robot
is busy doing friction tuning.

• Friction tuning cannot be combined with synchronized movement. That is,
SyncMoveOn is not allowed between FricIdInit and FricIdEvaluate.

• The movement sequence for which friction tuning is done must begin and
end with a finepoint. If not, finepoints will automatically be inserted during
the tuning process.

Syntax
FricIdEvaluate

[FricLevels ':='] < persistent array {*} (PERS) of num >

['\' MechUnit ':=' < variable (VAR) of mecunit >]

['\' BwdSpeed ':=' < expression (IN) of speeddata >]

['\' NoPrint]

['\' FricLevelMax ':=' < expression (VAR) of num >]

['\' FricLevelMin ':=' < expression (VAR) of num >]

['\' OptTolerance ':=' < expression (VAR) of num >] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Advanced robot motion

Technical reference manual - RAPID Instructions, Functions and Data types 251
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.97 FricIdEvaluate - Evaluate friction identification

RobotWare - OS
Continued

1.98 FricIdSetFricLevels - Set friction levels after friction identification

Usage
FricIdSetFricLevels is used for setting the friction level for each axis of a
mechanical unit.

Example
Basic example where a circle movement is used to calculate the robots internal
friction for this movement:

PERS num friction_levels{6};

! Start of the friction calculation sequence

FricIdInit;

! Execute the move sequence

MoveC p10, p20, Speed, z0, Tool;

MoveC p30, p40, Speed, z0, Tool;

! Repeat the sequence and calculate the friction

FricIdEvaluate friction_levels;

! Activate compensation for the calculated friction levels

FricIdSetFricLevels friction_levels;

Arguments
FricIdSetFricLevels FricLevels [\MechUnit]

FricLevels

Friction levels
Data type: array of num
The array FricLevels specifies the friction level for each axis in percent of the
default friction. The values must be in the interval 0-500.

[\MechUnit]

Mechanical unit
Data type: mecunit
The argument MechUnit is optional. If it is omitted, the friction levels will be set
for the mechanical unit represented by the predefined RAPID variable ROB_ID.
Friction compensation is only possible for TCP robots.

Program execution
The settings of the friction levels will remain active until:

• Program execution is started from the beginning (PP to Main)
• Another call to FricIdSetFricLevels is made
• A new program is loaded
• The controller is restarted using the restart mode Reset system.

Continues on next page
252 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.98 FricIdSetFricLevels - Set friction levels after friction identification
RobotWare - OS

Prerequisites
The system parameter Friction FFW On must be set to TRUE. Otherwise the
instruction FricIdSetFricLevels will do nothing.

Limitations
• FricIdSetFricLevels only works for TCP robots.

Syntax
FricIdSetFricLevels

[FricLevels ':='] < array {*} (IN) of num >

['\' MechUnit ':=' < variable (VAR) of mecunit >] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Advanced robot motion

Technical reference manual - RAPID Instructions, Functions and Data types 253
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.98 FricIdSetFricLevels - Set friction levels after friction identification

RobotWare - OS
Continued

1.99 GetDataVal - Get the value of a data object

Usage
GetDataVal (Get Data Value) makes it possible to get a value from a data object
that is specified with a string variable.

Basic examples
The following examples illustrate the instruction GetDataVal:

Example 1
VAR num value;

...

GetDataVal "reg"+ValToStr(ReadNum(mycom)),value;

This will get the value of a register, with a number which is received from the serial
channel mycom. The value will be stored in the variable value.

Example 2
VAR datapos block;

VAR string name;

VAR num valuevar;

...

SetDataSearch "num" \Object:="my.*" \InMod:="mymod";

WHILE GetNextSym(name,block) DO

GetDataVal name\Block:=block,valuevar;

TPWrite name+" "\Num:=valuevar;

ENDWHILE

This session will print out all num variables that begin with my in the module mymod
with its value to the FlexPendant.

Example 3
VAR num NumArrConst_copy{2};

...

GetDataVal "NumArrConst", NumArrConst_copy;

TPWrite "Pos1 = " \Num:=NumArrConst_copy{1};

TPWrite "Pos2 = " \Num:=NumArrConst_copy{2};

This session will print out the num variables in the array NumArrConst.

Arguments
GetDataVal Object [\Block]|[\TaskRef]|[\TaskName] Value

Object

Data type: string
The name of the data object.

[\Block]

Data type: datapos
The enclosed block to the data object. This can only be fetched with the
GetNextSym function.

Continues on next page
254 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.99 GetDataVal - Get the value of a data object
RobotWare - OS

If this argument is omitted, the value of the visible data object in the current program
execution scope will be fetched.

[\TaskRef]

Task Reference
Data type: taskid
The program task identity in which to search for the data object specified. When
using this argument, you may search for PERS or TASKPERS declarations in other
tasks, any other declarations will result in an error.
For all program tasks in the system the predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", for example, for the
T_ROB1 task the variable identity will be T_ROB1Id.

[\TaskName]

Data type: string
The program task name in which to search for the data object specified. When
using this argument, you may search for PERS or TASKPERS declarations in other
tasks, any other declarations will result in an error.

Value

Data type: anytype
Variable for storage of the get value. The data type must be the same as the data
type for the data object to find. The get value can be fetched from a constant,
variable, or persistent but must be stored in a variable.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName
• The data object is non-existent.
• The data object is routine data or routine parameter

and is not located in the current active routine.
• Searching in other tasks for other declarations then

PERS or TASK PERS.

ERR_SYM_ACCESS

The data object and the variable used in argument Value
have different dimensions.

ERR_INVDIM

The data object and the variable used in argument Value
is of different types. If using ALIAS datatypes, you will also
get this ERROR, eventhough the typesmight have the same
base data type.

ERR_SYMBOL_TYPE

If the program task name in argument \TaskName cannot
be found in the system, the system variable ERRNO is set
to ERR_TASKNAME.

ERR_TASKNAME

When using the arguments TaskRef or TaskName you may search for PERS or
TASK PERS declarations in other tasks, any other declarations will result in an
error and the system variable ERRNO is set to ERR_SYM_ACCESS. Searching for a
PERS declared as LOCAL in other tasks will also result in an error and the system
variable ERRNO is set to ERR_SYM_ACCESS.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 255
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.99 GetDataVal - Get the value of a data object

RobotWare - OS
Continued

Limitations
For a semivalue data type, it is not possible to search for the associated value data
type. For example, if searching for dionum, no search hit for signals signaldi
will be obtained and if searching for num, no search hit for signals signalgi or
signalai will be obtained.
It is not possible to get the value of a variable declared as LOCAL in a built in RAPID
module.

Syntax
GetDataVal

[Object ':='] < expression (IN) of string >

['\'Block' :='<variable (VAR) of datapos>]

|['\'TaskRef' :=' <variable (VAR) of taskid>]

|['\'TaskName' :=' <expression (IN) of string>] ',']

[Value ':='] <variable (VAR) of anytype>]';'

Related information

SeeFor information about

SetDataSearch - Define the symbol set in a search
sequence on page 688

Define a symbol set in a search
session

GetNextSym - Get next matching symbol on page1275Get next matching symbol

SetDataVal - Set the value of a data object on page692Set the value of a data object

SetAllDataVal - Set a value to all data objects in a
defined set on page 684

Set the value of many data objects

datapos - Enclosing block for a data object on page1608The related data type datapos

Application manual - Controller software IRC5Advanced RAPID

256 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.99 GetDataVal - Get the value of a data object
RobotWare - OS
Continued

1.100 GetJointData - Get joint specific data

Usage
GetJointData is used to read out joint specific data from a specified mechanical
unit. The information that can be read for the specified axis is the position, speed,
torque, and estimated external torque.

Basic examples
The following example illustrates the instruction GetJointData.

Example 1
VAR num position;

VAR num speed;

VAR num torque;

VAR num exttorque;

...

GetJointData \MechUnit:=ROB_1, 1 \Position:=position \Speed:=speed
\Torque:=torque \ExtTorque:=exttorque;

The current position, speed, torque, and estimated external torque of the first axis
of ROB_1 is read.

Arguments
GetJointData [\MechUnit] Axis [\Position] [\Speed] [\Torque]

[\ExtTorque]

[\MechUnit]

Mechanical Unit
Data type: mecunit
The name of the mechanical unit for which an axis is to be read. If this argument
is omitted, the axis for the connected robot is read.

Axis

Data type: num
The number of the axis to be read (1 - 6).

[\Position]

Data type: num
The current position of the stated axis of the robot or external axis on the arm side.
The value is in degrees for a rotating axis and mm for a linear axis.
At least one of the optional parameters \Position, \Speed, \Torque, or
\ExtTorque must be used.

[\Speed]

Data type: num
The current speed of the stated axis of the robot or external axis on the arm side.
The value is in degrees/second for a rotating axis and mm/second for a linear axis.
At least one of the optional parameters \Position, \Speed, \Torque, or
\ExtTorque must be used.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 257
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.100 GetJointData - Get joint specific data

RobotWare - OS

[\Torque]

Data type: num
The current torque in Nm of the of the stated axis of the robot or external axis on
the arm side.
At least one of the optional parameters \Position, \Speed, \Torque, or
\ExtTorque must be used.

[\ExtTorque]

Data type: num
The current estimated external torque in Nm of the of the stated axis of the robot
or external axis on the arm side.
At least one of the optional parameters \Position, \Speed, \Torque, or
\ExtTorque must be used.

Program execution
The instruction reads position, speed, torque, and estimated external torque of the
robot and external axes.
The read values can also be seenwhen using TuneMaster using test signal numbers
4000, 4001, 4002, and 4003.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Parameter axis in instruction is wrong.ERR_AXIS_PAR

Syntax
GetJointData

['\' MechUnit ':=' < variable (VAR) of mecunit> ',']

[Axis ':='] < expression (IN) of num>

['\' Position ':=' < variable (VAR) of num>]

['\' Speed ':=' < variable (VAR) of num>]

['\' Torque ':=' < variable (VAR) of num>]

['\' ExtTorque ':=' < variable (VAR) of num>] ';'

258 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.100 GetJointData - Get joint specific data
RobotWare - OS
Continued

1.101 GetSysData - Get system data

Usage
GetSysData fetches the value and the optional symbol name for the current system
data of specified data type.
With this instruction it is possible to fetch data and the name of the current active
Tool, Work Object, PayLoad or Total Load for the robot in actual or connected
motion task, or any named motion task.

Basic examples
The following examples illustrate the instruction GetSysData:

Example 1
PERS tooldata curtoolvalue := [TRUE, [[0, 0, 0], [1, 0, 0, 0]],

[2, [0, 0, 2], [1, 0, 0, 0], 0, 0, 0]];

VAR string curtoolname;

GetSysData curtoolvalue;

Copy current active tool data value to the persistent variable curtoolvalue.

Example 2
GetSysData curtoolvalue \ObjectName := curtoolname;

Also copy current active tool name to the variable curtoolname.

Example 3
PERS loaddata curload;

PERS loaddata piece:=[2.8,[-38.2,-10.1,-73.6],[1,0,0,0],0,0,0];

PERS loaddata
tool2piece:=[13.1,[104.5,13.5,115.9],[1,0,0,0],0,0,0.143];

PERS tooldata tool2 := [TRUE, [[138.695,150.023,98.9783],
[0.709396,-0.704707,-0.00856676,0.00851007]],
[10,[105.2,-3.8,118.7], [1,0,0,0],0,0,0.123]];

VAR string name;

..

IF GetModalPayloadMode() = 1 THEN

GripLoad piece;

MoveL p3, v1000, fine, tool2;

..

..

! Get current payload

GetSysData curload \ObjectName := name;

ELSE

MoveL p30, v1000, fine, tool2\TLoad:=tool2piece;

..

..

! Get current total load

GetSysData curload \ObjectName := name;

ENDIF

If ModalPayLoadMode is 1, copy current active payload and name to the variable
name.
If ModalPayLoadMode is 0, copy current total load and name to the variable name.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 259
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.101 GetSysData - Get system data

RobotWare - OS

Arguments
GetSysData [\TaskRef]|[\TaskName] DestObject[\ObjectName]

[\TaskRef]

Task Reference
Data type: taskid
The program task identity from which the data of the current active system data
should be read.
For all program tasks in the system, predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1
task the variable identity will be T_ROB1Id.

[\TaskName]

Data type: string
The program task name from which the current active system data should be read.
If none of the arguments \TaskRef or \TaskName are specified then the current
task is used.

DestObject

Data type: anytype
Persistent variable for storage of current active system data value.
The data type of this argument also specifies the type of system data (Tool, Work
Object, or PayLoad/Total Load) to fetch. If using TLoad optional argument on
movement instructions, the Total Load is fetched instead of the PayLoad, if a
loaddata datatype is used.

Type of system dataData type

Tooltooldata

Work Objectwobjdata

Payload/Total Loadloaddata

Array or record component cannot be used.

[\ObjectName]

Data type:string
Optional argument (variable or persistent) to also fetch the current active system
data name.

Program execution
When running the instruction GetSysData the current data value is stored in the
specified persistent variable in argument DestObject.
If argument \ObjectName is used, the name of the current data is stored in the
specified variable or persistent in argument ObjectName.
Current system data for Tool, Work Object or Total load is activated by execution
of any move instruction. Payload is activated by execution of the instruction
GripLoad.

Continues on next page
260 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.101 GetSysData - Get system data
RobotWare - OS
Continued

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The arguments \TaskRef or \TaskName specifies a non-
motion task.

Note

No error will be generated if the arguments \TaskRef or
\TaskName specify the non-motion task that executes this
function GetSysData (reference to my own non-motion
task). The current system data will then be fetched from
the connected motion task.

ERR_NOT_MOVETASK

If the program task name in argument \TaskName cannot
be found in the system, the system variable ERRNO is set
to ERR_TASKNAME.

ERR_TASKNAME

Syntax
GetSysData

['\' TaskRef' :=' <variable (VAR) of taskid>]

|['\' TaskName' :=' <expression (IN) of string>]

[DestObject' :='] < persistent(PERS) of anytype>

['\'ObjectName' :=' < variable or persistent (INOUT) of string>
] ';'

Related information

SeeFor information about

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

loaddata - Load data on page 1650Definition of payload

SetSysData - Set system data on page 704Set system data

Technical referencemanual - System parametersSystem parameter ModalPayLoadMode
for activating and deactivating payload.
(Topic Controller, Type General RAPID,
Action values, ModalPayLoadMode)

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

Technical reference manual - RAPID Instructions, Functions and Data types 261
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.101 GetSysData - Get system data

RobotWare - OS
Continued

1.102 GetTrapData - Get interrupt data for current TRAP

Usage
GetTrapData is used in a trap routine to obtain all information about the interrupt
that caused the trap routine to be executed.
To be used in trap routines generated by instruction IError, before use of the
instruction ReadErrData.

Basic examples
The following example illustrates the instruction GetTrapData:
See also More examples on page 262.

Example 1
VAR trapdata err_data;

GetTrapData err_data;

Store interrupt information in the non-value variable err_data.

Arguments
GetTrapData TrapEvent

TrapEvent

Data type: trapdata
Variable for storage of the information about what caused the trap to be executed.

Limitation
This instruction can only be used in a TRAP routine.

More examples
More examples of the instruction GetTrapData are illustrated below.

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error
number, and the error type are saved into appropriate non-value variables of the
type trapdata.

Syntax
GetTrapData

[TrapEvent ':='] <variable (VAR) of trapdata>';'

Continues on next page
262 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.102 GetTrapData - Get interrupt data for current TRAP
RobotWare - OS

Related information

SeeFor information about

Technical reference manual - RAPID OverviewSummary of interrupts

Technical reference manual - RAPID OverviewMore information on interrupt manage-
ment

trapdata - Interrupt data for current TRAP on
page 1750

Interrupt data for current TRAP

IError - Orders an interrupt on errors on page278Orders an interrupt on errors

ReadErrData - Gets information about an error
on page 583

Gets information about an error

Application manual - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 263
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.102 GetTrapData - Get interrupt data for current TRAP

RobotWare - OS
Continued

1.103 GOTO - Goes to a new instruction

Usage
GOTO is used to transfer program execution to another line (a label) within the same
routine.

Basic examples
The following example illustrates the instruction GOTO:

Example 1
GOTO next;

...

next:

Program execution continues with the instruction following next.

Example 2
reg1 := 1;

next:

...

reg1 := reg1 + 1;

IF reg1<=5 GOTO next;

The execution will be transferred to next four times (for reg1= 2, 3, 4, 5).

Example 3
IF reg1>100 THEN

GOTO highvalue

ELSE

GOTO lowvalue

ENDIF

lowvalue:

...

GOTO ready;

highvalue:

...

ready:

If reg1 is greater than 100, the execution will be transferred to the label
highvalue, otherwise the execution will be transferred to the label lowvalue.

Arguments
GOTO Label

Label

Identifier
The label from where program execution is to continue.

Limitations
It is only possible to transfer program execution to a label within the same routine.

Continues on next page
264 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.103 GOTO - Goes to a new instruction
RobotWare - OS

It is only possible to transfer program execution to a label within an IF or TEST
instruction if the GOTO instruction is also located within the same branch of that
instruction.
It is only possible to transfer program execution to a label within a FOR or WHILE
instruction if the GOTO instruction is also located within that instruction.

Syntax
GOTO <identifier>';'

Related information

SeeFor information about

Label - Line name on page 361Label

Technical reference manual - RAPID OverviewOther instructions that change the
program flow

Technical reference manual - RAPID Instructions, Functions and Data types 265
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.103 GOTO - Goes to a new instruction

RobotWare - OS
Continued

1.104 GripLoad - Defines the payload for a robot

Usage
GripLoad is used to define the payload which the robot holds in its gripper.

Description
GripLoad specifies which load the robot is carrying. Specified load is used by the
control system so that the robot movements can be controlled in the best possible
way.
The payload is connected/disconnected using the instruction GripLoad, which
adds or subtracts the weight of the payload to the weight of the gripper.

WARNING

It is important to always define the actual tool load and, when used, the payload
of the robot (for example a gripped part). Incorrect definitions of load data can
result in overloading of the robot mechanical structure.
When incorrect load data is specified, it can often lead to the following
consequences:
• The robot will not be used to its maximum capacity
• Impaired path accuracy including a risk of overshooting
• Risk of overloading the mechanical structure

The controller continuously monitors the load and writes an event log if the load
is higher than expected. This event log is saved and logged in the controller
memory.

Basic examples
The following examples illustrate the instruction GripLoad.

Example 1
Set doGripper;

!wait to grip

WaitTime 0.3;

GripLoad piece1;

Connection of the payload, piece1, specified at the same time as the robot grips
the load.

Example 2
Reset doGripper;

!wait to release

WaitTime 0.3;

GripLoad load0;

Disconnection of a payload, specified at the same time as the robot releases a
payload.

Arguments
GripLoad Load

Continues on next page
266 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.104 GripLoad - Defines the payload for a robot
RobotWare - OS

Load

Data type: loaddata
The load data that describes the current payload.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the GripLoad instruction is not considered,
and only the loaddata in the current tooldata is used.

Program execution
The specified load applies for the next executed movement instruction until a new
GripLoad instruction is executed.
The specified load affects the performance of the robot.
The default load (load0), 0 kg, is automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.
The payload is updated for the mechanical unit that is controlled from current
program task. If GripLoad is used from a non-motion task, the payload is updated
for the mechanical unit controlled by the connected motion task.

Syntax
GripLoad

[Load ':='] < persistent (PERS) of loaddata > ';'

Related information

SeeFor information about

Operating manual - IRC5 with FlexPendant,
section Programming and testing - Service
routines

Load identification of tool load, payload or
arm load

MechUnitLoad - Defines a payload for a
mechanical unit on page 385

Define payload for mechanical units

loaddata - Load data on page 1650Definition of load data

Technical referencemanual - Systemparamet-
ers

System input signal SimMode for running
the robot in simulatedmodewithout payload.
(Topic I/O, Type System Input, Action values,
SimMode)

Technical reference manual - RAPID Instructions, Functions and Data types 267
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.104 GripLoad - Defines the payload for a robot

RobotWare - OS
Continued

1.105 HollowWristReset - Reset hollow wrist

Usage
HollowWristReset (Reset hollow wrist) resets the position of the wrist joints on
hollow wrist manipulators, such as IRB5402 and IRB5403.
The instruction makes it possible to avoid rewinding the wrist joints 4 and 5 after
they have been wound up one or more revolutions. After executing a
HollowWristReset instruction, the wrist joints may continue to wind up in the
same direction.

Description
HollowWristReset makes it easier to make application programs. You do not
have to ensure that the wrist position is within ±2 revolutions at the time of
programming, and it may save cycle time because the robot does not have to spend
time rewinding the wrist. There is a limitation of ±144 revolutions for winding up
joints 4 and 5 before the wrist position is reset by HollowWristReset. The robot
programmer must be aware of this limitation and take it into consideration when
planning the robot programs. To ensure that the 144 revolution limit is not exceeded
after running a “wrist-winding” program several times, you should always let the
robot come to a complete stop and reset the absolute position in every program
(or cycle/routine/module and so on as necessary). Note that all axes must remain
stopped during the execution of the HollowWristReset instruction. As long as
these limitations are taken into consideration, joints 4 and 5 can wind indefinitely
and independently of joint 6 during program execution.
Use HollowWristReset instead of IndReset to reset the hollow wrist as this
instruction preserves the joint limits for joint 6 to prevent too much twisting of the
paint tubes/cables.

Basic examples
The following example illustrates the instruction HollowWristReset:

Example 1
MoveL p10,v800,fine,paintgun1\WObj:=workobject1;

HollowWristReset;

All active axes are stopped by a stop point and the wrist is reset.

Limitations
All active axes must be stopped while the HollowWristReset instruction is
executed.
The wrist joints must be reset before any of them reach the ±144 revolution limit
(51840degrees/904rad).
Whenever a program stop, emergency stop, power failure stop, and so on occurs,
the controller retains the path context to be able to return to the path and let the
robot continue program execution from the point on the path at which it was
stopped. In manual mode, if the manipulator has been moved out of the path
between a stop and a restart, the operator is informed by the following message

Continues on next page
268 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.105 HollowWristReset - Reset hollow wrist
RobotWare - OS

on the FlexPendant: “Not on path! Robot has been moved after program stop.
Should the robot return to the path on Start? Yes/No/Cancel”. This provides an
opportunity of returning to the path before restart. In automatic mode, the robot
automatically returns to the path.
HollowWristReset removes the path context. This means that it is not possible
to return to the path in case of a program restart if the HollowWristReset
instruction has been executed in the meantime. If this instruction is executed
manually (“Debug + Call Routine...” in the Program Editor) it should only be
executed at a time when returning to the path is not required. That is, after a
program is completely finished, or an instruction is completely finished in
step-by-step execution and themanipulator is not moved out of the path by jogging,
and so on.

Syntax
HollowWristReset ';'

Related information

SeeFor information about

Technical reference manual - System parametersRelated system parameters

Technical reference manual - RAPID OverviewReturn to path

Technical reference manual - RAPID Instructions, Functions and Data types 269
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.105 HollowWristReset - Reset hollow wrist

RobotWare - OS
Continued

1.106 ICap - connect CAP events to trap routines

Usage
ICap is used to connect an interrupt number (which is already connected to a trap
routine) with a specific CAP Event, see Arguments below for a listing of available
Events. When using ICap, an association between a specific process event and
a user defined Trap routine is created. In other words, the Trap routine in question
is executed when the associated CAP event occurs.
We recommend placing the traps in a background task.

Basic example
Below is an example where the CAP Event CAP_START is associated with the
trap routine start_trap.

VAR intnum start_intno:=0;

...

TRAP start_trap

! This routine will be executed when the event CAP_START is
reported from the core

! Do what you want to do

ENDTRAP

PROC main()

IDelete start_intno;

CONNECT start_intno WITH start_trap;

ICap start_intno, CAP_START;

CapL p1, v100, cdata, weavestart, weave, z50, gun1;

ENDPROC

Arguments
ICap Interrupt Event

Interrupt
Data type: intnum
The interrupt identity. This should have previously been connected to a trap routine
by means of the instruction CONNECT.

Event
Data type: num
The CAP event number to be associated with the interrupt. These events are
predefined constants.

Continues on next page
270 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.106 ICap - connect CAP events to trap routines
Continuous Application Platform (CAP)

Available CAP events
See section Coupling between phases and events in Application
manual - Continuous Application Platform.

DescriptionEvent
number

PhaseEvents

This event occurs as soon as the CAP
process is started.

0CAP_START

This event occurs when the supervision
of the PRE-phase, if present, is activated.
If using a flying start no event is distrib-
uted, because there is a TCP movement
already. At a restart this event is distrib-
uted.

1PRESTART_PRE

This event occurs when all the require-
ments of the PRE Supervision list are
fulfilled, that is, when the
PRE_START-phase is started. If using a
flying start no event is distributed, be-
cause there is a TCP movement already.
At a restart this event is distributed.

2PREPRE_STARTED

This event occurs when the
PRE_START-phase is ended and the
MAIN-phase is started.

3STARTSTART_MAIN

This event occurs when all conditions of
the START Supervision list are fulfilled,
that is, when the MAIN-phase is started.

4STARTMAIN_STARTED

This event occurs, before each weave
start - but only if weave start is ordered.
If using a flying start no event is distrib-
uted, because there is a TCP movement
already. At a restart this event is distrib-
uted.

5MAINSTOP_WEAVESTART

This event occurs when the robot has re-
gained back to the path after a weave
start. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

6MAINWEAVESTART_REGAIN

This event occurs after the delay, if any,
of motion start. If using a flying start no
event is distributed, because there is a
TCP movement already. At a restart this
event is distributed.

7MAINMOTION_DELAY

This event occurs when the time to use
Start Speed runs out and it is time to
switch to main motion data.

8MAINSTARTSPEED_TIME

This event occurs when main motion is
activated with the process running.

9MAINMAIN_MOTION

This event occurs as soon as the robot
starts moving along the process path. If
using a flying start no event is distributed,
because there is a TCP movement
already. At a restart this event is distrib-
uted.

10MAINMOVE_STARTED

This event occurs when restart is ordered.11MAINRESTART

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 271
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.106 ICap - connect CAP events to trap routines

Continuous Application Platform (CAP)
Continued

DescriptionEvent
number

PhaseEvents

This event occurs when a new CapL or
CapC instruction is fetched from the
RAPID program.

12MAINNEW_INSTR

This event occurs at every robtarget on
the process path except the start and fin-
ish point.

13MAINAT_POINT

This event occurs when the robot has
jogged back, the restart distance, on the
process path after a stop.

14MAINAT_RESTARTPOINT

This event occurs at the starting point of
the last segment.

15MAINLAST_SEGMENT

This event occurs when the robot reaches
the end point of the process, that is,
where the process is supposed to be
ended. If using a flying end no event is
distributed.

16MAINPROCESS_END_POINT

This event occurs at the point on the
process path where supervision of the
end sequence is started, that is, when the
robot reaches the end point of the pro-
cess.

17END_MAINEND_MAIN

This event occurs when all conditions of
the END_MAIN supervision list are ful-
filled, that is, when the main process is
considered ended.

18END_MAINMAIN_ENDED

This event occurs when the robot reaches
the end point of the path, that is, the fine
point or the middle of the zone (for flying
end) in the last CAP instruction.

19PATH_END_POINT

This event occurs only when both the
process is ended at the fine point or the
middle of the zone (for flying end) in the
last CAP instruction.

20PROCESS_ENDED

This event occurs when it is time to end
the POST1 phase, that is, when it is time
to change from the POST1 to the
POST2-phase. If using a flying end no
event is distributed.

21END_POST1END_POST1

This event occurs when all the conditions
of the END_POST1 supervision list are
fulfilled, that is, when the POST1 phase
is successfully ended and the POST2
phase is started. If using a flying end no
event is distributed.

22END_POST1POST1_ENDED

This event occurs when the POST2 phase
is at an end, that is, when it is time to fi-
nally finish the process. If using a flying
end no event is distributed.

23END_POST2END_POST2

This event occurs when all the conditions
of the END_POST2 supervision list are
fulfilled, that is, when the POST2 phase,
and thus the whole process, is success-
fully ended. If using a flying end no event
is distributed.

24END_POST2POST2_ENDED

Continues on next page
272 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.106 ICap - connect CAP events to trap routines
Continuous Application Platform (CAP)
Continued

DescriptionEvent
number

PhaseEvents

This event is a required event. If any other
event is used, this event must be defined
too. The event/trap is executed as soon
as possible after the controller is stopped
due to an error or a program stop. An er-
ror can be a recoverable error detected
in CAP, a fatal error detected in CAP or
an internal error stopping the controller.
The code executed in this trap should
take all external equipment to a safe state,
for example, reset all external I/O-signals.

25CAP_STOP

This event occurs when restart is ordered.26MAINCAP_PF_RESTART

This event is sent, if it is ordered with the
instruction CapEquiDist.

27MAINEQUIDIST

This event occurs after restart, when the
TCP reaches the position of the supervi-
sion error.

28MAINAT_ERRORPOINT

This event occurs when using flying start.
This event is only available with flying
start.

29MAINFLY_START

This event occurs when using flying end.
This event is only available with flying
end.

30MAINFLY_END

This event occurs when RAPID execution
of the last CAP instruction is finished
during flying end. This event is only
available with flying end.

31MAINLAST_INSTR_ENDED

This event occurs when the supervision
of the PRE-phase, if present, is activated.
If using a flying start no event is distrib-
uted, because there is a TCP movement
already. At a restart this event is distrib-
uted.

32PREEND_PRE

This event occurs when the supervision
of the PRE-phase, if present, is activated.
If using a flying start no event is distrib-
uted, because there is a TCP movement
already. At a restart this event is distrib-
uted.

33PREPRE_ENDED

This event occurs when the supervision
of the POST1-phase, if present, is activ-
ated. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

34POST1START_POST1

This event occurs when the supervision
of the POST1-phase, if present, is activ-
ated. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

35POST1POST1_STARTED

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 273
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.106 ICap - connect CAP events to trap routines

Continuous Application Platform (CAP)
Continued

DescriptionEvent
number

PhaseEvents

This event occurs when the supervision
of the POST1-phase, if present, is activ-
ated. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

36POST2START_POST2

This event occurs when the supervision
of the POST1-phase, if present, is activ-
ated. If using a flying start no event is
distributed, because there is a TCP
movement already. At a restart this event
is distributed.

37POST2POST2_STARTED

Limitations
The same variable for interrupt identity cannot be used more than once, without
first deleting it. Interrupts should therefore be handled as shown in one of the
alternatives below.

PROC setup_events ()

VAR intnum start_intno;

IDelete start_intno;

CONNECT start_intno WITH start_trap;

ICap start_intno, CAP_START;

ENDPROC

All activation of interrupts is done at the beginning of the program. These
instructions are then kept outside themain flow of the program. The ICap instruction
should be executed only once, for example, from the startup system event routine.
A recommendation is that the traps should be placed in a background task.

Syntax
ICap

[Interrupt ':='] < variable (IN) of intnum > ','

[Event ':='] < variable (IN) of num > ';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

CONNECT - Connects an interrupt to a trap
routine on page 148

Connect an interrupt with a trap

IDelete - Cancels an interrupt on page 275Cancel an interrupt connected to a trap

intnum - Interrupt identity on page 1643Data type intnum

274 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.106 ICap - connect CAP events to trap routines
Continuous Application Platform (CAP)
Continued

1.107 IDelete - Cancels an interrupt

Usage
IDelete (Interrupt Delete) is used to cancel (delete) an interrupt subscription.
If the interrupt is to be only temporarily disabled, the instruction ISleep or
IDisable should be used.

Basic examples
The following example illustrates the instruction IDelete:

Example 1
IDelete feeder_low;

The interrupt feeder_low is cancelled.

Arguments
IDelete Interrupt

Interrupt

Data type: intnum
The interrupt identity.

Program execution
The definition of the interrupt is completely erased. To define it again it must first
be re-connected to the trap routine.
It is recommended to preceed IDelete with a stop point. Otherwise the interrupt
will be deactivated before the end point of the movement path is reached.
Interrupts do not have to be erased; this is done automatically when

• a new program is loaded
• the program is restarted from the beginning
• the program pointer is moved to the start of a routine

Syntax
IDelete [Interrupt ':='] < variable (VAR) of intnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewSummary of interrupts

Technical reference manual - RAPID OverviewMore information about interrupt manage-
ment

ISleep - Deactivates an interrupt on page 352Temporarily disabling an interrupt

IDisable - Disables interrupts on page 276Temporarily disabling all interrupts

Technical reference manual - RAPID Instructions, Functions and Data types 275
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.107 IDelete - Cancels an interrupt

IDelete

1.108 IDisable - Disables interrupts

Usage
IDisable(Interrupt Disable) is used to disable all interrupts temporarily. It may,
for example, be used in a particularly sensitive part of the program where no
interrupts may be permitted to take place if they disturb normal program execution.

Basic examples
The following example illustrates the instruction IDisable:

Example 1
IDisable;

FOR i FROM 1 TO 100 DO

character[i]:=ReadBin(sensor);

ENDFOR

IEnable;

No interrupts are permitted as long as the serial channel is reading.

Program execution
Interrupts that occur during the time in which an IDisable instruction is in effect
are placed in a queue. When interrupts are permitted once more, then the
interrupt(s) immediately begin generating, executed in “first in - first out” order in
the queue.
IEnable is active by default. IEnable is automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost
• after executing one cycle (passing main) or executing ExitCycle.

Syntax
IDisable';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewSummary of interrupts

Technical reference manual - RAPID OverviewMore information about interruptmanage-
ment

IEnable - Enables interrupts on page 277Permitting interrupts

276 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.108 IDisable - Disables interrupts
RobotWare - OS

1.109 IEnable - Enables interrupts

Usage
IEnable(Interrupt Enable) is used to enable interrupts during program execution.

Basic examples
The following example illustrates the instruction IEnable:

Example 1
IDisable;

FOR i FROM 1 TO 100 DO

character[i]:=ReadBin(sensor);

ENDFOR

IEnable;

No interrupts are permitted as long as the serial channel is reading. When it has
finished reading interrupts are once more permitted.

Program execution
Interrupts which occur during the time in which an IDisable instruction is in effect
are placed in a queue. When interrupts are permitted once more (IEnable), the
interrupt(s) then immediately begin generating, executed in“ first in - first out” order
in the queue. Program execution then continues in the ordinary program and
interrupts which occur after this are dealt with as soon as they occur.
Interrupts are always permitted when a program is started from the beginning.
Interrupts disabled by the ISleep instruction are not affected by the IEnable
instruction.

Syntax
IEnable';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewSummary of interrupts

Technical reference manual - RAPID OverviewMore information about interruptmanage-
ment

IDisable - Disables interrupts on page 276Permitting no interrupts

Technical reference manual - RAPID Instructions, Functions and Data types 277
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.109 IEnable - Enables interrupts

RobotWare - OS

1.110 IError - Orders an interrupt on errors

Usage
IError (Interrupt Errors) is used to order and enable an interrupt when an error
occurs.
Error, warning, or state change can be logged with IError.

Basic examples
The following example illustrates the instruction IError:
See also More examples on page 279.

Example 1
VAR intnum err_int;

...

PROC main()

CONNECT err_int WITH err_trap;

IError COMMON_ERR, TYPE_ALL, err_int;

Orders an interrupt in RAPID and execution of the TRAP routine err_trap each
time an error, warning, or state change is generated in the system.

Arguments
IError ErrorDomain [\ErrorId] ErrorType Interrupt

ErrorDomain

Data type: errdomain
The error domain that is to be monitored. See predefined data of type errdomain.
To specify any domain use COMMON_ERR.

[\ErrorId]

Data type: num
Optionally, the number of a specific error that is to be monitored. The error number
must be specified without the first digit (error domain) of the complete error number.
For example, 10008 Program restarted, must be specified as 0008 or only 8.

ErrorType

Data type: errtype
The type of event such as error, warning, or state change that is to be monitored.
See predefined data of type errtype. To specify any type use TYPE_ALL.

Interrupt

Data type: intnum
The interrupt identity. This should have been previously connected to a trap routine
by means of the instruction CONNECT.

Continues on next page
278 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.110 IError - Orders an interrupt on errors
RobotWare - OS

Program execution
The corresponding trap routine is automatically called when an error occurs in the
specified domain of the specified type and optionally with the specified error
number. When this has been executed, program execution continues from where
the interrupt occurred.

More examples
More examples of the instruction IError are illustrated below.

VAR intnum err_interrupt;

VAR trapdata err_data;

VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

PROC main()

CONNECT err_interrupt WITH trap_err;

IError COMMON_ERR, TYPE_ERR, err_interrupt;

...

IDelete err_interrupt;

...

ENDPROC

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

! Set domain no 1 ... 11

SetGO go_err1, err_domain;

! Set error no 1 ...9999

SetGO go_err2, err_number;

ENDTRAP

When an error occurs (only error, not warning or state change) the error number
is retrieved in the trap routine, and its value is used to set 2 groups of digital output
signals.

Limitation
It is not possible to order an interrupt on internal errors.
In a task of type NORMAL the event will be thrown away during program stop so not
all events can be fetched in a NORMAL task. To fetch all events the task must be
of static or semi-static type.
The same variable for interrupt identity cannot be used more than once without
first deleting it. Interrupts should therefore be handled as shown in one of the
alternatives below.

VAR intnum err_interrupt;

PROC main ()

CONNECT err_interrupt WITH err_trap;

IError COMMON_ERR, TYPE_ERR, err_interupt;

WHILE TRUE DO

:

:

ENDWHILE

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 279
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.110 IError - Orders an interrupt on errors

RobotWare - OS
Continued

ENDPROC

Interrupts are activated at the beginning of the program. These instructions in the
beginning are then kept outside the main flow of the program.

VAR intnum err_interrupt;

PROC main ()

CONNECT err_interrupt WITH err_trap;

IError COMMON_ERR, TYPE_ERR, err_interupt;

:

:

IDelete err_interrupt;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. Note, in
this case, that the interrupt is inactive for a short period.

Syntax
IError

[ErrorDomain ':='] <expression (IN) of errdomain>

['\'ErrorId':=' <expression (IN) of num>\\ ','

[ErrorType' :='] <expression (IN) of errtype> ','

[Interrupt' :='] <variable (VAR) of intnum>';'

Related information

SeeFor information about

Technical referencemanual - RAPID OverviewSummary of interrupts

Technical referencemanual - RAPID OverviewMore information on interrupt management

errdomain - Error domain on page 1619Error domains, predefined constants

errtype - Error type on page 1630Error types, predefined constants

GetTrapData - Get interrupt data for current
TRAP on page 262

Get interrupt data for current TRAP

ReadErrData - Gets information about an error
on page 583

Gets information about an error

Application manual - Controller software IRC5Advanced RAPID

280 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.110 IError - Orders an interrupt on errors
RobotWare - OS
Continued

1.111 IF - If a condition is met, then ...; otherwise ...

Usage
IF is used when different instructions are to be executed depending on whether
a condition is met or not.

Basic examples
Basic examples of the instruction IF are illustrated below.
See also More examples on page 281.

Example 1
IF reg1 > 5 THEN

Set do1;

Set do2;

ENDIF

The signals do1 and do2 are set only if reg1 is greater than 5.

Example 2
IF reg1 > 5 THEN

Set do1;

Set do2;

ELSE

Reset do1;

Reset do2;

ENDIF

The signals do1 and do2 are set or reset depending on whether reg1 is greater
than 5 or not.

Arguments
IF Condition THEN ...

{ELSEIF Condition THEN ...}

[ELSE ...]

ENDIF

Condition

Data type: bool
The condition that must be satisfied for the instructions between THEN and
ELSE/ELSEIF to be executed.

More examples
More examples of how to use the instruction IF are illustrated below.

Example 1
IF counter > 100 THEN

counter := 100;

ELSEIF counter < 0 THEN

counter := 0;

ELSE

counter := counter + 1;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 281
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.111 IF - If a condition is met, then ...; otherwise ...

RobotWare - OS

ENDIF

counter is incremented by 1. However, if the value of counter is outside the limit
0-100, counter is assigned the corresponding limit value.

Program execution
The conditions are tested in sequential order, until one of them is satisfied. Program
execution continues with the instructions associated with that condition. If none
of the conditions are satisfied, program execution continues with the instructions
following ELSE. If more than one condition is met, only the instructions associated
with the first of those conditions are executed.

Syntax
IF <conditional expression> THEN

<statement list>

{ ELSEIF <conditional expression> THEN

<statement list> | <EIT> }

[ELSE

<statement list>]

ENDIF

Related information

SeeFor information about

Technical reference manual - RAPID OverviewConditions (logical expressions)

282 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.111 IF - If a condition is met, then ...; otherwise ...
RobotWare - OS
Continued

1.112 Incr - Increments by 1

Usage
Incr is used to add 1 to a numeric variable or persistent.

Basic examples
The following example illustrates the instruction Incr:
See also More examples on page 283.

Example 1
Incr reg1;

1 is added to reg1, i.e. reg1:=reg1+1.

Arguments
Incr Name | Dname

Name

Data type: num
The name of the variable or persistent to be changed.

Dname

Data type: dnum
The name of the variable or persistent to be changed.

More examples
More examples of the instruction Incr are illustrated below.

Example 1
VAR num no_of_parts:=0;

...

WHILE stop_production=0 DO

produce_part;

Incr no_of_parts;

TPWrite "No of produced parts= "\Num:=no_of_parts;

ENDWHILE

The number of parts produced is updated each cycle on the FlexPendant.
Production continues to run as long as the input signal stop_production is not
set.

Example 2
VAR dnum no_of_parts:=0;

...

WHILE stop_production=0 DO

produce_part;

Incr no_of_parts;

TPWrite "No of produced parts= "\Dnum:=no_of_parts;

ENDWHILE

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 283
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.112 Incr - Increments by 1

RobotWare - OS

The number of parts produced is updated each cycle on the FlexPendant.
Production continues to run as long as the input signal stop_production is not
set.

Syntax
Incr

[Name ':='] < var or pers (INOUT) of num >

| [Dname' :='] < var or pers (INOUT) of dnum >' ;'

Related information

SeeFor information about

Decr - Decrements by 1 on page 174Decrementing a variable by 1

Add - Adds a numeric value on page 28Adding any value to a variable

":=" - Assigns a value on page 37Changing data using an arbitrary ex-
pression, for example, multiplication

284 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.112 Incr - Increments by 1
RobotWare - OS
Continued

1.113 IndAMove - Independent absolute position movement

Usage
IndAMove(Independent Absolute Movement) is used to change an axis to
independent mode and move the axis to a specific position.
An independent axis is an axis moving independently of other axes in the robot
system. As program execution immediately continues, it is possible to execute
other instructions (including positioning instructions) during the time the
independent axis is moving.
If the axis is to be moved within a revolution, the instruction IndRMove should be
used instead. If the move is to occur a short distance from the current position,
the instruction IndDMove must be used.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction IndAMove:
See also More examples on page 287.

Example 1
IndAMove Station_A,2\ToAbsPos:=p4,20;

Axis 2 of Station_A is moved to the position p4 at the speed 20 degrees/s.

Arguments
IndAMove MecUnit Axis [\ToAbsPos] | [\ToAbsNum] Speed [\Ramp]

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Axis

Data type: num
The number of the current axis for the mechanical unit (1-6)

[\ToAbsPos]

To Absolute Position
Data type: robtarget
Axis position specified as a robtarget. Only the component for this specific Axis
is used. The value is used as an absolute position value in degrees (mm for linear
axes).
The axis position will be affected if the axis is displaced using the instruction
EOffsSet or EOffsOn.
For robot axes the argument \ToAbsNum is to be used instead.

[\ToAbsNum]

To Absolute Numeric value
Continues on next page

Technical reference manual - RAPID Instructions, Functions and Data types 285
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.113 IndAMove - Independent absolute position movement

Independent Axis

Data type: num
Axis position defined in degrees (mm for linear axis).
Using this argument, the position will NOT be affected by any displacement, for
example, EOffsSet or PDispOn.
Same function as \ToAbsPos but the position is defined as a numeric value to
make it easy to manually change the position.

Speed

Data type: num
Axis speed in degrees/s (mm/s for linear axis).

[\Ramp]

Data type: num
Decrease acceleration and deceleration from maximum performance
(1-100%,100%=maximumperformance).

Program execution
When IndAMove is executed the specified axis moves with the programmed speed
to the specified axis position. If \Ramp is programmed there will be a reduction of
acceleration/deceleration.
To change the axis back to normal mode the IndReset instruction is used. In
connection with this the logical position of the axis can be changed so that a number
of revolutions are erased from the position, for example, to avoid rotating back for
the next movement.
The speed can be altered by executing another IndAMove instruction (or another
IndXMove instruction). If a speed in the opposite direction is selected the axis
stops and then accelerates to the new speed and direction.
For stepwise execution of the instruction the axis is set in independent mode only.
The axis begins its movement when the next instruction is executed and continues
as long as program execution takes place. For more information see RAPID
referencemanual - RAPID overview, sectionMotion and I/O principles - Positioning
during program execution - Independent axes.
When the program pointer is moved to the start of the program or to a new routine
all axes are automatically set to normal, without changing themeasurement system
(equivalent to executing the instruction IndReset\Old).

Note

An IndAMove instruction after an IndCMove operation can result in the axis
spinning back to the movement performed in the IndCMove instruction. To
prevent this, use an IndReset instruction before the IndAMove, or use an
IndRMove instruction.

Continues on next page
286 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.113 IndAMove - Independent absolute position movement
Independent Axis
Continued

Limitations
Axes in independent mode cannot be jogged. If an attempt is made to execute the
axis manually, the axis will not move and an error message will be displayed.
Execute an IndReset instruction or move the program pointer to main to leave
independent mode.
If a power fail occurs when an axis is in independent mode the program cannot be
restarted. An error message is displayed and the program must be started from
the beginning.
The instruction is not advisable for coupled robot wrist axes (see RAPID reference
manual - RAPID overview, section Motion and I/O principles - Positioning during
program execution - Independent axes).

More examples
More examples of the instruction IndAMove are illustrated below.

Example 1
ActUnit Station_A;

weld_stationA;

IndAMove Station_A,1\ToAbsNum:=90,20\Ramp:=50;

ActUnit Station_B;

weld_stationB_1;

WaitUntil IndInpos(Station_A,1) = TRUE;

WaitTime 0.2;

DeactUnit Station_A;

weld_stationB_2;

Station_A is activated and the welding is started in station A.
Station_A (axis 1) is then moved to the 90 degrees position while the robot is
welding in station B. The speed of the axis is 20 degrees/s. The speed is changed
with acceleration/deceleration reduced to 50% of max performance.
When station A reaches this position it is deactivated, and reloading can take place
in the station at the same time as the robot continues to weld in station B.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The axis is not activated.ERR_AXIS_ACT

Syntax
IndAMove

[MecUnit':='] < variable (VAR) of mecunit>' ,'

[Axis':='] < expression (IN) of num>

['\'ToAbsPos':=' < expression (IN) of robtarget>]

| ['\' ToAbsNum':=' < expression (IN) of num>] ','

[Speed ':='] < expression (IN) of num>

['\' Ramp':=' < expression (IN) of num >] ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 287
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.113 IndAMove - Independent absolute position movement

Independent Axis
Continued

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Independent axes in general

Applicationmanual - Controller software IRC5Independent Axis

IndReset - Independent reset on page 296Change back to normal mode

IndReset - Independent reset on page 296Reset the measurement system

IndRMove - Independent relative position
movement on page 301

Other independent axis movement

IndDMove - Independent delta position
movement on page 293
IndCMove - Independent continuous move-
ment on page 289

IndSpeed - Independent speed status on
page 1305

Check the speed status for independent axes

IndInpos - Independent axis in position status
on page 1303

Check the position status for independent
axes

Technical reference manual - System para-
meters, Topic Motion, Type Arm

Activating independent joints

288 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.113 IndAMove - Independent absolute position movement
Independent Axis
Continued

1.114 IndCMove - Independent continuous movement

Usage
IndCMove (Independent Continuous Movement) is used to change an axis to
independent mode and start the axis moving continuously at a specific speed.
An independent axis is an axis moving independently of other axes in the robot
system. As program execution continues immediately it is possible to execute
other instructions (including positioning instructions) during the time the
independent axis is moving.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction IndCMove:
See also More examples on page 290.

Example 1
IndCMove Station_A,2,-30.5;

Axis 2 of Station_A starts to move in a negative direction at a speed of 30.5
degrees/s.

Arguments
IndCMove MecUnit Axis Speed [\Ramp]

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Axis

Data type: num
The number of the current axis for the mechanical unit (1-6).

Speed

Data type: num
Axis speed in degrees/s (mm/s for linear axis).
The direction of movement is specified with the sign of the speed argument.

[\Ramp]

Data type: num
Decrease acceleration and deceleration from maximum performance
(1-100%,100%=maximumperformance).

Program execution
When IndCMove is executed the specified axis starts tomove with the programmed
speed. The direction of movement is specified as the sign of the speed argument.
If \Ramp is programmed there will be a reduction of acceleration/deceleration.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 289
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.114 IndCMove - Independent continuous movement

Independent Axis

To change the axis back to normal mode the IndReset instruction is used. The
logical position of the axis can be changed in connection with this - a number of
full revolutions can be erased, for example, to avoid rotating back for the next
movement.
The speed can be changed by executing a further IndCMove instruction. If a speed
in the opposite direction is ordered the axis stops and then accelerates to the new
speed and direction. To stop the axis, speed argument 0 can be used. It will then
still be in independent mode.
During stepwise execution of the instruction the axis is set in independent mode
only. The axis starts its movement when the next instruction is executed and
continues as long as program execution continues. For more information see
RAPID reference manual - RAPID overview, section Motion and I/O principles -
Positioning during program execution - Independent axes.
When the program pointer is moved to the beginning of the program or to a new
routine, all axes are set automatically to normal mode without changing the
measurement system (equivalent to executing the instruction IndReset\Old).

Limitations
The resolution of the axis position worsens the further it is moved from its logical
zero position (usually the middle of the working area). To achieve high resolution
again the logical working area can be set to zero with the instruction IndReset.
For more information see RAPID reference manual - RAPID overview, section
Motion and I/O Principles - Positioning during program execution - Independent
axes.
Axes in independent mode cannot be jogged. If an attempt is made to execute the
axis manually, the axis will not move, and an error message will be displayed.
Execute an IndReset instruction or move the program pointer to main to leave
independent mode.
If a power fail occurs when the axis is in independent mode the program cannot
be restarted. An error message is displayed, and the programmust be started from
the beginning.
The instruction is not advisable for coupled robot wrist axes (seeRAPID Reference
Manual- RAPID overview, section Motion and I/O principles - Positioning during
program execution- Independent Axes).

More examples
More examples of the instruction IndCMove are illustrated below.

IndCMove Station_A,2,20;

WaitUntil IndSpeed(Station_A,2 \InSpeed) = TRUE;

WaitTime 0.2;

MoveL p10, v1000, fine, tool1;

IndCMove Station_A,2,-10\Ramp:=50;

MoveL p20, v1000, z50, tool1;

IndRMove Station_A,2 \ToRelPos:=p1 \Short,10;

MoveL p30, v1000, fine, tool1;

WaitUntil IndInpos(Station_A,2) = TRUE;

WaitTime 0.2;

Continues on next page
290 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.114 IndCMove - Independent continuous movement
Independent Axis
Continued

IndReset Station_A,2 \RefPos:=p40\Short;

MoveL p40, v1000, fine, tool1;

Axis 2 of Station_A starts to move in a positive direction at a speed of 20
degrees/s. When this axis has reached the selected speed the robot axes start to
move.
When the robot reaches position p10 the external axis changes direction and
rotates at a speed of 10 degrees/s. The change of speed is performed with
acceleration/deceleration reduced to 50% of maximum performance. At the same
time, the robot executes towards p20.
Axis 2 of Station_A is then stopped as quickly as possible in position p1 within
the current revolution.
When axis 2 has reached this position, and the robot has stopped in position p30,
axis 2 returns to normal mode again. The measurement system offset for this axis
is changes a whole number of axis revolutions so that the actual position is as
close as possible to p40.
When the robot is then moved to position p40, axis 2 of Station_A will be moved
by the instruction MoveL p40 via the shortest route to position p40 (max ±180
degrees).

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The axis is not activated.ERR_AXIS_ACT

Syntax
IndCMove

[MecUnit':='] < variable (VAR) of mecunit>' ,'

[Axis':='] < expression (IN) of num> ','

[Speed ':='] < expression (IN) of num>

['\' Ramp':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewIndependent axes in general

Application manual - Controller software IRC5Independent Axis

IndReset - Independent reset on page 296Change back to normal mode

IndReset - Independent reset on page 296Reset the measurement system

IndAMove - Independent absolute position
movement on page 285

Other independent axis movement

IndRMove - Independent relative position move-
ment on page 301
IndDMove - Independent delta positionmovement
on page 293

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 291
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.114 IndCMove - Independent continuous movement

Independent Axis
Continued

SeeFor information about

IndSpeed - Independent speed status onpage1305Check the speed status for independent
axes

IndInpos - Independent axis in position status on
page 1303

Check the position status for independ-
ent axes

Technical referencemanual - System parameters,
Topic Motion, Type Arm

Activating independent joints

292 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.114 IndCMove - Independent continuous movement
Independent Axis
Continued

1.115 IndDMove - Independent delta position movement

Usage
IndDMove(Independent Delta Movement) is used to change an axis to independent
mode and move the axis to a specific distance.
An independent axis is an axis moving independently of other axes in the robot
system. As program execution continues immediately it is possible to execute
other instructions (including positioning instructions) during the time the
independent axis is moving.
If the axis is to be moved to a specific position, the instruction IndAMove or
IndRMove must be used instead.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction IndDMove:
See also More examples on page 294.

Example 1
IndDMove Station_A,2,-30,20;

Axis 2 of Station_A is moved 30 degrees in a negative direction at a speed of
20 degrees/s.

Arguments
IndDMove MecUnit Axis Delta Speed [\Ramp]

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Axis

Data type: num
The number of the current axis for the mechanical unit (1-6).

Delta

Data type: num
The distance which the current axis is to be moved, expressed in degrees (mm for
linear axes). The sign specifies the direction of movement.

Speed

Data type: num
Axis speed in degrees/s (mm/s for linear axis).

[\Ramp]

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 293
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.115 IndDMove - Independent delta position movement

Independent Axis

Decrease acceleration and deceleration from maximum performance
(1-100%,100%=maximumperformance).

Program execution
When IndDMove is executed the specified axis moves with the programmed speed
to the specified distance. The direction of movement is specified as the sign of the
Delta argument. If \Ramp is programmed there will be a reduction of
acceleration/deceleration.
If the axis is moving the new position is calculated from the momentary position
of the axis when the instruction IndDMove is executed. If an IndDMove instruction
with distance 0 is executed and the axis is already moving position, the axis will
stop and then move back to the position which the axis had when the instruction
was executed.
To change the axis back to normal mode the IndReset instruction is used. The
logical position of the axis can be changed in connection with this - a number of
full revolutions can be erased from the position, for example, to avoid rotating back
for the next movement.
The speed can be changed by running a further IndDMove instruction (or another
IndXMove instruction). If a speed in the opposite direction is selected the axis
stops and then accelerates to the new speed and direction.
During stepwise execution of the instruction the axis is set in independent mode
only. The axis starts its movement when the next instruction is executed and
continues as long as program execution continues. For more information see
RAPID reference manual - RAPID overview, section Motion and I/O principles -
Positioning during program execution - Independent axes.
When the program pointer is moved to the beginning of the program, or to a new
routine, all axes are automatically set to normal mode without changing the
measurement system (equivalent to running the instruction IndReset \Old).

Limitations
Axes in independent mode cannot be jogged. If an attempt is made to execute the
axis manually the axis will not move, and an error message will be displayed.
Execute an IndReset instruction or move the program pointer to main to leave
independent mode.
If a loss of power fail occurs when the axis is in independent mode the program
cannot be restarted. An error message is displayed, and the program must be
started from the beginning.
The instruction is not advisable for coupled robot wrist axes (see RAPID reference
manual - RAPID overview, section Motion and I/O principles - Positioning during
program execution - Independent axes.

More examples
More examples of the instruction IndDMove are illustrated below.

Example 1
IndAMove ROB_1,6\ToAbsNum:=90,20;

WaitUntil IndInpos(ROB_1,6) = TRUE;

Continues on next page
294 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.115 IndDMove - Independent delta position movement
Independent Axis
Continued

WaitTime 0.2;

IndDMove Station_A,2,-30,20;

WaitUntil IndInpos(ROB_1,6) = TRUE;

WaitTime 0.2;

IndDMove ROB_1,6,400,20;

Axis 6 of the robot is moved to the following positions:
• 90 degrees
• 60 degrees
• 460 degrees (1 revolution + 100 degrees)

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The axis is not activated.ERR_AXIS_ACT

Syntax
IndDMove

[MecUnit':='] < variable (VAR) of mecunit> ','

[Axis':='] < expression (IN) of num> ','

[Delta':='] < expression (IN) of num>','

[Speed '='] < expression (IN) of num>

['\' Ramp':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewIndependent axes in general

Application manual - Controller software IRC5Independent Axis

IndReset - Independent reset on page 296Change back to normal mode

IndReset - Independent reset on page 296Reset the measurement system

IndAMove - Independent absolute position move-
ment on page 285

Other independent axis movement

IndRMove - Independent relative position move-
ment on page 301
IndCMove - Independent continuous movement
on page 289

IndSpeed - Independent speed status on page1305Check the speed status for independent
axes

IndInpos - Independent axis in position status on
page 1303

Check the position status for independ-
ent axes

Technical referencemanual - System parameters,
Topic Motion, Type Arm

Activating independent joints

Technical reference manual - RAPID Instructions, Functions and Data types 295
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.115 IndDMove - Independent delta position movement

Independent Axis
Continued

1.116 IndReset - Independent reset

Usage
IndReset (Independent Reset) is used to change an independent axis back to
normal mode. At the same time, the measurement system for rotational axes can
be moved a number of axis revolutions.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction IndReset:
See also More examples on page 299.

IndCMove Station_A,2,5;

MoveL *,v1000,fine,tool1;

IndCMove Station_A,2,0;

WaitUntil IndSpeed(Station_A,2\ZeroSpeed);

WaitTime 0.2

IndReset Station_A,2;

Axis 2 of Station_A is first moved in independent mode and then changed back
to normal mode. The axis will keep its position.

Note

The current independent axis and the normal axes should not move when the
instruction IndReset is executed. That is why previous position is a stop point,
and an IndCMove instruction is executed at zero speed. Furthermore, a pause
of 0.2 seconds is used to ensure that the correct status has been achieved.

Arguments
IndReset MecUnit Axis [\RefPos] | [\RefNum] [\Short] | [\Fwd]

|[\Bwd] | \Old]

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Axis

Data type: num
The number of the current axis for the mechanical unit (1-6).

[\RefPos]

Reference Position
Data type: robtarget
Reference axis position specified as a robtarget. Only the component for this
specific Axis is used. The position must be inside the normal working range.
For robot axes, the argument \RefNum is to be used instead.

Continues on next page
296 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.116 IndReset - Independent reset
Independent Axis

The argument is only to be defined together with the argument \Short, \Fwd or
\Bwd. It is not allowed together with the argument \Old.

[\RefNum]

Reference Numeric value
Data type: num
Reference axis position defined in degrees (mm for linear axis). The position must
be inside the normal working range.
The argument is only to be defined together with the argument \Short, \Fwd or
\Bwd. It is not allowed together with the argument \Old.
Same function as \RefPos but the position is defined as a numeric value to make
it easy to change the position manually.

[\Short]

Data type: switch
The measurement system will change a whole number of revolutions on the axis
side so that the axis will be as close as possible to the specified \RefPos or
\RefNum position. If a positioning instruction with the same position is executed
after IndReset the axis will travel the shortest route, less than ±180 degrees, to
reach the position.

[\Fwd]

Forward
Data type: switch
The measurement system will change a whole number of revolutions on the axis
side so that the reference position will be on the positive side of the specified
\RefPos or \RefNum position. If a positioning instruction with the same position
is executed after IndReset, the axis will turn in a positive direction less than 360
degrees to reach the position.

[\Bwd]

Backward
Data type: switch
The measurement system will change a whole number of revolutions on the axis
side so that the reference position will be on the negative side of the specified
\RefPos or \RefNum position. If a positioning instruction with the same position
is executed after IndReset, the axis will turn in a negative direction less than 360
degrees to reach the position.

[\Old]

Data type: switch
Keeps the old position.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 297
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.116 IndReset - Independent reset

Independent Axis
Continued

Note

Resolution is decreased in positions far away from zero.
If no argument \Short, \Fwd, \Bwd or \Old is specified - \Old is used as default
value.

Program execution
When IndReset is executed it changes the independent axis back to normal mode.
At the same time the measurement system for the axis can be moved by a whole
number of axis revolutions.
The instruction may also be used in normal mode to change the measurement
system.

Note

The position is used only to adjust the measurement system - the axis will not
move to the position.

Limitations
The instructionmay only be executed when all active axes running in normal mode
are standing still. All active axes in every mechanical unit connected to the same
motion planner need to stand still. The independent mode axis which is going to
be changed to normal mode must also be stationary. For axes in normal mode this
is achieved by executing a move instruction with the argument fine. The
independent axis is stopped by an IndCMove with Speed:=0 (followed by a wait
period of 0.2 seconds), IndRMove, IndAMove, or IndDMove instruction.
The resolution of positions is decreased when moving away from logical position
0. An axis which progressively rotates further and further from the position 0 should
thus be set to zero using the instruction IndReset with an argument other than
\Old.
The measurement system cannot be changed for linear axes.
To ensure a proper start after IndReset of an axis with a relative measured
measurement system (synchronization switches) an extra time delay of 0.12
seconds must be added after the IndReset instruction.
Only robot axis 6 can be used as independent axis. The IndReset instruction can
also be used for axis 4 on IRB 1600, 2600 and 4600 models (not for ID version). If
IndReset is used on robot axis 4 then axis 6 must not be in the independent mode.
If this instruction is preceded by a move instruction, that move instruction must be
programmed with a stop point (zonedata fine), not a fly-by point. Otherwise
restart after power failure will not be possible.
IndReset cannot be executed in a RAPID routine connected to any of following
special system events: PowerOn, Stop, QStop, Restart or Step.
IndReset only switches the independent state for an axis. It cannot be used to
stop an independent movement. To stop an independent movement it has to reach
a stop condition or the user has to for example move PP to main.

Continues on next page
298 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.116 IndReset - Independent reset
Independent Axis
Continued

More examples
More examples of the instruction IndReset are illustrated below.

Example 1
IndAMove Station_A,1\ToAbsNum:=750,50;

WaitUntil IndInpos(Station_A,1);

WaitTime 0.2;

IndReset Station_A,1 \RefNum:=0 \Short;

IndAMove Station_A,1\ToAbsNum:=750,50;

WaitUntil IndInpos(Station_A,1);

WaitTime 0.2;

IndReset Station_A,1 \RefNum:=300 \Short;

Axis 1 in Station_A is first moved independently to the 750 degrees position (2
revolutions and 30 degrees). At the same time as it changes to normal mode the
logical position is set to 30 degrees.
Axis 1 in Station_A is subsequently moved to the 750 degrees position (2
revolutions and 30 degrees). At the same time as it changes to normal mode the
logical position is set to 390degrees (1 revolution and 30 degrees).

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The axis is not activated.ERR_AXIS_ACT

The axis is moving.ERR_AXIS_MOVING

Syntax
IndReset

[MecUnit':='] < variable (VAR) of mecunit> ','

[Axis ':='] < expression (IN) of num>

['\' RefPos ':=' < expression (IN) of robtarget>] |

['\' RefNum ':=' < expression (IN) of num>]

['\' Short] | ['\' Fwd] | ['\' Bwd] | ['\' Old]';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewIndependent axes in general

Application manual - Controller software IRC5Independent Axis

IndAMove - Independent absolute position move-
ment on page 285

Change an axis to independent mode

IndCMove - Independent continuous movement
on page 289
IndDMove - Independent delta positionmovement
on page 293
IndRMove - Independent relative position move-
ment on page 301

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 299
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.116 IndReset - Independent reset

Independent Axis
Continued

SeeFor information about

IndSpeed - Independent speed status on page1305Check the speed status for independent
axes

IndInpos - Independent axis in position status on
page 1303

Check the position status for independ-
ent axes

Technical referencemanual - System parameters,
Topic Motion, Type Arm

Activating independent joints

300 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.116 IndReset - Independent reset
Independent Axis
Continued

1.117 IndRMove - Independent relative position movement

Usage
IndRMove (Independent Relative Movement) is used to change a rotational axis
to independent mode andmove the axis to a specific position within one revolution.
An independent axis is an axis moving independently of other axes in the robot
system. As program execution continues immediately it is possible to execute
other instructions (including positioning instructions) during the time the
independent axis is moving.
If the axis is to be moved to an absolute position (several revolutions) or if the axis
is linear, the instruction IndAMove is used instead. If the movement is to take place
a certain distance from the current position the instruction IndDMove must be
used.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction IndRMove:
See also More examples on page 303.

Example 1
IndRMove Station_A,2\ToRelPos:=p5 \Short,20;

Axis 2 of Station_A is moved the shortest route to position p5 within one
revolution (maximum rotation ± 180 degrees) at a speed of 20 degrees/s.

Arguments
IndRMove MecUnit Axis [\ToRelPos] | [\ToRelNum] [\Short] | [\Fwd]

| [\Bwd] Speed [\Ramp]

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Axis

Data type: num
The number of the current axis for the mechanical unit (1-6).

[\ToRelPos]

To Relative Position
Data type: robtarget
Axis position specified as a robtarget. Only the component for this specific Axis
is used. The value is used as a position value in degrees within one axis revolution.
This means that the axis moves less than one revolution.
The axis position will be affected if the axis is displaced using the instruction
EOffsSet or EOffsOn.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 301
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.117 IndRMove - Independent relative position movement

Independent Axis

For robot axes the argument \ToRelNum is to be used instead.

[\ToRelNum]

To Relative Numeric value
Data type: num
Axis position defined in degrees.
Using this argument the position will NOT be affected by any displacement, e.g.
EOffsSet or PDispOn.
Same function as \ToRelPos but the position is defined as a numeric value to
make it easy to change the position manually.

[\Short]

Data type: switch
The axis is moved the shortest route to the new position. This means that the
maximum rotation will be 180 degrees in any direction. The direction of movement
therefore depends on the current location of the axis.

[\Fwd]

Forward
Data type: switch
The axis is moved in a positive direction to the new position. This means that the
maximum rotation will be 360 degrees and always in a positive direction (increased
position value).

[\Bwd]

Backward
Data type: switch
The axis is moved in a negative direction to the new position. This means that the
maximum rotation will be 360 degrees and always in a negative direction (decreased
position value).
If \Short, \Fwd or \Bwd argument is omitted, \Short is used as default value.

Speed

Data type: num
Axis speed in degrees/s.

[\Ramp]

Data type: num
Decrease acceleration and deceleration from maximum performance
(1-100%,100%=maximumperformance).

Program execution
When IndRMove is executed the specified axis moves with the programmed speed
to the specified axis position, but only a maximum of one revolution. If \Ramp is
programmed there will be a reduction of acceleration/deceleration.
To change the axis back to normal mode the IndReset instruction is used. The
logical position of the axis can be changed in connection with this - a number of

Continues on next page
302 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.117 IndRMove - Independent relative position movement
Independent Axis
Continued

full revolutions can be erased from the position, for example, to avoid rotating back
for the next movement.
The speed can be changed by running a further IndRMove instruction (or another
IndXMove instruction). If a speed in the opposite direction is selected the axis
stops and then accelerates to the new speed and direction.
During stepwise execution of the instruction the axis is set in independent mode
only. The axis starts its movement when the next instruction is executed and
continues as long as program execution continues. For more information see
RAPID reference manual - RAPID overview, section Motion and I/O principles -
Positioning during program execution- Independent axes.
When the program pointer is moved to the beginning of the program or to a new
routine, all axes are automatically set to normal mode without changing the
measurement system (equivalent to running the instruction IndReset \Old).

Limitations
Axes in independent mode cannot be jogged. If an attempt is made to execute the
axis manually the axis will not move, and an error message will be displayed.
Execute an IndReset instruction or move the program pointer to main to leave
independent mode.
If a power fail occurs when the axis is in independent mode the program cannot
be restarted. An error message is displayed, and the programmust be started from
the beginning.
The instruction is not advisable for coupled robot wrist axes (see RAPID reference
manual- RAPID overview, section Motion and I/O principles - Positioning during
program execution- Independent axes).

More examples
More examples of the instruction IndRMove are illustrated below.

Example 1
IndRMove Station_A,1\ToRelPos:=p5 \Fwd,20\Ramp:=50;

Axis 1 of Station_A starts to move in a positive direction to the position p5within
one revolution (maximum rotation 360 degrees) at a speed of 20 degrees/s. The
speed is changed with acceleration/deceleration reduced to 50% of maximum
performance.

IndAMove Station_A,1\ToAbsNum:=90,20;

WaitUntil IndInpos(Station_A,1) = TRUE;

IndRMove Station_A,1\ToRelNum:=80 \Fwd,20;

WaitTime 0.2;

WaitUntil IndInpos(Station_A,1) = TRUE;

WaitTime 0.2;

IndRMove Station_A,1\ToRelNum:=50 \Bwd,20;

WaitUntil IndInpos(Station_A,1) = TRUE;

WaitTime 0.2;

IndRMove Station_A,1\ToRelNum:=150 \Short,20;

WaitUntil IndInpos(Station_A,1) = TRUE;

WaitTime 0.2;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 303
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.117 IndRMove - Independent relative position movement

Independent Axis
Continued

IndAMove Station_A,1\ToAbsNum:=10,20;

Axis 1 of Station_A is moved to the following positions:
• 90 degrees
• 440 degrees (1 revolution + 80 degrees)
• 410 degrees (1 revolution + 50 degrees)
• 510 degrees (1 revolution + 150 degrees)
• 10 degrees

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The axis is not activated.ERR_AXIS_ACT

Syntax
IndRMove

[MecUnit ':='] < variable (VAR) of mecunit> ','

[Axis ':='] < expression (IN) of num>

['\' ToRelPos ':=' < expression (IN) of robtargets>]

| ['\' ToRelNum ':=' < expression (IN) of num>]

['\' Short] | ['\' Fwd] | ['\' Bwd] ','

[Speed ':='] < expression (IN) of num>

['\' Ramp ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewIndependent axes in general

Application manual - Controller software IRC5Independent Axis

IndReset - Independent reset on page 296Change back to normal mode

IndReset - Independent reset on page 296Reset the measurement system

IndAMove - Independent absolute position
movement on page 285

Other independent axis movement

IndDMove - Independent delta position move-
ment on page 293
IndCMove - Independent continuousmovement
on page 289

IndSpeed - Independent speed status on
page 1305

Check the speed status for independent
axes

IndInpos - Independent axis in position status
on page 1303

Check the position status for independent
axes

Technical reference manual - System paramet-
ers, Topic Motion, Type Arm

Activating independent joints

304 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.117 IndRMove - Independent relative position movement
Independent Axis
Continued

1.118 InitSuperv - Reset all supervision for CAP

Usage
InitSuperv is used to initiate CAP supervision. This means that all supervision
lists will be cleared and all I/O subscriptions will be removed.

Example
PROC main()

InitSuperv;

SetupSuperv diWR_EST, ACT,SUPERV_MAIN;

SetupSuperv diGA_EST, ACT,SUPERV_MAIN;

CapL p2, v100, cdata1, weavestart, weave,fine, tWeldGun;

ENDPROC

InitSuperv is used to clear all supervision lists before setting up new supervision.

Limitations
The InitSuperv instruction should be executed only once, for example, from the
startup shelf.

Syntax
InitSuperv ';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

SetupSuperv - Setup conditions for signal
supervision in CAP on page 709

SetupSuperv instruction

RemoveSuperv - Remove condition for one
signal on page 598

RemoveSuperv instruction

Technical reference manual - RAPID Instructions, Functions and Data types 305
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.118 InitSuperv - Reset all supervision for CAP

Continuous Application Platform (CAP)

1.119 InvertDO - Inverts the value of a digital output signal

Usage
InvertDO (Invert Digital Output) inverts the value of a digital output signal (0 -> 1
and 1 -> 0).

Basic examples
The following example illustrates the instruction InvertDO:

Example 1
InvertDO do15;

The current value of the signal do15 is inverted.

Arguments
InvertDO Signal

Signal

Data type: signaldo
The name of the signal to be inverted.

Program execution
The current value of the signal is inverted (see figure below).
The figure below shows inversion of digital output signal.

xx0500002164

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed (only valid for ICI field
bus).

ERR_SIG_NOT_VALID

Continues on next page
306 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.119 InvertDO - Inverts the value of a digital output signal
RobotWare - OS

Syntax
InvertDO

[Signal ':='] < variable (VAR) of signaldo > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 307
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.119 InvertDO - Inverts the value of a digital output signal

RobotWare - OS
Continued

1.120 IOBusStart - Start of I/O network

Usage
IOBusStart is used to start a certain I/O network.

Basic examples
The following example illustrates the instruction IOBusStart:

Example 1
IOBusStart "IBS";

The instruction start the I/O network with the name IBS.

Arguments
IOBusStart BusName

BusName

Data type: string
The name of I/O network to start.

Program execution
Start the I/O network with the name specified in the parameter BusName.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The I/O network name does not exist.ERR_NAME_INVALID

Syntax
IOBusStart

[BusName ':='] < expression (IN) of string>';'

Related information

SeeFor information about

IOBusState - Get current state of I/O network
on page 309

How to get I/O network state

Technical referencemanual - System paramet-
ers

Configuration of I/O

308 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.120 IOBusStart - Start of I/O network
RobotWare - OS

1.121 IOBusState - Get current state of I/O network

Usage
IOBusState is used to read the state of a certain I/O network. Its physical state
and logical state define the status for an I/O network.

Basic examples
The following examples illustrate the instruction IOBusState:

Example 1
VAR busstate bstate;

IOBusState "IBS", bstate \Phys;

TEST bstate

CASE IOBUS_PHYS_STATE_RUNNING:

! Possible to access the signals on the IBS bus

DEFAULT:

! Actions for not up and running IBS bus

ENDTEST

The instruction returns the physical I/O network state of IBS in the bstate variable
of type busstate.

Example 2
VAR busstate bstate;

IOBusState "IBS", bstate \Logic;

TEST bstate

CASE IOBUS_LOG_STATE_STARTED:

! The IBS bus is started

DEFAULT:

! Actions for stopped IBS bus

ENDTEST

The instruction returns the logical I/O network state of IBS in the bstate variable
of type busstate.

Arguments
IOBusState BusName State [\Phys] | [\Logic]

BusName

Data type: string
The name of I/O network to get state about.

State

Data type: busstate
The variable in which the I/O network state is returned. See predefined data of type
busstate below at Program execution.

[\Phys]

Physical

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 309
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.121 IOBusState - Get current state of I/O network

RobotWare - OS

Data type: switch
If using this parameter the physical state of the I/O network is read.

[\Logic]

Logical
Data type: switch
If using this parameter the logical state of the I/O network is read.

Program execution
Returning in parameter State the state of the I/O network that is specified in
parameter BusName.
The I/O network logical states describe the state a user can order the bus into. The
state of the I/O network is defined in the table below when using optional argument
\Logic.

CommentSymbolic constantReturn value

Bus is stopped due to error 2)IOBUS_LOG_STATE_STOPPED10

Bus is started 1)IOBUS_LOG_STATE_STARTED11

The I/O network physical state describes the state that the fieldbus driver can order
the bus into. The state of the I/O network is defined in the table below when using
optional argument \Phys.

CommentSymbolic constantReturn value

Bus is halted 3)IOBUS_PHYS_STATE_HALTED20

Bus is up and running 1)IOBUS_PHYS_STATE_RUNNING21

Bus is not working 2)IOBUS_PHYS_STATE_ERROR22

Bus is in start up mode, is not com-
municating with any I/O devices.

IOBUS_PHYS_STATE_STARTUP23

Bus is only created 3)IOBUS_PHYS_STATE_INIT24

Note

The state of the I/O network is defined in the table below when not using any of
the optional arguments \Phys or \Logic.

CommentSymbolic constantReturn value

Bus is halted3)BUSSTATE_HALTED0

Bus is up and running 1)BUSSTATE_RUN1

Bus is not working 2)BUSSTATE_ERROR2

Bus is in start up mode, is not com-
municating with any I/O devices.

BUSSTATE_STARTUP3

Bus is only created 3)BUSSTATE_INIT4

1) If the I/O network is up and running the state returned in argument State in
instruction IOBusState can be either IOBUS_LOG_STATE_STARTED,

Continues on next page
310 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.121 IOBusState - Get current state of I/O network
RobotWare - OS
Continued

IOBUS_PHYS_STATE_RUNNING, or BUSSTATE_RUN depending on if optional
parameters are used or not in IOBusState.
2) If the I/O network is stopped due to some error the state returned in argument
State can be either IOBUS_LOG_STATE_STOPPED, IOBUS_PHYS_STATE_ERROR,
or BUSSTATE_ERROR depending on if optional parameters are used or not in
IOBusState.
3) Not possible to get this state in the RAPID program with current version of
Robotware - OS.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The I/O network name does not exist.ERR_NAME_INVALID

Syntax
IOBusState

[BusName ':='] < expression (IN) of string> ','

[State ':='] < variable (VAR) of busstate>

['\' Phys] | ['\' Logic] ';'

Related information

SeeFor information about

busstate - State of I/O network on page 1567Definition of I/O network state

IOBusStart - Start of I/O network on page 308Start of I/O network

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 311
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.121 IOBusState - Get current state of I/O network

RobotWare - OS
Continued

1.122 IODisable - Deactivate an I/O device

Usage
IODisable is used to deactivate an I/O device during program execution.
I/O devices are automatically activated after start-up if they are defined in the
system parameters.When required for some reason, I/O devices can be deactivated
or activated during program execution.

Note

It is not possible to deactivate an I/O device with Unit Trustlevel set to Required.

Basic examples
The following example illustrates the instruction IODisable:
See also More examples on page 313.

Example 1
CONST string board1:="board1";

IODisable board1, 5;

Deactivate an I/O device with name board1. Wait maximum 5 seconds.

Arguments
IODisable UnitName MaxTime

UnitName

Data type: string
A name of an I/O device (the device name must be present in the system
parameters).

MaxTime

Data type: num
The maximum period of waiting time permitted expressed in seconds. If this time
runs out before the I/O device has finished the deactivation steps the error handler
will be called, if there is one, with the error code ERR_IODISABLE. If there is no
error handler the program execution will be stopped. The I/O device deactivation
steps will always continue regardless of the MaxTime or error.
To deactivate an I/O device takes about 0-5 s.

Program execution
The specified I/O device starts the deactivation steps. The instruction is ready
when the deactivation steps are finished. If the MaxTime runs out before the I/O
device has finished the deactivation steps, a recoverable error will be generated.
After deactivation of an I/O device, any setting of outputs on this unit will result in
an error.

Continues on next page
312 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.122 IODisable - Deactivate an I/O device
RobotWare - OS

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The waiting time expires before the I/O device is deactiv-
ated.

ERR_IODISABLE

The I/O device name does not exist.ERR_NAME_INVALID

The I/O device cannot be deactivated if the Unit Trustlevel
is set to Required.

ERR_TRUSTLEVEL

More examples
More examples of the instruction IODisable are illustrated below.

Example 1
PROC go_home()

VAR num recover_flag :=0;

...

! Start to deactivate I/O unit board1

recover_flag := 1;

IODisable "board1", 0;

! Move to home position

MoveJ home, v1000,fine,tool1;

! Wait until deactivation of I/O unit board1 is ready

recover_flag := 2;

IODisable "board1", 5;

...

ERROR

IF ERRNO = ERR_IODISABLE THEN

IF recover_flag = 1 THEN

TRYNEXT;

ELSEIF recover_flag = 2 THEN

IF RemaningRetries() > 0 THEN

RETRY;

ELSE

RAISE;

ENDIF

ENDIF

ELSE

ErrWrite "IODisable error", "Not possible to deactivate I/O
unit board1";

Stop;

ENDIF

ENDPROC

To save cycle time the I/O device board1 is deactivated during robot movement
to the home position. With the robot at the home position a test is done to establish
whether or not the I/O device board1 is fully deactivated. After the max. number
of retries (4 with a waiting time of 5 s), the robot execution will stop with an error
message.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 313
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.122 IODisable - Deactivate an I/O device

RobotWare - OS
Continued

The same principle can be used with IOEnable (this will save more cycle time
compared with IODisable).

Syntax
IODisable

[UnitName ':='] < expression (IN) of string> ','

[MaxTime ':='] < expression (IN) of num> ';'

Related information

SeeFor information about

IOEnable - Activate an I/O device on page 315Activating an I/O device

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output function in general

Technical referencemanual - System parametersConfiguration of I/O

314 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.122 IODisable - Deactivate an I/O device
RobotWare - OS
Continued

1.123 IOEnable - Activate an I/O device

Usage
IOEnable is used to activate an I/O device during program execution.
I/O devices are automatically activated after start-up if they are defined in the
system parameters.When required for some reason I/O devices can be deactivated
or activated during program execution.
The controller action when activating an I/O device depends on the defined Unit
Trustlevel in the system parameters.

Basic examples
The following example illustrates the instruction IOEnable:
See also More examples on page 316.

Example 1
CONST string board1:="board1";

IOEnable board1, 5;

Activate an I/O device with name board1. Wait max. 5 s.

Arguments
IOEnable UnitName MaxTime

UnitName

Data type: string
A name of an I/O device (the I/O device name must be present in the system
parameters).

MaxTime

Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the I/O device has finished the activation steps the error handler
will be called, if there is one, with the error code ERR_IOENABLE. If there is no error
handler the execution will be stopped. The I/O device activation steps will always
continue regardless of MaxTime or error.
To activate an I/O device takes about 2-5 s.

Program execution
The specified I/O device starts the activation steps. The instruction is ready when
the activation steps are finished. If the MaxTime runs out before the I/O device has
finished the activation steps a recoverable error will be generated.
After a sequence of IODisable - IOEnable, all outputs on the current I/O device
will be set to the old values (before IODisable).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 315
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.123 IOEnable - Activate an I/O device

RobotWare - OS

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The time out time runs out before the I/O device is activated.ERR_IOENABLE

The I/O device name does not existERR_NAME_INVALID

The I/O network is in error state or enters error state before
the I/O device is activated.

ERR_BUSSTATE

More examples
IOEnable can also be used to check whether some I/O device is disconnected
for some reason.
More examples of how to use the instruction IOEnable are illustrated below.

Example 1
VAR num max_retry:=0;

...

IOEnable "board1", 0;

SetDO board1_sig3, 1;

...

ERROR

IF ERRNO = ERR_IOENABLE THEN

IF RemaningRetries() > 0 THEN

WaitTime 1;

RETRY;

ELSE

RAISE;

ENDIF

ELSE

ErrWrite "IOEnable error", "Not possible to activate I/O unit
board1";

Stop;

ENDIF

Before using signals on the I/O device board1, a test is done by trying to activate
the I/O device with time-out after 0 sec. If the test fails a jump is made to the error
handler. In the error handler the program execution waits for 1 sec. and a new
retry is made. After 4 retry attempts the error ERR_IOENABLE is propagated to the
caller of this routine.

Syntax
IOEnable

[UnitName ':='] < expression (IN) of string>' ,'

[MaxTime' :='] < expression (IN) of num > ';'

Related information

SeeFor information about

IODisable - Deactivate an I/O device on page 312Deactivating an I/O device

Continues on next page
316 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.123 IOEnable - Activate an I/O device
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 317
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.123 IOEnable - Activate an I/O device

RobotWare - OS
Continued

1.124 IPathPos - Get center line robtarget when weaving

Usage
IPathPos is used to retrieve the position of the center line during weaving with
CAP.
This function is mainly used together with the tracking functionality. It is necessary
to activate weaving and the synchronization signals on both the left side and the
right side.

Basic example
connect intpt, TRP_ipathpos IPathPos p_robt, sen_pos, intpt;

When p_robt gets a new calculated value, the interrupt intpt will be sent, and
the TRAP TRP_ipathpos will be executed.

Arguments
IPathPos p_robt, sen_pos, intpt [\NoDispl] [\EOffs]

p_robt
Data type: robtarget
p_robt keeps the latest value of the calculated robtarget.

sen_pos
Data type: pos
sen_pos is not used.

intpt
Data type: intno
intpt specifies the interrupt that will be received each time a new value is assigned
to p_robt.

[\NoDispl]
Data type: switch
If \NoDispl is specified, the value returned in the PERS p_robt will not include
any displacement that might be specified using the RAPID instructions PDispSet
and PDispOn.

[\EOffs]
Data type: switch
If [\EOffs] is specified, the value returned in the PERS p_robt will include any
offset specified using the RAPID instruction EOffsSet.

Limitations
It is necessary to activate weaving and weave synchronization (with or without
tracking).

Syntax
IPathPos

[p_robt ':='] < persistent (PERS) of robtarget > ','

Continues on next page
318 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.124 IPathPos - Get center line robtarget when weaving
Continuous Application Platform (CAP)

[sen_pos ':='] < persistent (PERS) of pos > ','

[Interrupt ':='] < variable (IN) of intnum >

['\' EOffs]

['\' NoDispl] ';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

CapWeaveSync - set up signals and levels
for weave synchronization on page 115

CapWeaveSync instruction

CapAPTrSetup - Setup an At-Point-Tracker
on page 71

CapAPTrSetup instruction

CapLATrSetup - Set up a Look-Ahead-
Tracker on page 106

CapLATrSetup instruction

Technical reference manual - RAPID Instructions, Functions and Data types 319
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.124 IPathPos - Get center line robtarget when weaving

Continuous Application Platform (CAP)
Continued

1.125 IPers - Interrupt at value change of a persistent variable

Usage
IPers (Interrupt Persistent) is used to order and enable interrupts to be generated
when the value of a persistent variable is changed.

Basic examples
The following examples illustrates the instruction IPers:

Example 1
VAR intnum pers1int;

PERS num counter := 0;

PROC main()

CONNECT pers1int WITH iroutine1;

IPers counter, pers1int;

...

IDelete pers1int;

ENDPROC

TRAP iroutine1

TPWrite "Current value of counter = " \Num:=counter;

ENDTRAP

Orders an interrupt which is to occur each time the persistent variable counter
is changed. A call is then made to the iroutine1 trap routine.

Arguments
IPers [\Single] | [\SingleSafe] Name Interrupt

[\Single]

Data type: switch
Specifies whether the interrupt is to occur once or cyclically.
If the argument Single is set, the interrupt occurs once at the most. If the Single
and SingleSafe arguments is omitted, an interrupt will occur each time its
condition is satisfied.

[\SingleSafe]

Data type: switch
Specifies that the interrupt is single and safe. For definition of single, see description
of Single argument. A safe interrupt cannot be put in sleepwith instruction ISleep.
The safe interrupt event will be queued at program stop and stepwise execution,
and when starting in continious mode again, the interrupt will be executed. The
only time a safe interrupt will be thrown is when the interrupt queue is full. Then
an error will be reported. The interrupt will not survive program reset, e.g. PP to
main.

Name

Data type: anytype

Continues on next page
320 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.125 IPers - Interrupt at value change of a persistent variable
RobotWare - OS

The persistent variable that is to generate interrupts.
All type of data could be used such as atomic, record, record component, array,
or array element.

Interrupt

Data type: intnum
The interrupt identity. This should have previously been connected to a trap routine
by means of the instruction CONNECT.

Program execution
When the persistent variable changes value a call is made to the corresponding
trap routine. When this routine has been executed program execution continues
from where the interrupt occurred.
If the persistent variable changes value during a program stop no interrupt will
occur when the program starts again.

Limitations
The same variable for interrupt identity cannot be used more than once without
first deleting it. See Instructions - ISignalDI.
If subscribed on data such as record component or array element specified in
parameter Name, the interrupt will occur every time any part of the data is changed.
When executing the trap routine and reading the value of the persistent, there is
no guarantee that the value read is the one that triggered the interrupt.

Syntax
IPers

['\' Single] | ['\' SingleSafe] ','

[Name ':='] < persistent (PERS) of anytype > ','

[Interrupt' :='] < variable (VAR) of intnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Summary of interrupts and interrupt manage-
ment

ISignalDI - Orders interrupts from a digital
input signal on page 340

Interrupt from an input signal

intnum - Interrupt identity on page 1643Interrupt identity

Application manual - Controller software
IRC5

Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 321
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.125 IPers - Interrupt at value change of a persistent variable

RobotWare - OS
Continued

1.126 IRMQMessage - Orders RMQ interrupts for a data type

Usage
IRMQMessage (Interrupt RAPID Message Queue Message) is used to order and
enable interrupts for a specific data type when using RMQ function.

Basic examples
The following example illustrates the instruction IRMQMessage:
See also IRMQMessage - Orders RMQ interrupts for a data type on page 322.

Example 1
VAR intnum rmqint;

VAR string dummy;

...

PROC main()

CONNECT rmqint WITH iroutine1;

IRMQMessage dummy, rmqint;

Orders an interrupt which is to occur each time a new rmqmessage containing the
data type string is received. A call is then made to the iroutine1TRAP routine.

Arguments
IRMQMessage InterruptDataType Interrupt

InterruptDataType

Data type: anytype
A reference to a variable, persistent or constant of a data type that will generate
an interrupt when a rmqmessage with the specified data type is received.

Interrupt

Data type: intnum
The interrupt identity. This should have previously been connected to a TRAP
routine by means of the instruction CONNECT.

Program execution
When the RMQ message with the specified data type is received, a call is made
to the corresponding TRAP routine. When this has been executed, program
execution continues from where the interrupt occurred.
All messages containing data of the same data type regardless of number of
dimensions will be handled by the same interrupt. If using different dimensions,
use RMQGetMsgHeader to adapt for this.
Any message containing data of a data type that no interrupt is connected to will
genererate a warning.
The RMQSendWait instruction has the highest priority if a message is received and
it fits the description for both the expected answer and a message connected to a
TRAP routine with instruction IRMQMessage.
Not all data types can be used in argument InterruptDataType (see limitations).

Continues on next page
322 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.126 IRMQMessage - Orders RMQ interrupts for a data type
FlexPendant Interface, PC Interface, or Multitasking

The interrupt is considered to be a safe interrupt. A safe interrupt cannot be put in
sleep with instruction ISleep. The safe interrupt event will be queued at program
stop and stepwise execution, and when starting in continuous mode again, the
interrupt will be executed. The only time a safe interrupt will be thrown is when the
interrupt queue is full. Then an error will be reported. The interrupt will not survive
program reset, e.g. PP to main.

More examples
More examples of how to use the instruction IRMQMessage are illustrated below.

Example 1
MODULE ReceiverMod

VAR intnum intno1;

VAR rmqheader rmqheader1;

VAR rmqslot rmqslot1;

VAR rmqmessage rmqmessage1;

PROC main()

VAR string interrupt_on_str := stEmpty;

CONNECT intno1 WITH RecMsgs;

! Set up interrupts for data type string

IRMQMessage interrupt_on_str, intno1;

! Perform cycle

WHILE TRUE DO

...

ENDWHILE

ENDPROC

TRAP RecMsgs

VAR string receivestr;

VAR string client_name;

VAR num userdef;

! Get the message from the RMQ

RMQGetMessage rmqmessage1;

! Get information about the message

RMQGetMsgHeader rmqmessage1 \Header:=rmqheader1
\SenderId:=rmqslot1 \UserDef:=userdef;

IF rmqheader1.datatype = "string" AND rmqheader1.ndim = 0 THEN

! Get the data received in rmqmessage1

RMQGetMsgData rmqmessage1, receivestr;

client_name := RMQGetSlotName(rmqslot1);

TPWrite "Rec string: " + receivestr;

TPWrite "User Def: " + ValToStr(userdef);

TPWrite "From: " + client_name;

ELSE

TPWrite "Faulty data received!"

ENDIF

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 323
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.126 IRMQMessage - Orders RMQ interrupts for a data type

FlexPendant Interface, PC Interface, or Multitasking
Continued

ENDTRAP

ENDMODULE

The example show how to set up interrupts for a specific data type. When a
message is received, the TRAPRecMsgs is executed and the received data in the
message is printed to the FlexPendant. If the data type received or the dimension
of the data is different from the expected, this is printed to the FlexPendant.

Limitations
It is not allowed to execute IRMQMessage in synchronous mode. That will cause
a fatal runtime error.
It is not possible to setup interrupts, send or receive data instances of data types
that are of non-value, semi-value types or data type motsetdata.
The same variable for interrupt identity cannot be used more than once without
first deleting it. Interrupts should therefore be handled as shown in one of the
alternatives below.

VAR intnum rmqint;

PROC main ()

VAR mytype dummy;

CONNECT rmq1int WITH iroutine1;

IRMQMessage dummy, rmqint;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These beginning
instructions are then kept outside the main flow of the program.

VAR intnum rmqint;

PROC main ()

VAR mytype dummy;

CONNECT rmqint WITH iroutine1;

IRMQMessage dummy, rmqint;

...

IDelete rmqint;

ENDPROC

The interrupt is deleted at the end of the program, and is then reactivated. Note,
in this case, the interrupt is inactive for a short period.

Syntax
IRMQMessage

[InterruptDataType ':='] < reference (REF) of anytype >

[Interrupt ':='] < variable (VAR) of intnum >';'

Related information

SeeFor information about

Applicationmanual - Controller software IRC5Description of the RAPID Message Queue
functionality

RMQFindSlot - Find a slot identity from the
slot name on page 618

Send data to the queue of a RAPID task or
Robot Application Builder client.

Continues on next page
324 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.126 IRMQMessage - Orders RMQ interrupts for a data type
FlexPendant Interface, PC Interface, or Multitasking
Continued

SeeFor information about

RMQGetMessage - Get an RMQmessage on
page 620

Get the first message from a RAPIDMessage
Queue.

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636

Send data to the queue of a RAPID task or
Robot Application Builder client, and wait for
an answer from the client.

RMQGetMsgHeader - Get header information
from an RMQ message on page 626

Extract the header data from a rmqmessage.

RMQSendMessage - Send an RMQ data
message on page 632

Send data to the queue of a RAPID task or
Robot Application Builder client.

RMQGetMsgData - Get the data part from an
RMQ message on page 623

Extract the data from a rmqmessage.

RMQGetSlotName - Get the name of an RMQ
client on page 1413

Get the slot name from a specified slot iden-
tity.

Technical reference manual - RAPID Instructions, Functions and Data types 325
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.126 IRMQMessage - Orders RMQ interrupts for a data type

FlexPendant Interface, PC Interface, or Multitasking
Continued

1.127 ISignalAI - Interrupts from analog input signal

Usage
ISignalAI (Interrupt Signal Analog Input) is used to order and enable interrupts
from an analog input signal.

Basic examples
The following examples illustrate the instruction ISignalAI:

Example 1
VAR intnum sig1int;

PROC main()

CONNECT sig1int WITH iroutine1;

ISignalAI \Single, ai1, AIO_BETWEEN, 1.5, 0.5, 0, sig1int;

Orders an interrupt which is to occur the first time the logical value of the analog
input signal ai1 is between 0.5 and 1.5. A call is then made to the iroutine1
trap routine.

Example 2
ISignalAI ai1, AIO_BETWEEN, 1.5, 0.5, 0.1, sig1int;

Orders an interrupt which is to occur each time the logical value of the analog input
signal ai1 is between 0.5 and 1.5, and the absolute signal difference compared
to the stored reference value is bigger than 0.1.

Example 3
ISignalAI ai1, AIO_OUTSIDE, 1.5, 0.5, 0.1, sig1int;

Orders an interrupt which is to occur each time the logical value of the analog input
signal ai1 is lower than 0.5 or higher than 1.5, and the absolute signal difference
compared to the stored reference value is bigger than 0.1.

Arguments
ISignalAI [\Single] | [\SingleSafe] Signal Condition HighValue

LowValue DeltaValue [\DPos] | [\DNeg] Interrupt

[\Single]

Data type: switch
Specifies whether the interrupt is to occur once or cyclically. If the argument Single
is set, the interrupt occurs once at the most. If the Single and SingleSafe
arguments is omitted, an interrupt will occur each time its condition is satisfied.

[\SingleSafe]

Data type: switch
Specifies that the interrupt is single and safe. For definition of single, see description
of Single argument. A safe interrupt cannot be put in sleepwith instruction ISleep.
The safe interrupt event will be queued at program stop and stepwise execution,
and when starting in continuous mode again, the interrupt will be executed. The
only time a safe interrupt will be thrown is when the interrupt queue is full. Then
an error will be reported. The interrupt will not survive program reset, e.g. PP to
main.

Continues on next page
326 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal
RobotWare - OS

Signal

Data type: signalai
The name of the signal that is to generate interrupts.

Condition

Data type: aiotrigg
Specifies how HighValue and LowValue define the condition to be satisfied:

CommentSymbolic constantValue

Signal will generate interrupts if above specified high valueAIO_ABOVE_HIGH1

Signal will generate interrupts if below specified high valueAIO_BELOW_HIGH2

Signal will generate interrupts if above specified low valueAIO_ABOVE_LOW3

Signal will generate interrupts if below specified low valueAIO_BELOW_LOW4

Signal will generate interrupts if between specified low and
high values

AIO_BETWEEN5

Signal will generate interrupts if below specified low value
or above specified high value

AIO_OUTSIDE6

Signal will always generate interruptsAIO_ALWAYS7

HighValue

Data type: num
High logical value to define the condition.

LowValue

Data type: num
Low logical value to define the condition.

DeltaValue

Data type: num
Defines the minimum logical signal difference before generation of a new interrupt.
The current signal value compared to the stored reference value must be greater
than the specified DeltaValue before generation of a new interrupt.

[\DPos]

Data type: switch
Specifies that only positive logical signal differences will give new interrupts.

[\DNeg]

Data type: switch
Specifies that only negative logical signal differences will give new interrupts.
If none of \DPos and \DNeg argument is used, both positive and negative
differences will generate new interrupts.

Interrupt

Data type: intnum
The interrupt identity. This interrupt should have previously been connected to a
trap routine by means of the instruction CONNECT.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 327
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal

RobotWare - OS
Continued

Program execution
When the signal fulfils the specified conditions (both Condition and DeltaValue)
a call is made to the corresponding trap routine. When this has been executed,
program execution continues from where the interrupt occurred.

Conditions for interrupt generation
Before the interrupt subscription is ordered, each time the signal is sampled, the
value of the signal is read, saved, and later used as a reference value for the
DeltaValue condition.
At the interrupt subscription time if specified DeltaValue = 0 and after the interrupt
subscription time, the signal is sampled. The signal value is then compared to
HighValue and LowValue according to Condition and with consideration to
DeltaValue to decide if an interrupt should be generated or not. If the new read
value satisfies the specified HighValue and LowValueCondition, but its
difference compared to the last stored reference value is less or equal to the
DeltaValue argument, no interrupt occurs. If the signal difference is not in the
specified direction no interrupts will occur (argument\DPos or \DNeg).
The stored reference value for the DeltaValue condition is updated with a newly
read value for later use at any sample if the following conditions are satisfied:

• Argument Condition with specified HighValue and LowValue (within
limits)

• Argument DeltaValue (sufficient signal change in any direction
independently of specified switch \DPos or \DNeg)

The reference value is only updated at the sample time, not at the interrupt
subscription time.
An interrupt is also generated at the sample for update of the reference value if
the direction of the signal difference is in accordance with the specified argument
(any direction, \DPos0, or \DNeg).
When the \Single switch is used only one interrupt at the most will be generated.
If the switch \Single (cyclic interrupt) is not used a new test of the specified
conditions (both Condition and DeltaValue) is made at every sample of the
signal value. A comparison is made between the current signal value and the last
stored reference value to decide if an interrupt should be generated or not.

Continues on next page
328 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal
RobotWare - OS
Continued

Condition for interrupt generation at interrupt subscription time

xx0500002165

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 329
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal

RobotWare - OS
Continued

Condition for interrupt generation at each sample after interrupt subscription

xx0500002166

Continues on next page
330 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal
RobotWare - OS
Continued

Example 1 of interrupt generation

xx0500002167

Assuming the interrupt is ordered between sample 0 and 1, the following instruction
will give the following results:

ISignalAI ai1, AIO_BETWEEN, 6.1, 2.2, 1.0, sig1int;

Sample 1 will generate an interrupt because the signal value is between HighValue
and LowValue and the signal difference compared to Sample 0 is more than
DeltaValue.
Sample 2 will generate an interrupt because the signal value is between HighValue
and LowValue and the signal difference compared to Sample 1 is more than
DeltaValue.
Samples 3, 4, 5 will not generate any interrupt because the signal difference is less
than DeltaValue.
Sample 6 will generate an interrupt.
Samples 7 to 10 will not generate any interrupt because the signal is above
HighValue.
Sample 11 will not generate any interrupt because the signal difference compared
to Sample 6 is equal to DeltaValue.
Sample 12 will not generate any interrupt because the signal difference compared
to Sample 6 is less than DeltaValue.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 331
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal

RobotWare - OS
Continued

Example 2 of interrupt generation

xx0500002168

Assuming the interrupt is ordered between sample 0 and 1, the following instruction
will give the following results:

ISignalAI ai1, AIO_BETWEEN, 6.1, 2.2, 1.0 \DPos, sig1int;

A new reference value is stored at sample 1 and 2 because the signal is within
limits and the absolute signal difference between the current value and the last
stored reference value is greater than 1.0. No interrupt will be generated because
the signal changes are in the negative direction.
Sample 6 will generate an interrupt because the signal value is between HighValue
and LowValue, and the signal difference in the positive direction compared to
sample 2 is more than DeltaValue.

Continues on next page
332 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal
RobotWare - OS
Continued

Example 3 of interrupt generation

xx0500002169

Assuming the interrupt is ordered between sample 0 and 1, the following instruction
will give the following results:

ISignalAI \Single, ai1, AIO_OUTSIDE, 6.1, 2.2, 1.0 \DPos, sig1int;

A new reference value is stored at sample 7 because the signal is within limits and
the absolute signal difference between the current value and the last stored
reference value is greater than 1.0
sample 8 will generate an interrupt because the signal value is above HighValue,
and the signal difference in the positive direction compared to sample 7 is more
than DeltaValue.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 333
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal

RobotWare - OS
Continued

Example 4 of interrupt generation

xx0500002170

Assuming the interrupt is ordered between sample 0 and 1, the following instruction
will give the following results:

ISignalAI ai1, AIO_ALWAYS, 6.1, 2.2, 1.0 \DPos, sig1int;

A new reference value is stored at sample 1 and 2 because the signal is within
limits and the absolute signal difference between the current value and the last
stored reference value is greater than 1.0
Sample 6 will generate an interrupt because the signal difference in the positive
direction compared to sample 2 is more than DeltaValue.
Sample 7 and 8 will generate an interrupt because the signal difference in the
positive direction compared to previous sample is more than DeltaValue.
A new reference value is stored at sample 11 and 12 because the signal is within
limits, and the absolute signal difference between the current value and the last
stored reference value is greater than 1.0

Error handling
If there is a subscription of interrupt on an analog input signal, an interrupt will be
given for every change in the analog value that satisfies the condition specified
when ordering the interrupt subscription. If the analog value is noisymany interrupts
can be generated even if only one or two bits in the analog value are changed.
To avoid generating interrupts for small changes of the analog input value, set the
DeltaValue to a level greater than 0. Then no interrupts will be generated until a
change of the analog value is greater than the specified DeltaValue.

Continues on next page
334 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal
RobotWare - OS
Continued

The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

The programmed HighValue or LowValue argument for
the specified analog input signal Signal is outside limits.

ERR_AO_LIM

There is no contact with the I/O device.ERR_NORUNUNIT

Limitations
The HighValue and LowValue arguments should be in the range: logical maximum
value, logical minimum value defined for the signal.
HighValue must be above LowValue.
DeltaValue must be 0 or positive.
The limitations for the interrupt identity are the same as for ISignalDI.

Syntax
ISignalAI

['\' Single] | ['\' SingleSafe] ','

[Signal ':='] <variable (VAR) of signalai> ','

[Condition ':='] <expression (IN) of aiotrigg> ','

[HighValue ':='] <expression (IN) of num> ','

[LowValue ':='] <expression (IN) of num> ','

[DeltaValue ':='] <expression (IN) of num>

[['\'DPos] | ['\' DNeg] ',']

[Interrupt ':='] <variable (VAR) of intnum> ';'

Related information

SeeFor information about

Technical referencemanual - RAPIDOverviewSummary of interrupts and interrupt man-
agement

aiotrigg - Analog I/O trigger condition on
page 1561

Definition of constants

ISignalAO - Interrupts from analog output sig-
nal on page 336

Interrupt from analog output signal

ISignalDI - Orders interrupts from a digital input
signal on page 340

Interrupt from digital input signal

ISignalDO - Interrupts from a digital output
signal on page 343

Interrupt from digital output signal

intnum - Interrupt identity on page 1643Interrupt identity

Technical referencemanual - System paramet-
ers

Related system parameters (filter)

Technical reference manual - RAPID Instructions, Functions and Data types 335
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.127 ISignalAI - Interrupts from analog input signal

RobotWare - OS
Continued

1.128 ISignalAO - Interrupts from analog output signal

Usage
ISignalAO (Interrupt Signal Analog Output) is used to order and enable interrupts
from an analog output signal.

Basic examples
The following examples illustrate the instruction ISignalAO:

Example 1
VAR intnum sig1int;

PROC main()

CONNECT sig1int WITH iroutine1;

ISignalAO \Single, ao1, AIO_BETWEEN, 1.5, 0.5, 0, sig1int;

Orders an interrupt which is to occur the first time the logical value of the analog
output signal ao1 is between 0.5 and 1.5. A call is then made to the iroutine1
trap routine.

Example 2
ISignalAO ao1, AIO_BETWEEN, 1.5, 0.5, 0.1, sig1int;

Orders an interrupt which is to occur each time the logical value of the analog
output signal ao1 is between 0.5 and 1.5, and the absolute signal difference
compared to the previous stored reference value is bigger than 0.1.

Example 3
ISignalAO ao1, AIO_OUTSIDE, 1.5, 0.5, 0.1, sig1int;

Orders an interrupt which is to occur each time the logical value of the analog
output signal ao1 is lower than 0.5 or higher than 1.5, and the absolute signal
difference compared to the previous stored reference value is bigger than 0.1.

Arguments
ISignalAO [\Single] | [\SingleSafe] Signal Condition HighValue

LowValue DeltaValue [\DPos] | [\DNeg] Interrupt

[\Single]

Data type: switch
Specifies whether the interrupt is to occur once or cyclically. If the argument Single
is set the interrupt occurs once at the most. If the Single and SingleSafe
argument is omitted an interrupt will occur each time its condition is satisfied.

[\SingleSafe]

Data type: switch
Specifies that the interrupt is single and safe. For definition of single, see description
of Single argument. A safe interrupt cannot be put in sleepwith instruction ISleep.
The safe interrupt event will be queued at program stop and stepwise execution,
and when starting in continuous mode again, the interrupt will be executed. The
only time a safe interrupt will be thrown is when the interrupt queue is full. Then
an error will be reported. The interrupt will not survive program reset, e.g. PP to
main.

Continues on next page
336 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.128 ISignalAO - Interrupts from analog output signal
RobotWare - OS

Signal

Data type: signalao
The name of the signal that is to generate interrupts.

Condition

Data type: aiotrigg
Specifies how HighValue and LowValue define the condition to be satisfied:

CommentSymbolic constantValue

Signal will generate interrupts if above specified high valueAIO_ABOVE_HIGH1

Signal will generate interrupts if below specified high valueAIO_BELOW_HIGH2

Signal will generate interrupts if above specified low valueAIO_ABOVE_LOW3

Signal will generate interrupts if below specified low valueAIO_BELOW_LOW4

Signal will generate interrupts if between specified low and
high values

AIO_BETWEEN5

Signal will generate interrupts if below specified low value
or above specified high value

AIO_OUTSIDE6

Signal will always generate interruptsAIO_ALWAYS7

HighValue

Data type: num
High logical value to define the condition.

LowValue

Data type: num
Low logical value to define the condition.

DeltaValue

Data type: num
Defines the minimum logical signal difference before generation of a new interrupt.
The current signal value compared to the previous stored reference value must
be greater than the specified DeltaValue before generation of a new interrupt.

[\DPos]

Data type: switch
Specifies that only positive logical signal differences will give new interrupts.

[\DNeg]

Data type: switch
Specifies that only negative logical signal differences will give new interrupts.
If neither of the \DPos and \DNeg arguments are used, both positive and negative
differences will generate new interrupts.

Interrupt

Data type: intnum
The interrupt identity. This interrupt should have previously been connected to a
trap routine by means of the instruction CONNECT.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 337
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.128 ISignalAO - Interrupts from analog output signal

RobotWare - OS
Continued

Program execution
See instruction ISignalAI for information about:

• Program execution
• Condition for interrupt generation
• More examples

Same principles are valid for ISignalAO as for ISignalAI.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

The programmed HighValue or LowValue argument for
the specified analog input signal Signal is outside limits.

ERR_AO_LIM

There is no contact with the I/O device.ERR_NORUNUNIT

Limitations
The HighValue and LowValue arguments should be in the range: logical maximum
value, logical minimum value, defined for the signal.
HighValue must be above LowValue.
DeltaValue must be 0 or positive.
The limitations for the interrupt identity are the same as for ISignalDO.

Syntax
ISignalAO

['\' Single] | ['\' SingleSafe] ','

[Signal':=']<variable (VAR) of signalao>',’

[Condition':=']<expression (IN) of aiotrigg>','

[HighValue':=']<expression (IN) of num>','

[LowValue':=']<expression (IN) of num>','

[DeltaValue':=']<expression (IN) of num>

[['\'DPos] | ['\'DNeg] ',']

[Interrupt':=']<variable (VAR) of intnum>';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Summary of interrupts and interrupt manage-
ment

aiotrigg - Analog I/O trigger condition on
page 1561

Definition of constants

ISignalAI - Interrupts from analog input signal
on page 326

Interrupt from analog input signal

ISignalDI - Orders interrupts from a digital
input signal on page 340

Interrupt from digital input signal

Continues on next page
338 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.128 ISignalAO - Interrupts from analog output signal
RobotWare - OS
Continued

SeeFor information about

ISignalDO - Interrupts from a digital output
signal on page 343

Interrupt from digital output signal

intnum - Interrupt identity on page 1643Interrupt identity

Technical reference manual - System para-
meters

Related system parameters (filter)

Technical reference manual - RAPID Instructions, Functions and Data types 339
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.128 ISignalAO - Interrupts from analog output signal

RobotWare - OS
Continued

1.129 ISignalDI - Orders interrupts from a digital input signal

Usage
ISignalDI (Interrupt Signal Digital In) is used to order and enable interrupts from
a digital input signal.

Basic examples
The following examples illustrate the instruction ISignalDI:

Example 1
VAR intnum sig1int;

PROC main()

CONNECT sig1int WITH iroutine1;

ISignalDI di1,1,sig1int;

Orders an interrupt which is to occur each time the digital input signal di1 is set
to 1. A call is then made to the iroutine1 trap routine.

Example 2
ISignalDI di1,0,sig1int;

Orders an interrupt which is to occur each time the digital input signal di1 is set
to 0.

Example 3
ISignalDI \Single, di1,1,sig1int;

Orders an interrupt which is to occur only the first time the digital input signal di1
is set to 1.

Arguments
ISignalDI [\Single] | [\SingleSafe] Signal TriggValue Interrupt

[\Single]

Data type: switch
Specifies whether the interrupt is to occur once or cyclically.
If the argument Single is set, the interrupt occurs once at the most. If the Single
and SingleSafe arguments is omitted, an interrupt will occur each time its
condition is satisfied.

[\SingleSafe]

Data type: switch
Specifies that the interrupt is single and safe. For definition of single, see description
of Single argument. A safe interrupt cannot be put in sleepwith instruction ISleep.
The safe interrupt event will be queued at program stop and stepwise execution,
and when starting in continuous mode again, the interrupt will be executed. The
only time a safe interrupt will be thrown is when the interrupt queue is full. Then
an error will be reported. The interrupt will not survive program reset, e.g. PP to
main.

Signal

Data type: signaldi

Continues on next page
340 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.129 ISignalDI - Orders interrupts from a digital input signal
RobotWare - OS

The name of the signal that is to generate interrupts.

TriggValue

Data type: dionum
The value to which the signal must change for an interrupt to occur.
The value is specified as 0 or 1 or as a symbolic value (e.g. high/low). The signal
is edge-triggered upon changeover to 0 or 1.
TriggValue 2 or symbolic value edge can be used for generation of interrupts
on both positive flank (0 -> 1) and negative flank (1 -> 0).

Interrupt

Data type: intnum
The interrupt identity. This should have previously been connected to a trap routine
by means of the instruction CONNECT.

Program execution
When the signal assumes the specified value a call is made to the corresponding
trap routine. When this has been executed, program execution continues from
where the interrupt occurred.
If the signal changes to the specified value before the interrupt is ordered no
interrupt occurs. Interrupts from a digital input signal at signal level 1 is illustrated
in the figure below.

xx0500002189

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 341
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.129 ISignalDI - Orders interrupts from a digital input signal

RobotWare - OS
Continued

Limitations
The same variable for interrupt identity cannot be used more than once without
first deleting it. Interrupts should therefore be handled as shown in one of the
alternatives below.

VAR intnum sig1int;

PROC main ()

CONNECT sig1int WITH iroutine1;

ISignalDI di1, 1, sig1int;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These beginning
instructions are then kept outside the main flow of the program.

VAR intnum sig1int;

PROC main ()

CONNECT sig1int WITH iroutine1;

ISignalDI di1, 1, sig1int;

...

IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. Note, in
this case, that the interrupt is inactive for a short period.

Syntax
ISignalDI

['\' Single] | ['\' SingleSafe] ','

[Signal ':='] < variable (VAR) of signaldi > ','

[TriggValue' :='] < expression (IN) of dionum > ','

[Interrupt' :='] < variable (VAR) of intnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewSummary of interrupts and interrupt
management

ISignalDO - Interrupts from a digital output signal on
page 343

Interrupt from an output signal

intnum - Interrupt identity on page 1643Interrupt identity

342 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.129 ISignalDI - Orders interrupts from a digital input signal
RobotWare - OS
Continued

1.130 ISignalDO - Interrupts from a digital output signal

Usage
ISignalDO (Interrupt Signal Digital Out) is used to order and enable interrupts
from a digital output signal.

Basic examples
The following examples illustrate the instruction ISignalDO:

Example 1
VAR intnum sig1int;

PROC main()

CONNECT sig1int WITH iroutine1;

ISignalDO do1,1,sig1int;

Orders an interrupt which is to occur each time the digital output signal do1 is set
to 1. A call is then made to the iroutine1 trap routine.

Example 2
ISignalDO do1,0,sig1int;

Orders an interrupt which is to occur each time the digital output signal do1 is set
to 0.

Example 3
ISignalDO\Single, do1,1,sig1int;

Orders an interrupt which is to occur only the first time the digital output signal
do1 is set to 1.

Arguments
ISignalDO [\Single] | [\SingleSafe] Signal TriggValue Interrupt

[\Single]

Data type: switch
Specifies whether the interrupt is to occur once or cyclically.
If the argument Single is set, the interrupt occurs once at the most. If the Single
and SingleSafe arguments is omitted, an interrupt will occur each time its
condition is satisfied.

[\SingleSafe]

Data type: switch
Specifies that the interrupt is single and safe. For definition of single, see description
of Single argument. A safe interrupt cannot be put in sleepwith instruction ISleep.
The safe interrupt event will be queued at program stop and stepwise execution,
and when starting in continuous mode again, the interrupt will be executed. The
only time a safe interrupt will be thrown is when the interrupt queue is full. Then
an error will be reported. The interrupt will not survive program reset, e.g. PP to
main.

Signal

Data type: signaldo

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 343
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.130 ISignalDO - Interrupts from a digital output signal

RobotWare - OS

The name of the signal that is to generate interrupts.

TriggValue

Data type: dionum
The value to which the signal must change for an interrupt to occur.
The value is specified as 0 or 1 or as a symbolic value (e.g. high/low). The signal
is edge-triggered upon changeover to 0 or 1.
TriggValue 2 or symbolic value edge can be used for generation of interrupts
on both positive flank (0 -> 1) and negative flank (1 -> 0).

Interrupt

Data type: intnum
The interrupt identity. This should have previously been connected to a trap routine
by means of the instruction CONNECT.

Program execution
When the signal assumes the specified value 0 or 1, a call is made to the
corresponding trap routine. When this has been executed program execution
continues from where the interrupt occurred.
If the signal changes to the specified value before the interrupt is ordered no
interrupt occurs. Interrupts from a digital output signal at signal level 1 is illustrated
in the figure below.

xx0500002190

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Continues on next page
344 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.130 ISignalDO - Interrupts from a digital output signal
RobotWare - OS
Continued

Limitations
The same variable for interrupt identity cannot be used more than once without
first deleting it. Interrupts should therefore be handled as shown in one of the
alternatives below.

VAR intnum sig1int;

PROC main ()

CONNECT sig1int WITH iroutine1;

ISignalDO do1, 1, sig1int;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These beginning
instructions are then kept outside the main flow of the program.

VAR intnum sig1int;

PROC main ()

CONNECT sig1int WITH iroutine1;

ISignalDO do1, 1, sig1int;

...

IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. Note, in
this case, that the interrupt is inactive for a short period.

Syntax
ISignalDO

['\' Single] | ['\' SingleSafe] ','

[Signal ':='] < variable (VAR) of signaldo > ','

[TriggValue' :='] < expression (IN) of dionum > ','

[Interrupt' :='] < variable (VAR) of intnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Summary of interrupts and interrupt manage-
ment

ISignalDI - Orders interrupts from a digital
input signal on page 340

Interrupt from an input signal

intnum - Interrupt identity on page 1643Interrupt identity

Technical reference manual - RAPID Instructions, Functions and Data types 345
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.130 ISignalDO - Interrupts from a digital output signal

RobotWare - OS
Continued

1.131 ISignalGI - Orders interrupts from a group of digital input signals

Usage
ISignalGI (Interrupt Signal Group Digital In) is used to order and enable interrupts
from a group of digital input signals.

Basic examples
The following example illustrates the instruction ISignalGI:

Example 1
VAR intnum sig1int;

PROC main()

CONNECT sig1int WITH iroutine1;

ISignalGI gi1,sig1int;

Orders an interrupt when a digital input group signal changes value.

Arguments
ISignalGI [\Single] | [\SingleSafe] Signal Interrupt

[\Single]

Data type: switch
Specifies whether the interrupt is to occur once or cyclically.
If the argument Single is set, the interrupt occurs once at the most. If the Single
and SingleSafe arguments is omitted, an interrupt will occur each time its
condition is satisfied.

[\SingleSafe]

Data type: switch
Specifies that the interrupt is single and safe. For definition of single, see description
of Single argument. A safe interrupt cannot be put in sleepwith instruction ISleep.
The safe interrupt event will be queued at program stop and stepwise execution,
and when starting in continuous mode again, the interrupt will be executed. The
only time a safe interrupt will be thrown is when the interrupt queue is full. Then
an error will be reported. The interrupt will not survive program reset, e.g. PP to
main.

Signal

Data type: signalgi
The name of the group input signal that generates interrupts.

Interrupt

Data type: intnum
The interrupt identity. This should have previously been connected to a trap routine
by means of the instruction CONNECT.

Continues on next page
346 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.131 ISignalGI - Orders interrupts from a group of digital input signals
RobotWare - OS

Program execution
When the group signal changes value a call is made to the corresponding trap
routine. When this has been executed program execution continues from where
the interrupt occurred.
If the signal changes before the interrupt is ordered no interrupt occurs.
When a digital group input signal is set to a value, this can generate several
interrupts. The reason for this is that changes of the individual bits included in the
group signal is not detected at the same time of the robot system. To avoid multiple
interrupts for one group signal change, a filter time can be defined for the signal.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Limitations
Maximum number of signals that can be used for a group is 32.
Numeric value condition cannot be used in the instruction to specify that an interrupt
should occur on changes to that specific value. This must be handled in the user
program by reading the group signal value at execution of the TRAP.
The interrupts are generated as bit interrupts, e.g. interrupts on single digital input
signal change within the group. If the bits in the group signal change value with a
delay between settings, several interrupts will be generated. Knowledege about
how the I/O board works is necessary to get right function when using ISignalGI.
If several interrupts are generated at group input settings, use instead ISignalDI
on a strobe signal that are set when all bits in the group signal have been set.
The same variable for interrupt identity cannot be used more than once without
first deleting it. Interrupts should therefore be handled as shown in one of the
alternatives below.

VAR intnum sig1int;

PROC main ()

CONNECT sig1int WITH iroutine1;

ISignalGI gi1, sig1int;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These beginning
instructions are then kept outside the main flow of the program.

VAR intnum sig1int;

PROC main ()

CONNECT sig1int WITH iroutine1;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 347
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.131 ISignalGI - Orders interrupts from a group of digital input signals

RobotWare - OS
Continued

ISignalGI gi1, sig1int;

...

IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. It should
be noted, in this case, that the interrupt is inactive for a short period.

Syntax
ISignalGI

['\' Single] | ['\' SingleSafe] ','

[Signal ':='] < variable (VAR) of signalgi > ','

[Interrupt':='] < variable (VAR) of intnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewSummary of interrupts and interrupt
management

ISignalDI - Orders interrupts from a digital input signal
on page 340

Interrupt from an input signal

ISignalGO - Orders interrupts from a group of digital
output signals on page 349

Interrupt from group output signals

intnum - Interrupt identity on page 1643Interrupt identity

Technical reference manual - System parametersFilter time

348 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.131 ISignalGI - Orders interrupts from a group of digital input signals
RobotWare - OS
Continued

1.132 ISignalGO - Orders interrupts from a group of digital output signals

Usage
ISignalGO (Interrupt Signal Group Digital Out) is used to order and enable
interrupts from a group of digital output signals.

Basic examples
The following example illustrates the instruction ISignalGO:

Example 1
VAR intnum sig1int;

PROC main()

CONNECT sig1int WITH iroutine1;

ISignalGO go1,sig1int;

Orders an interrupt when a digital output group signal change value.

Arguments
ISignalGO [\Single] | [\SingleSafe] Signal Interrupt

[\Single]

Data type: switch
Specifies whether the interrupt is to occur once or cyclically.
If the argument \Single is set, the interrupt occurs once at the most. If the Single
and SingleSafe arguments is omitted, an interrupt will occur each time its
condition is satisfied.

[\SingleSafe]

Data type: switch
Specifies that the interrupt is single and safe. For definition of single, see description
of Single argument. A safe interrupt cannot be put in sleepwith instruction ISleep.
The safe interrupt event will be queued at program stop and stepwise execution,
and when starting in continuous mode again, the interrupt will be executed. The
only time a safe interrupt will be thrown is when the interrupt queue is full. Then
an error will be reported. The interrupt will not survive program reset, e.g. PP to
main.

Signal

Data type: signalgo
The name of the group output signal that generates interrupts.

Interrupt

Data type: intnum
The interrupt identity. This should have previously been connected to a trap routine
by means of the instruction CONNECT.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 349
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.132 ISignalGO - Orders interrupts from a group of digital output signals

RobotWare - OS

Program execution
When the group signal changes value a call is made to the corresponding trap
routine. When this has been executed program execution continues from where
the interrupt occurred.
If the signal changes before the interrupt is ordered no interrupt occurs.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Limitations
Maximum number of signals that can be used for a group is 32.
Numeric value condition cannot be used in the instruction to specify that an interrupt
should occur on changes to that specific value. This must be handled in the user
program by reading the group signal value at execution of the TRAP.
The same variable for interrupt identity cannot be used more than once without
first deleting it. Interrupts should therefore be handled as shown in one of the
alternatives below.

VAR intnum sig1int;

PROC main ()

CONNECT sig1int WITH iroutine1;

ISignalGO go1, sig1int;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These beginning
instructions are then kept outside the main flow of the program.

VAR intnum sig1int;

PROC main ()

CONNECT sig1int WITH iroutine1;

ISignalGO go1, sig1int;

...

IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. Note, in
this case, that the interrupt is inactive for a short period.

Syntax
ISignalGO

['\' Single] | ['\' SingleSafe] ','

[Signal ':='] < variable (VAR) of signalgo > ','

Continues on next page
350 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.132 ISignalGO - Orders interrupts from a group of digital output signals
RobotWare - OS
Continued

[Interrupt':='] < variable (VAR) of intnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Summary of interrupts and interruptmanage-
ment

ISignalDO - Interrupts from a digital output
signal on page 343

Interrupt from an output signal

ISignalGI - Orders interrupts from a group of
digital input signals on page 346

Interrupt from group input signals

intnum - Interrupt identity on page 1643Interrupt identity

Technical reference manual - RAPID Instructions, Functions and Data types 351
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.132 ISignalGO - Orders interrupts from a group of digital output signals

RobotWare - OS
Continued

1.133 ISleep - Deactivates an interrupt

Usage
ISleep(Interrupt Sleep) is used to deactivate an individual interrupt temporarily.
During the deactivation time any generated interrupts of the specified type are
discarded without any trap execution.

Basic examples
The following example illustrates the instruction ISleep.
See also More examples on page 352.

Example 1
ISleep sig1int;

The interrupt sig1int is deactivated.

Arguments
ISleep Interrupt

Interrupt

Data type: intnum
The variable (interrupt identity) of the interrupt.

Program execution
Any generated interrupts of the specified type are discarded without any trap
execution until the interrupt has been re-activated by means of the instruction
IWatch. Interrupts which are generated while ISleep is in effect are ignored.

More examples
More examples of the instruction ISleep are illustrated below.

Example 1
VAR intnum timeint;

PROC main()

CONNECT timeint WITH check_serialch;

ITimer 60, timeint;

...

ISleep timeint;

WriteBin ch1, buffer, 30;

IWatch timeint;

...

TRAP check_serialch

WriteBin ch1, buffer, 1;

IF ReadBin(ch1\Time:=5) < 0 THEN

TPWrite "The serial communication is broken";

EXIT;

ENDIF

ENDTRAP

Continues on next page
352 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.133 ISleep - Deactivates an interrupt
RobotWare - OS

Communication across the ch1 serial channel is monitored by means of interrupts
which are generated every 60 seconds. The trap routine checks whether the
communication is working. The interrupts are not permittedwhen the communication
is in progress.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The interrupt number is unknown.ERR_UNKINO

Interrupts which have neither been ordered nor enabled
are not permitted.

If trying to deactivate a safe interrupt temporarily with
ISleep.

ERR_INOISSAFE

Syntax
ISleep

[Interrupt ':='] < variable (VAR) of intnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewSummary of interrupts

IWatch - Activates an interrupt on page 359Enabling an interrupt

IDisable - Disables interrupts on page 276Disabling all interrupts

IDelete - Cancels an interrupt on page 275Cancelling an interrupt

Technical reference manual - RAPID Instructions, Functions and Data types 353
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.133 ISleep - Deactivates an interrupt

RobotWare - OS
Continued

1.134 ITimer - Orders a timed interrupt

Usage
ITimer (Interrupt Timer) is used to order and enable a timed interrupt.
This instruction can be used, for example, to check the status of peripheral
equipment once every minute.

Basic examples
The following examples illustrate the instruction ITimer:
See also More examples on page 355.

Example 1
VAR intnum timeint;

PROC main()

CONNECT timeint WITH iroutine1;

ITimer 60, timeint;

Orders an interrupt that is to occur cyclically every 60 seconds. A call is thenmade
to the trap routine iroutine1.

Example 2
ITimer \Single, 60, timeint;

Orders an interrupt that is to occur once, after 60 seconds.

Arguments
ITimer [\Single] | [\SingleSafe] Time Interrupt

[\Single]

Data type: switch
Specifies whether the interrupt is to occur once or cyclically.
If the argument Single is set, the interrupt occurs only once. If the Single and
SingleSafe arguments is omitted, an interrupt will occur each time at the specified
time.

[\SingleSafe]

Data type: switch
Specifies that the interrupt is single and safe. For definition of single, see description
of Single argument. A safe interrupt cannot be put in sleepwith instruction ISleep.
The safe interrupt event will be queued at program stop and stepwise execution,
and when starting in continuous mode again, the interrupt will be executed.

Time

Data type: num
The amount of time that must lapse before the interrupt occurs.
The value is specified in seconds. If Single or SingleSafe is set this time may
not be less than 0.01 seconds. The corresponding time for cyclical interrupts is
0.1 seconds.

Continues on next page
354 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.134 ITimer - Orders a timed interrupt
RobotWare - OS

Interrupt

Data type: intnum
The variable (interrupt identity) of the interrupt. This should have previously been
connected to a trap routine by means of the instruction CONNECT.

Program execution
The corresponding trap routine is automatically called at a given time following
the interrupt order. When this has been executed program execution continues
from where the interrupt occurred.
If the interrupt occurs cyclically a new computation of time is started from when
the interrupt occurs.

More examples
More examples of the instruction ITimer are illustrated below.

Example 1
VAR intnum timeint;

PROC main()

CONNECT timeint WITH check_serialch;

ITimer 60, timeint;

...

TRAP check_serialch

WriteBin ch1, buffer, 1;

IF ReadBin(ch1\Time:=5) < 0 THEN

TPWrite "The serial communication is broken";

EXIT;

ENDIF

ENDTRAP

Communication across the ch1 serial channel is monitored by means of interrupts
which are generated every 60 seconds. The trap routine checks whether the
communication is working. If it is not program execution is terminated and an error
message appears.

Limitations
The same variable for interrupt identity cannot be used more than once without
being first deleted. See Instructions - ISignalDI.

Syntax
ITimer

['\' Single] | ['\' SingleSafe] ','

[Time ':='] < expression (IN) of num >','

[Interrupt' :='] < variable (VAR) of intnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Summary of interrupts and interrupt manage-
ment

Technical reference manual - RAPID Instructions, Functions and Data types 355
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.134 ITimer - Orders a timed interrupt

RobotWare - OS
Continued

1.135 IVarValue - orders a variable value interrupt

Usage
IVarValue (Interrupt Variable Value) is used to order and enable an interrupt
when the value of a variable accessed via the serial sensor interface has been
changed.
This instruction can be used, for example, to get seam volume or gap values from
a seam tracker.

Basic examples
The following example illustrates the instruction IVarValue:

Example 1
LOCAL PERS num

adptVlt{25}:=[1,1.2,1.4,1.6,1.8,2,2.16667,2.33333,2.5,...];

LOCAL PERS num
adptWfd{25}:=[2,2.2,2.4,2.6,2.8,3,3.16667,3.33333,3.5,...];

LOCAL PERS num
adptSpd{25}:=10,12,14,16,18,20,21.6667,23.3333,25[,...];

LOCAL CONST num GAP_VARIABLE_NO:=11;

PERS num gap_value;

VAR intnum IntAdap;

PROC main()

! Setup the interrupt. The trap routine AdapTrp will be called

! when the gap variable with number ´GAP_VARIABLE_NO’ in the

!sensor interface has been changed. The new value will be

! available in the PERS gp_value variable.

! Connect to the sensor device "sen1:" (defined in sio.cfg).

SenDevice "sen1:";

CONNECT IntAdap WITH AdapTrp;

IVarValue "sen1:", GAP_VARIABLE_NO, gap_value, IntAdap;

! Start welding

ArcL\On,*,v100,adaptSm,adaptWd,adaptWv,z10,tool\j\Track:=track;

ArcL\On,*,v100,adaptSm,adaptWd,adaptWv,z10,tool\j\Track:=track;

ENDPROC

TRAP AdapTrap

VAR num ArrInd;

!Scale the raw gap value received

ArrInd:=ArrIndx(gap_value);

! Update active welddata PERS variable ‘adaptWd’ with new data

! from the arrays of predefined parameter arrays. The scaled gap

! value is used as index in the voltage, wirefeed and

! speed arrays.

adaptWd.weld_voltage:=adptVlt{ArrInd};

Continues on next page
356 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.135 IVarValue - orders a variable value interrupt
Optical Tracking

adaptWd.weld_wirefeed:=adptWfd{ArrInd};

adaptWd.weld_speed:=adptSpd{ArrInd};

!Request a refresh of AW parameters using the new data i adaptWd

ArcRefresh;

ENDTRAP

Arguments
IVarValue device VarNo Value Interrupt [\Unit] [\DeadBand]

[\ReportAtTool] [\SpeedAdapt] [\APTR]

device

Data type: string
The I/O device name configured in sio.cfg for the sensor used.

VarNo

Data type: num
The number of the variable to be supervised.

Value

Data type: num
A PERS variable which will hold the new value of VarNo.

Interrupt

Data type: intnum
The variable (interrupt identity) of the interrupt. This should have previously been
connected to a trap routine by means of the instruction CONNECT.

[\Unit]

Data type: num
Scale factor with which the sensor value for VarNo is multiplied before check and
before it is saved in Value.

[\DeadBand]

Data type: num
If the value for Varno, returned by the sensor, is within +/- DeadBand no interrupt
is generated.

[\ReportAtTool]

Data type: switch
This optional argument is only available for sensors of look-ahead type, for example
optical tracking sensors. The argument specifies that the value of the variable shall
not be evaluated at once but when the robot TCP reaches the position, i.e. the
look-ahead is compensated.

[\SpeedAdapt]

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 357
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.135 IVarValue - orders a variable value interrupt

Optical Tracking
Continued

\SpeedAdapt is a scale factor used to change the process speed in Arc and Cap
instructions. It is multiplied with the sensor value for VarNo according to:
process speed = \SpeedAdapt * value(VarNo)

[\APTR]

Data type: switch
Specifies that the subscription of the variable should be coupled to the at-point
tracker, for example WeldGuide, specified in the argument device.

Program execution
The corresponding trap routine is automatically called at a given time following
the interrupt order. When this has been executed program execution continues
from where the interrupt occurred.

Limitations
• The same variable for interrupt identity cannot be used more than five times

without first being deleted.
• All interrupts that are setup with IVarValue must be setup again after a

controller restart.

CAUTION

Too high interrupt frequency will stall the whole RAPID execution.

Syntax
IVarValue

[device ':='] < expression (IN) of string> ','

[VarNo ':='] < expression (IN) of num > ','

[Value ':='] < persistent (PERS) of num > ','

[Interrupt ':='] < variable (VAR) of intnum > ','

['\' Unit ':='] < expression (IN) of num > ','

['\' DeadBand ':='] < expression (IN) of num > ','

['\' ReportAtTool] ','

['\' SpeedAdapt ':='] < expression (IN) of num > ','

['\' APTR] ';'

Related information

SeeFor information about

SenDevice - connect to a sensor device on page680Connect to a sensor device

Technical reference manual - RAPID OverviewSummary of interrupts and interrupt
management

Application manual - Continuous Application Plat-
form

Optical Tracking

Application manual - Arc and Arc SensorOptical Tracking Arc

358 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.135 IVarValue - orders a variable value interrupt
Optical Tracking
Continued

1.136 IWatch - Activates an interrupt

Usage
IWatch(Interrupt Watch) is used to activate an interrupt which was previously
ordered but was deactivated with ISleep.

Basic examples
The following example illustrates the instruction IWatch:
See also More examples on page 359.

Example 1
IWatch sig1int;

The interrupt sig1int that was previously deactivated is activated.

Arguments
IWatch Interrupt

Interrupt

Data type: intnum
Variable (interrupt identity) of the interrupt.

Program execution
Re-activates interrupts of the specified type. Interrupts generated during the time
the ISleep instruction was in effect are ignored.

More examples
More examples of the instruction IWatch are illustrated below.

Example 1
VAR intnum sig1int;

PROC main()

CONNECT sig1int WITH iroutine1;

ISignalDI di1,1,sig1int;

...

ISleep sig1int;

weldpart1;

IWatch sig1int;

During execution of the weldpart1 routine no interrupts are permitted from the
signal di1.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The interrupt number is unknown.ERR_UNKINO

Interrupts which have neither been ordered nor enabled
are not permitted.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 359
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.136 IWatch - Activates an interrupt

RobotWare - OS

Syntax
IWatch

[Interrupt ':='] < variable (VAR) of intnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Summary of interrupts

ISleep - Deactivates an interrupt on page352Deactivating an interrupt

360 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.136 IWatch - Activates an interrupt
RobotWare - OS
Continued

1.137 Label - Line name

Usage
Label is used to name a line in the program. Using the GOTO instruction this name
can then be used to move program execution within the same routine.

Basic examples
The following example illustrates the instruction Label:

Example 1
GOTO next;

...

next:

Program execution continues with the instruction following next.

Arguments
Label:

Label

Identifier
The name you wish to give the line.

Program execution
Nothing happens when you execute this instruction.

Limitations
The label must not be the same as

• any other label within the same routine.
• any data name within the same routine.

A label hides global data and routines with the same name within the routine it is
located in.

Syntax
<identifier>':'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewIdentifiers

GOTO - Goes to a new instruction on page 264Moving program execution to a label

Technical reference manual - RAPID Instructions, Functions and Data types 361
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.137 Label - Line name

RobotWare - OS

1.138 Load - Load a program module during execution

Usage
Load is used to load a programmodule into the programmemory during execution.
The loaded program module will be added to the already existing modules in the
program memory.
A program or system module can be loaded in static (default) or dynamic mode.
Both static and dynamic loaded modules can be unloaded by the instruction
UnLoad.

Static mode
The following table describes how different operations affect static loaded program
or system modules.

Open new RAPID programSet PP to main from FlexPend-
ant

Type of module

UnloadedNot affectedProgram Module

Not affectedNot affectedSystem Module

Dynamic mode
The following table describes how different operations affect dynamic loaded
program or system modules.

Open new RAPID programSet PP to main from FlexPend-
ant

Type of module

UnloadedUnloadedProgram Module

UnloadedUnloadedSystem Module

Basic examples
The following examples illustrate the instruction Load:
See also More examples on page 363.

Example 1
Load \Dynamic, diskhome \File:="PART_A.MOD";

Loads the program module PART_A.MOD from the diskhome into the program
memory. diskhome is a predefined string constant "HOME:". Load the program
module in the dynamic mode.

Example 2
Load \Dynamic, diskhome \File:="PART_A.MOD";

Load \Dynamic, diskhome \File:="PART_B.MOD" \CheckRef;

Loads the program module PART_A.MOD into the program memory, then
PART_B.MOD is loaded. If PART_A.MOD contains references to PART_B.MOD,
\CheckRef can be used to check for unresolved references only when the last
module is loaded. IF \CheckRef is used on PART_A.MOD, a link error would occur
and the module would not be loaded.

Arguments
Load [\Dynamic] FilePath [\File] [\CheckRef]

Continues on next page
362 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.138 Load - Load a program module during execution
RobotWare - OS

[\Dynamic]

Data type: switch
The switch enables load of a module in dynamic mode. Otherwise the load is in
static mode.

FilePath

Data type: string
The file path and the file name to the file that will be loaded into the program
memory. The file name shall be excluded when the argument \File is used.

[\File]

Data type: string
When the file name is excluded in the argument FilePath then it must be defined
with this argument.

[\CheckRef]

Data type: switch
Check after loading of the module for unsolved references in the program task. If
not used no check for unsolved references are done.

Program execution
Program executionwaits for the programmodule to finish loading before proceeding
with the next instruction.
Unresolved references will always be accepted for the loading operation, if
parameter \CheckRef is not used, but it will be a run time error on execution of
an unresolved reference.
After the programmodule is loaded it will be linked and initialized. The initialization
of the loaded module sets all variables at module level to their unit values.
If any error from the loading operation, including unresolved references if use of
switch \CheckRef, the loadedmodule will not be available anymore in the program
memory.
To obtain a good program structure that is easy to understand and maintain, all
loading and unloading of program modules should be done from the main module
which is always present in the program memory during execution.
For loading of program that contains a main procedure to a main program (with
another main procedure), see example in More examples on page 363 below.

More examples
More examples of how to use the instruction Load are illustrated below.

More general examples
Load \Dynamic, "HOME:/DOORDIR/DOOR1.MOD";

Loads the program module DOOR1.MOD from HOME: at the directory DOORDIR into
the program memory. The program module is loaded in the dynamic mode.

Load "HOME:" \File:="DOORDIR/DOOR1.MOD";

Same as above but another syntax, and the module is loaded in the static mode.
Load\Dynamic, "HOME:/DOORDIR/DOOR1.MOD";

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 363
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.138 Load - Load a program module during execution

RobotWare - OS
Continued

%"routine_x"%;

UnLoad "HOME:/DOORDIR/DOOR1.MOD";

Procedure routine_x, will be binded during execution (late binding).

Loaded module contains a main procedure

car.mod:
MODULE car

PROC main()

...

TEST part

CASE door_part:

Load \Dynamic, "HOME:/door.mod";

%door:main%;

Unload "HOME:/door.mod";

CASE window_part:

Load \Dynamic, "HOME:/window.mod";

%window:main%;

Unload \Save "HOME:/window.mod";

ENDTEST

ENDPROC

ENDMODULE

door.mod:
MODULE door

PROC main()

...

ENDPROC

ENDMODULE

window.mod:
MODULE window

PROC main()

...

ENDPROC

ENDMODULE

The above example shows how you can load a module which includes a main
procedure. This module can have been developed and tested separately and later
loaded with Load or StartLoad... WaitLoad into the system using some type
of main program framework. In this example car.mod, which loads other modules
door.mod or window.mod.
In the module car.mod you load door.mod or window.mod located at "HOME:".
Because the main procedures in door.mod and window.mod after the loading
are considered LOCAL in the module by the system, the procedure calls are made
in the following way: %"door:main"% or %"window: main"%. This syntax is used
when youwant to get access to LOCAL procedures in othermodules in this example
procedure main in module door or module window.

Continues on next page
364 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.138 Load - Load a program module during execution
RobotWare - OS
Continued

Unloading themodules with \Save argument will again make the main procedures
global in the saved program.
If you, when the module car or window are loaded in the system, set program
pointer to main from any part of the program, the program pointer will always be
set to the global main procedure in the main module, car.mod in this example.

Limitations
Avoid ongoing robot movements during the loading.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The file specified in the Load instruction cannot be found.ERR_FILNOTFND

There is a problem reading the file in the Load instruction.ERR_IOERROR

Themodule cannot be loaded because the programmemory
is full.

ERR_PRGMEMFULL

The module is already loaded into the program memory.ERR_LOADED

The loaded module contains syntax errors.ERR_SYNTAX

• The loaded module result in fatal link errors.
• If Load is used with the switch \CheckRef to check

for any reference error, and the program memory
contains unresolved references.

ERR_LINKREF

If some of these error occurs the actual module will be unloaded and will not be
available in the ERROR handler.

Syntax
Load

['\'Dynamic',']

[FilePath':=']<expression (IN) of string>

['\'File':=' <expression (IN) of string>]

['\'CheckRef]';'

Related information

SeeFor information about

UnLoad - UnLoad a program module during
execution on page 992

Unload a program module

StartLoad - Load a program module during
execution on page 777

Load a programmodule in parallel with anoth-
er program execution

WaitLoad - Connect the loadedmodule to the
task on page 1035

CheckProgRef - Check program references
on page 118

Check program references

Technical reference manual - RAPID Instructions, Functions and Data types 365
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.138 Load - Load a program module during execution

RobotWare - OS
Continued

1.139 LoadId - Load identification of tool or payload

Usage
LoadId (Load Identification) can be used for load identification of tool (also gripper
tool if roomfix TCP) or payload (activates with instruction GripLoad) by executing
a user defined RAPID program.

Note

An easier way to identify the tool load or payload is to use the interactive dialogue
RAPID program LoadIdentify. This program can be started from the menu
ProgramEditor/Debug/Call Routine.../LoadIdentify.

Basic examples
The following example illustrates the instruction LoadId:
See also More examples on page 370.

Example 1
VAR bool invalid_pos := TRUE;

VAR jointtarget joints;

VAR bool valid_joints{12};

CONST speeddata low_ori_speed := [20, 5, 20, 5];

VAR bool slow_test_flag := TRUE;

PERS tooldata grip3 := [TRUE, [[97.4, 0, 223.1], [0.924, 0, 0.383
,0]], [0, [0, 0, 0], [1, 0, 0, 0], 0, 0, 0]];

! Check if valid robot type

IF ParIdRobValid(TOOL_LOAD_ID) <> ROB_LOAD_VAL THEN

EXIT;

ENDIF

! Check if valid robot position

WHILE invalid_pos = TRUE DO

joints := CJointT();

IF ParIdPosValid (TOOL_LOAD_ID, joints, valid_joints) = TRUE THEN

! Valid position

invalid_pos := FALSE;

ELSE

! Invalid position

! Adjust the position by program movements (horizontal tilt
house)

MoveAbsJ joints, low_ori_speed, fine, tool0;

ENDIF

ENDWHILE

! Do slow test for check of free working area

! Load modules into the system

Load \Dynamic, "RELEASE:/system/mockit.sys";

Load \Dynamic, "RELEASE:/system/mockit1.sys";

IF slow_test_flag = TRUE THEN

%"LoadId"% TOOL_LOAD_ID, MASS_WITH_AX3, grip3 \SlowTest;

ENDIF

Continues on next page
366 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.139 LoadId - Load identification of tool or payload
RobotWare-OS

! Do measurement and update all load data in grip3

%"LoadID"% TOOL_LOAD_ID, MASS_WITH_AX3, grip3;

! Unload modules

UnLoad "RELEASE:/system/mockit.sys";

UnLoad "RELEASE:/system/mockit1.sys";

Load identification of tool grip3.

Condition
The following conditions should be fulfilled before loadmeasurements with LoadId:

• Ensure that all loads are correctly mounted on the robot
• Check whether valid robot type with ParIdRobValid
• Check whether valid position with ParIdPosValid:

- Axes 3, 5, and 6 not close to their corresponding working range
- Tilthousing almost horizontal, i.e. that axis 4 is in zero position

• The following data should be defined in system parameters and in arguments
to LoadId before running LoadId
The table below illustrates the load identification of tool.

Roomfix TCP
Mass Un-
known

Roomfix TCP
Mass Known

Moving TCP
Mass Un-
known

Moving TCP
Mass
Known

Load identification
modes / Defined data
before LoadId

DefinedDefinedUpper arm load (System-
parameter)

DefinedDefinedMass in tool

The table below illustrates the load identification of payload.

Roomfix TCP
Mass Un-
known

Roomfix
TCP Mass
Known

Moving TCP
Mass Un-
known

MovingTCP
Mass
Known

Load identification
modes / Defined data
before LoadId

DefinedDefinedUpper arm load (System
parameters)

DefinedDefinedDefinedDefinedLoad data in tool

DefinedDefinedMass in payload

DefinedDefinedTool frame in tool

DefinedDefinedUser frame in work object

DefinedDefinedObject frame in work ob-
ject

• Operating mode and speed override:
- Slow test in manual mode reduced speed
- Load measurements in automatic mode (or manual mode full speed)

with speed override 100%

Arguments
LoadId ParIdType LoadIdType Tool [\PayLoad] [\WObj] [\ConfAngle]

[\SlowTest] [\Accuracy]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 367
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.139 LoadId - Load identification of tool or payload

RobotWare-OS
Continued

ParIdType

Data type: paridnum
Type of load identification as defined in the table below.

CommentSymbolic constantValue

Identify tool loadTOOL_LOAD_ID1

Identify payload (Ref. instruction GripLoad)PAY_LOAD_ID2

LoadIdType

Data type: loadidnum
Type of load identification as defined in the table below.

CommentSymbolic constantValue

Known mass in tool or payload respectively. (Mass in
specified Tool or PayLoad must be specified)

MASS_KNOWN1

Unknown mass in tool or payload respectively. Identi-
ficationof mass in tool or payload will be done with
movements of axis 3

MASS_WITH_AX32

Tool

Data type: tooldata
Persistent variable for the tool to be identified. If argument \PayLoad is specified,
the persistent variable for the tool in use.
For load identification of tool, the following arguments \PayLoad and \WObj
should not be specified.

[\ PayLoad]

Data type: loaddata
Persistent variable for the payload to be identified.
This optional argument must always be specified for load identification of payload.

[\ WObj]

Data type: wobjdata
Persistent variable for the work object in use.
This optional argument must always be specified for load identification of payload
with roomfix TCP.

Continues on next page
368 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.139 LoadId - Load identification of tool or payload
RobotWare-OS
Continued

[\ ConfAngle]

Data type: num
Optional argument for specification of a specific configuration angle ± degrees to
be used for the parameter identification.

xx0500002198

Default + 90 degrees if this argument is not specified. Min. + or - 30 degrees.
Optimum + or - 90 degrees.

[\ SlowTest]

Data type: switch
Optional argument to specify whether only slow test for checking of free working
area should be done. See table below:

Run only slow testLoadId ... \SlowTest

Run only measurement and update tool or payloadLoadId ...

[\ Accuracy]

Data type: num
Variable for output of calculated measurement accuracy in % for the whole load
identification calculation (100% means maximum accuracy).

Program execution
The robot will carry out a large number of relative small transport andmeasurement
movements on axes 5 and 6. For identification of mass, movements will also be
made with axis 3.
After all measurements, movements, and load calculations the load data is returned
in argument Tool or PayLoad. The following load data is calculated:

• Mass in kg (if mass is unknown otherwise not affected)
• Center of gravity x, y, z, and axes of moment
• Inertia ix, iy, iz in kgm

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 369
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.139 LoadId - Load identification of tool or payload

RobotWare-OS
Continued

More examples
More examples of the instruction LoadId are illustrated below.

Example 1
PERS tooldata grip3 := [FALSE, [[97.4, 0, 223.1], [0.924, 0, 0.383

,0]], [6, [10, 10, 100], [0.5, 0.5, 0.5, 0.5], 1.2, 2.7,
0.5]];

PERS loaddata piece5 := [5, [0, 0, 0], [1, 0, 0, 0], 0, 0, 0];

PERS wobjdata wobj2 := [TRUE, TRUE, "", [[34, 0, -45], [0.5,
-0.5, 0.5 ,-0.5]], [[0.56, 10, 68], [0.5, 0.5, 0.5 ,0.5]]
];

VAR num load_accuracy;

! Load modules into the system

Load \Dynamic, "RELEASE:/system/mockit.sys";

Load \Dynamic, "RELEASE:/system/mockit1.sys";

! Do measurement and update all payload data except mass in piece5

%"LoadId"% PAY_LOAD_ID, MASS_KNOWN, grip3 \PayLoad:=piece5
\WObj:=wobj2 \Accuracy:=load_accuracy;

TPWrite " Load accuracy for piece5 (%) = " \Num:=load_accuracy;

! Unload modules

UnLoad "RELEASE:/system/mockit.sys";

UnLoad "RELEASE:/system/mockit1.sys";

Load identification of payload piece5with knownmass in installation with roomfix
TCP.

Limitations
Usually load identification of tool or payload for the robot is done with the service
routine LoadIdentify. It is also possible to do this identification with this RAPID
instruction LoadId. Before loading or executing the programwith LoadId following
modules must be loaded to the system:

Load \Dynamic, "RELEASE:/system/mockit.sys";

Load \Dynamic, "RELEASE:/system/mockit1.sys";

Then it is possible to call LoadId with a late binding call (see example 1 above).
It is not possible to restart the load identification movements after any type of stop
such as program stop, emergency stop, or power failure. The load identification
movements must then be started from the beginning.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

At any error during the execution of the RAPID NOSTEPIN
routine LoadId.

ERR_PID_MOVESTOP

ERR_PID_RAISE_PP The program pointer is raised to the user call of LoadId.
ERR_LOADID_FATAL

Syntax
LoadId

[ParIdType ':='] <expression (IN) of paridnum> ',

Continues on next page
370 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.139 LoadId - Load identification of tool or payload
RobotWare-OS
Continued

[LoadIdType ':='] <expression (IN) of loadidnum> ','

[Tool ':='] <persistent (PERS) of tooldata>

['\' PayLoad ':=' <persistent (PERS) of loaddata>]

['\' WObj ':=' <persistent (PERS) of wobjdata>]

['\' ConfAngle ':=' <expression (IN) of num>]

['\' SlowTest]

['\' Accuracy ':=' <variable (VAR) of num>] ';'

Related information

SeeFor information about

Operating manual - IRC5 with FlexPendantPredefined program Load Identify

paridnum - Type of parameter identification on
page 1675

Type of parameter identification

paridvalidnum -Result of ParIdRobValid onpage1677Result of ParIdRobValid

loadidnum - Type of load identification on page1656Type of load identification

ParIdRobValid - Valid robot type for parameter
identification on page 1364

Valid robot type

ParIdPosValid - Valid robot position for parameter
identification on page 1361

Valid robot position

Technical reference manual - RAPID Instructions, Functions and Data types 371
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.139 LoadId - Load identification of tool or payload

RobotWare-OS
Continued

1.140 MakeDir - Create a new directory

Usage
MakeDir is used to create a new directory. The user must have write and execute
permission for the parent directory under which the new directory is created.

Basic examples
The following example illustrates the instruction MakeDir:

Example 1
MakeDir "HOME:/newdir";

This example creates a new directory, called newdir, under HOME:

Arguments
MakeDir Path

Path

Data type:string
The name of the new directory specified with full or relative path.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The directory cannot be created.ERR_FILEACC

Syntax
MakeDir

[Path':='] < expression (IN) of string>';'

Related information

SeeFor information about

RemoveDir - Delete a directory on page 595Remove a directory

RenameFile - Rename a file on page 600Rename a file

RemoveFile - Delete a file on page 597Remove a file

CopyFile - Copy a file on page 155Copy a file

IsFile - Check the type of a file on page 1314Check file type

FileSize - Retrieve the size of a file on
page 1251

Check file size

FSSize - Retrieve the size of a file system on
page 1257

Check file system size

Applicationmanual - Controller software IRC5File and serial channel handling

372 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.140 MakeDir - Create a new directory
RobotWare - OS

1.141 ManLoadIdProc - Load identification of IRBP manipulators

Usage
ManLoadIdProc (Manipulator Load Identification Procedure) is used for load
identification of payload for external manipulators by executing a user defined
RAPID program.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Note

An easier way to identify the payload is to use the service routine
ManLoadIdentify. This service routine can be started from the menu Program
Editor, Debug, Call Routine, ManLoadIdentify.

Basic examples
The following examples illustrate the instruction ManLoadIdProc:

PERS loaddata myload := [6,[0,0,0],[1,0,0,0],0,0,0];

VAR bool defined;

ActUnit STN1;

ManLoadIdProc \ParIdType := IRBP_L

\MechUnit := STN1

\PayLoad := myload

\ConfigAngle := 60

\AlreadyActive

\DefinedFlag := defined;

DeactUnit STN1;

Load identification of payload myloadmounted on the mechanical unit STN1. The
external manipulator is of type IRBP-L. The configuration angle is set to 60 degrees.
The manipulator is activated before the load identification and deactivated after.
After the identification myload has been updated and defined it is set to TRUE.

Arguments
ManLoadIdProc [\ParIdType] [\MechUnit] | [\MechUnitName]

[\AxisNumber] [\PayLoad] [\ConfigAngle] [\DeactAll] |
[\AlreadyActive] [DefinedFlag] [DoExit]

[\ ParIdType]

Data type: paridnum
Type of parameter identification. Predefined constants are found under the datatype
paridnum.

[\ MechUnit]

Data type: mecunit
Mechanical unit used for the load identification. Cannot be used together with
argument \MechUnitName.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 373
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.141 ManLoadIdProc - Load identification of IRBP manipulators

RobotWare-OS

[\ MechUnitName]

Data type: string
Mechanical unit used for the load identification given as a string. Cannot be used
together with argument \MechUnit.

[\ AxisNumber]

Data type: num
Axis number within the mechanical unit, which holds the load to be identified.

[\ PayLoad]

Data type: loaddata
Variable for the payload to be identified. The component mass must be specified.
This variable will be updated after the identification is done.

[\ ConfigAngle]

Data type: num
Specification of a specific configuration angle ± degrees to be used for the
parameter identification.

xx0500002197

Min. + or - 30 degrees. Optimum + or - 90 degrees.

[\ DeactAll]

Data type: switch
If this switch is used all mechanical units in the system will be deactivated before
identification is done. Themechanical unit to identify will then be activated. It cannot
be used together with argument \AlreadyActive.

[\ AlreadyActive]

Data type: switch
This switch is used if the mechanical unit to identify is active. It cannot be used
together with argument \DeactAll.

[\ DefinedFlag]

Data type: bool

Continues on next page
374 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.141 ManLoadIdProc - Load identification of IRBP manipulators
RobotWare-OS
Continued

This argument will be set to TRUE if the identification has been made, FALSE
otherwise.

[\ DoExit]

Data type: bool
If set to TRUE the load identification will end up with an EXIT command to force
the user to set PP to main before continuing the execution. If not present or set to
FALSE no EXIT will be done. Note that ManLoadIdProc always clears the current
path.

Program execution
All arguments are optional. If an argument is not given the user will be asked for
the value from the FlexPendant (except for \DoExit).
The user will always be asked to give the mass and if the manipulator is of type
IRBP R, z in mm.
The mechanical unit will carry out a large number of relative small transport and
measurement movements.
After all measurements, movements, and load calculations the load data is returned
in argument Payload if used. The following load data is calculated.

IRBP-A
IRBP-B
IRBP-D

IRBP-RIRBP-L
IRBP-C
IRBP_T

IRBP-KManipulator type/ Calculated load
data

cog.x cog.y
cog.z

cog.x cog.ycog.x cog.ycog.x cog.yParameter PayLoad - cog.x,
cog.y, cog.z in loaddata in mm

ixixizizParameter PayLoad - ix, iy, iz
in loaddata in kgm2 iyiy

iziz

The calculated data will be displayed on the FlexPendant.

Limitations
Usually load identification of load for the external manipulator is done with the
service routine ManLoadIdentify. It is also possible to do this identification with
this RAPID instruction ManLoadIdProc.
Any path in progress will be cleared before the load identification. The program
pointer will be lost after the load identification if argument \DoExit:=TRUE is used.
It is not possible to restart the load identificationmovements after any type of stop,
such as program stop, emergency stop, or power failure. The load identification
movements must be again restarted from the beginning.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 375
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.141 ManLoadIdProc - Load identification of IRBP manipulators

RobotWare-OS
Continued

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

At any error during the execution of the RAPID NOSTEPIN
routine ManLoadIdProc.

ERR_PID_MOVESTOP

ERR_PID_RAISE_PP The program pointer is raised to the user call of
ManLoadIdProc.ERR_LOADID_FATAL

Syntax
ManLoadIdProc

['\'ParIdType ':=' <expression (IN) of paridnum>]

['\'MechUnit ':=' <variable (VAR) of mecunit>]

| ['\' MechUnitName ':=' <expression (IN) of string>]

['\' AxisNumber ':=' <expression (IN) of num>]

['\' PayLoad ':=' <var or pers (INOUT) of loaddata>

['\' ConfigAngle ':=' <expression (IN) of num>]

['\' DeactAll] | ['\' AlreadyActive]

['\' DefinedFlag ':=' <variable (VAR) of bool>]

['\' DoExit ':=' <expression (IN) of bool>] ';'

Related information

SeeFor information about

paridnum - Type of parameter identification on
page 1675

Type of parameter identification

mecunit - Mechanical unit on page 1658Mechanical unit

loaddata - Load data on page 1650Payload

376 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.141 ManLoadIdProc - Load identification of IRBP manipulators
RobotWare-OS
Continued

1.142 MatrixSolve - Solve a linear equation system

Usage
MatrixSolve is used to solve linear equation systems on the form A*x=b.

Basic examples
The following examples illustrate the instruction MatrixSolve.
See also More examples on page 378.

Example 1
VAR dnum A1{3,3}:=[[5, 2, 7],[-3, 1, 1],[1, 10, -3]];

VAR dnum b1{3}:=[-22, 39, 54];

VAR dnum x1{3};

...

MatrixSolve A1, b1, x1;

The example above solves the linear equation system. The x1 array will have the
value [-10, 7, 2].

Example 2
VAR dnum A2{1,1} := [[5]];

VAR dnum b2{1}:=[35];

VAR dnum x2{1};

...

MatrixSolve A2, b2, x2;

The example above solves the trivial equation 5x = 35. The answer is 7.

Arguments
MatrixSolve A [\A_m] [\A_n] b x

A

Data type: array of dnum
A is a matrix with the dimensions m * n, where m >= n. The letter m describes the
number of rows, and letter n describes the number of columns of the matrix. If m
> n, then the system of equations is overdetermined and a least-squares solution
is returned.

[\A_m]

Data type: num
With the optional argument A_m it is possible to specify how many of the rows (m)
in the matrix A that should be used.

[\A_n]

Data type: num
With the optional argument A_n it is possible to specify how many of the columns
(n) in the matrix A that should be used.

b

Data type: array of dnum

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 377
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.142 MatrixSolve - Solve a linear equation system

b is an array with the same dimension as the rows (m) of the matrix A. If using an
array with bigger dimension than the rows (m) of matrix A, the components above
m will be set to 0.

x

Data type: array of dnum
x is an array with the same dimension as the columns (n) of the matrix A. This is
an array variable where the result of the calculation is stored. If using an array with
bigger dimension than the columns (n) of matrix A, the components above n will
be set to 0.

Program execution
MatrixSolve is used to solve linear equation systems on the form A*x=b. If the
system is overdetermined, then a least-squares solution is returned.
If using the optional arguments A_m and A_n it is possible to use the same matrix
for many different calculations that use different sizes of the matrix.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Wrong dimensions or wrong values on optional arguments
are used.

ERR_ARRAY_SIZE

The input matrix is singular.ERR_MATRIX_SINGULAR

More examples
More examples of the function MatrixSolve are illustrated below.

Example 1
VAR dnum A1{5,5}:=[[5,2,7,0,0], [-3,1,1,0,0], [1,10,-3,0,0]];

VAR dnum b1{8}:=[-22,39,54,0,0,0,0,0];

VAR dnum x1{8};

MatrixSolve A1 \A_m:=3 \A_n:=3, b1, x1;

The example above solves the linear equation system. The x1 array will have the
value [-10, 7, 2, 0, 0, 0, 0, 0]. This example is the same as Example 1 on page 377.
The only difference is that in this example it is illustrated how to use the optional
arguments A_m and A_n and that bigger arrays than m and n can be used for
arguments b and x. A_m and A_n can be used to limit the size of the matrix, so a
big general matrix can be used to solve many different equation systems.

Limitations
When solving largematrixes the allocatedmemorymay not be enough to complete
the current calculation and an event log is reported. The allocated memory size is
fixed and cannot be changed. Try solving smaller sizes of the matrix.

Continues on next page
378 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.142 MatrixSolve - Solve a linear equation system
Continued

Syntax
MatrixSolve

[A ':='] < array {*}{*} expression (IN) of dnum > ','

['\' A_m ':=' < expression (IN) of num >]

['\' A_n ':=' < expression (IN) of num >] ','

[b ':='] < array {*} expression (IN) of dnum > ','

[x ':='] < array variable {*} (VAR) of dnum > ';'

Related information

SeeFor information about

MatrixSolveQR - Computes a QR-factorization
on page 380

Compute a QR-factorization.

MatrixSVD - Computes a singular value decom-
position on page 382

Compute a singular value decomposition.

Technical reference manual - RAPID OverviewMathematical instructions and functions.

Technical reference manual - RAPID Instructions, Functions and Data types 379
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.142 MatrixSolve - Solve a linear equation system

Continued

1.143 MatrixSolveQR - Computes a QR-factorization

Usage
MatrixSolveQR is used to compute a QR-factorization of an (m x n) matrix A.

Basic examples
The following example illustrates the instruction MatrixSolveQR.

Example 1
VAR dnum A4{3,3}:=[[12,-51,4], [6,167,-68], [-4,24,-41]];

VAR dnum Q4{3,3};

VAR dnum R4{3,3};

MatrixSolveQR A4, Q4, R4;

Instruction MatrixSolveQR is used to compute a QR-factorization of an (m x n)
matrix A4. The result of the calculation is:

Q4 := [[-0.857142857142857,0.394285714285714,0.331428571428571],
[-0.428571428571429,-0.902857142857143,-0.0342857142857143],
[0.285714285714286,-0.171428571428571,0.942857142857143]];

R4 := [[-14,-21,14], [0,-175,70], [0,0,-35]];

Arguments
MatrixSolveQR A [\A_m] [\A_n] Q R

A

Data type: array of dnum
A is a matrix with the dimensions m x n, , where m is the number of rows, and n is
the number of columns.

[\A_m]

Data type: num
With the optional argument A_m it is possible to specify how many of the rows m
in the matrix A that shall be used.

[\A_n]

Data type: num
With the optional argument A_n it is possible to specify how many of the columns
n in the matrix A that shall be used.

Q

Data type: array of dnum
Orthogonal (m x m) matrix. This is a matrix variable where the result of the
calculation is stored.

R

Data type: array of dnum
(m x n) upper-triangular matrix. This is a matrix variable where the result of the
calculation is stored.

Continues on next page
380 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.143 MatrixSolveQR - Computes a QR-factorization

Program execution
MatrixSolveQR computes a QR-factorization of an (m x n) matrix A so thatA=Q*R,
whereQ is an (m xm) orthogonal matrix andR is an (m x n) upper triangular matrix.
If using the optional arguments A_m and A_n it is possible to use the same matrix
for many different calculations that use different sizes of the matrix.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Wrong dimensions or wrong values on optional arguments
are used.

ERR_ARRAY_SIZE

Limitations
When solving largematrixes the allocatedmemorymay not be enough to complete
the current calculation and an event log is reported. The allocated memory size is
fixed and cannot be changed. Try solving smaller sizes of the matrix.

Syntax
MatrixSolveQR

[A ':='] < array {*}{*} expression (IN) of dnum > ','

['\' A_m ':=' < expression (IN) of num >]

['\' A_n ':=' < expression (IN) of num >] ','

[Q ':='] < array variable {*}{*} (VAR) of dnum > ','

[R ':='] < array variable {*}{*} (VAR) of dnum > ';'

Related information

SeeFor information about

MatrixSolve - Solve a linear equation system on
page 377

Solve a linear equation system.

MatrixSVD - Computes a singular value decom-
position on page 382

Compute a singular value decomposition.

Technical reference manual - RAPID OverviewMathematical instructions and functions.

Technical reference manual - RAPID Instructions, Functions and Data types 381
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.143 MatrixSolveQR - Computes a QR-factorization

Continued

1.144 MatrixSVD - Computes a singular value decomposition

Usage
MatrixSVD is used to compute a singular value decomposition (SVD).
The singular value decomposition (SVD) is a factorization of a real matrix, with
many useful applications in signal processing and statistics.

Basic examples
The following example illustrates the instruction MatrixSVD.

Example 1
VAR dnum A3{7,5}:=[[32,5,30,-47,16], [41,46,-36,35,-33],

[-38,47,-8,44,21], [42,-35,42,18,-47], [13,48,30,26,-23],
[-41,46,46,25,-46], [-22,-1,16,-11,-41]];

VAR dnum U3{7,7};

VAR dnum S3{5};

VAR dnum V3{5,5};

MatrixSVD A3, U3, S3, V3;

Instruction MatrixSVD is used to compute a singular value decomposition. The
result of the calculation is:

U3: = [[-0.24489453114765, -0.241308890179438, -0.0602284681243788,
-0.835993641906923, -0.0767894261551876, 0.240015157740137,
0.340264541994411], [0.36884312087718, -0.011165754164993,
0.807113814553714, -0.0174513269190971, -0.383355889416929,
0.231289898525022, 0.107870591684966], [0.421298684810973,
0.496825721418653, -0.0754892815524551, -0.0380766666594926,
0.433352499740395, 0.0439085586237023, 0.615467956914505],
[0.026022505267863, -0.748510046516493, 0.145750281133738,
0.297910761636627, 0.491463032720705, 0.125969427524946,
0.267688931284032], [0.44990665677733, -0.194363365765786,
0.11415708386435, -0.406351234561054, 0.210650943912061,
-0.684691075563818, -0.261683066861719], [0.634107267122289,
-0.191796131356257, -0.458818389285907, -0.058536500937226,
-0.126605540694026, 0.499569153226195, -0.285627519159172],
[0.145957672500732, -0.24490688904148, -0.307330264960591,
0.205089199291144, -0.597836567476733, -0.390807165865741,
0.521598216836665]];

S3 := [128.223078192708, 106.345877681972, 86.7728210622664,
62.5176992467654, 42.2777876032412];

V3 := [[-0.241697068016687, -0.449209801318353, 0.774566517264602,
-0.334347996967586, 0.16748495146732], [0.664865161158152,
0.281358669789186, 0.148180746944642, -0.633450002424302,
-0.235743880251818], [0.172346698575578, -0.571920245958167,
-0.538598865014224, -0.371678506044732, 0.463648787880432],
[0.541008847671309, 0.114564782377902, 0.291104463782398,
0.449207178575608, 0.638479004558623], [-0.420883460142759,
0.61549167032206, -0.0570844141501356, -0.383432536716582,
0.541985217686462]];

Continues on next page
382 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.144 MatrixSVD - Computes a singular value decomposition

Arguments
MatrixSVD A [\A_m] [\A_n] U S V [\Econ]

A

Data type: array of dnum
A is a matrix with the dimensions m x n, where m is the number of rows, and n is
the number of columns.

[\A_m]

Data type: num
With the optional argument A_m it is possible to specify how many of the rows m
in the matrix A that shall be used.

[\A_n]

Data type: num
With the optional argument A_n it is possible to specify how many of the columns
n in the matrix A that shall be used.

U

Data type: array of dnum
U is the left singular vectors of A, stored as an m x kk matrix, where kk is equal to
the columns of the A matrix (or A_n) if the \Econ switch is used, otherwise it is
the same as the rows of the A matrix (or A_m). This is a matrix variable where the
result of the calculation is stored. If using a matrix with bigger dimension than the
rows (m) and columns (n) of matrix A, the components above m and n will be set
to 0.

S

Data type: array of dnum
S is an array with the dimension MIN(A m, A n) with values >= 0. This is an array
variable where the result of the calculation is stored. If using an array with bigger
dimension than needed, the components above n will be set to 0.

V

Data type: array of dnum
V is the right singular vectors of A stored as a n x n matrix.

[\Econ]

(Economy size)
Data type: switch
If \Econ is used andm > n, then only the n first singular vectors of U are calculated.

Program execution
MatrixSVD is used to compute a singular value decomposition (SVD) of the (m x
n) input matrix A.
An SVD of a matrix A can be written as A=U*S*V^T, where U is (m xm) (left singular
vectors), V is (n x n) (right singular vectors) and S is an (m x n) diagonal matrix
with non-negative elements. The diagonal elements are the singular values of A.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 383
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.144 MatrixSVD - Computes a singular value decomposition

Continued

To save space, only the singular values of S are returned, and not the complete
matrix. So S is represented as an array of length MIN(m, n). The singular values
are always returned in decreasing order.
With m > n, further space can be saved by only computing the n first singular
vectors of U. This is controlled by using the switch \Econ. Hence, if m > n and
\Econ is used, then U is (m x n), otherwise U is (m x m).
If using the optional arguments A_m and A_n it is possible to use the same matrix
for many different calculations that use different sizes of the matrix.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Wrong dimensions or wrong values on optional arguments
are used.

ERR_ARRAY_SIZE

Limitations
When solving largematrixes the allocatedmemorymay not be enough to complete
the current calculation and an event log is reported. The allocated memory size is
fixed and cannot be changed. Try solving smaller sizes of the matrix.

Syntax
MatrixSVD

[A ':='] < array {*}{*} expression (IN) of dnum > ','

['\' A_m ':=' < expression (IN) of num >]

['\' A_n ':=' < expression (IN) of num >] ','

[U ':='] < array variable {*}{*} (VAR) of dnum > ','

[S ':='] < array variable {*} (VAR) of dnum > ','

[V ':='] < array variable {*}{*} (VAR) of dnum > ','

['\' Econ] ';'

Related information

SeeFor information about

MatrixSolve - Solve a linear equation system on
page 377

Solve a linear equation system.

MatrixSolveQR - Computes a QR-factorization
on page 380

Compute a QR-factorization

Technical reference manual - RAPID OverviewMathematical instructions and functions.

384 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.144 MatrixSVD - Computes a singular value decomposition
Continued

1.145 MechUnitLoad - Defines a payload for a mechanical unit

Usage
MechUnitLoad is used to define a payload for an external mechanical unit, for
example positioners. The payload for a robot is defined with the instruction
GripLoad.
This instruction should be used for all mechanical units with dynamic model (ABB
positioners and track motions) to achieve the best motion performance.
The MechUnitLoad instruction should always be executed after execution of the
instruction ActUnit.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Description
MechUnitLoad specifies which loads the mechanical unit are carrying. Specified
loads are used in the control system so that the movements of the mechanical unit
can be controlled in the best possible way.
The payload is connected/disconnected using the instruction MechUnitLoad,
which adds or subtracts the weight of the payload to the weight of the mechanical
unit.

WARNING

It is important to always define the actual tool load and, when used, the payload
of the robot (for example a gripped part). Incorrect definitions of load data can
result in overloading of the robot mechanical structure.
When incorrect load data is specified, it can often lead to the following
consequences:
• The robot will not be used to its maximum capacity
• Impaired path accuracy including a risk of overshooting
• Risk of overloading the mechanical structure

The controller continuously monitors the load and writes an event log if the load
is higher than expected. This event log is saved and logged in the controller
memory.

WARNING

The above warning also applies when defining payloads for an external
mechanical unit.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 385
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.145 MechUnitLoad - Defines a payload for a mechanical unit

RobotWare - OS

Basic examples
The following examples illustrate the instruction MechUnitLoad:

Illustration
The following figure shows axis 1 on a mechanical unit named STN1 of type IRBP
L.

xx0500002142

Example 1
ActUnit SNT1;

MechUnitLoad STN1, 1, load0;

Activate mechanical unit STN1 and define the payload load0 corresponding to no
load (at all) mounted on axis 1.

Example 2
ActUnit STN1;

MechUnitLoad STN1, 1, fixture1;

Activate mechanical unit STN1 and define the payload fixture1 corresponding
to the fixture mounted on axis 1.

Example 3
ActUnit STN1;

MechUnitLoad STN1, 1, workpiece1;

Activate mechanical unit STN1 and define the payload workpiece1 corresponding
to fixture and work piece mounted on axis 1.

Arguments
MechUnitLoad MechUnit AxisNo Load

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

AxisNo

Axis Number
Data type: num
The axis number within the mechanical unit that holds the load. Axis numbering
starts from 1.

Load

Data type: loaddata

Continues on next page
386 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.145 MechUnitLoad - Defines a payload for a mechanical unit
RobotWare - OS
Continued

The load data that describes the current payload to be defined, that is, the fixture
or the fixture together with work piece depending on if the work piece is mounted
on the mechanical unit or not.

Program execution
The specified load applies for the next executed movement instruction until a new
MechUnitLoad instruction is executed.
After execution of MechUnitLoad, when the robot and additional axes have come
to a standstill, the specified load is defined for the specified mechanical unit and
axis. This means that the payload is controlled andmonitored by the control system.
The default payload when using the restart mode Reset system for a certain
mechanical unit type, is the predefined maximal payload for this mechanical unit
type.
When another payload is used, the actual payload for the mechanical unit and axis
should be redefinedwith this instruction. This should always be done after activation
of the mechanical unit.
The defined payload will survive a restart. The defined payload will also survive a
restart of the program after manual activation of other mechanical units from the
jogging window.
The following graphic shows a payloadmounted on the end-effector of amechanical
unit (end-effector coordinate system for the mechanical unit).

xx0500002143

End-effectorA

Fixture and work pieceB

Center of gravity for the payload (fixture + work piece)C

Mechanical unitD

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 387
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.145 MechUnitLoad - Defines a payload for a mechanical unit

RobotWare - OS
Continued

More examples
More examples of how to use the instruction MechUnitLoad are illustrated below.

Illustration
The following figure shows a mechanical unit named INTERCH of type IRBP K with
three axes (1, 2, and 3).

xx0500002144

Example 1
MoveL homeside1, v1000, fine, gun1;

...

ActUnit INTERCH;

The whole mechanical unit INTERCH is activated.

Example 2
MechUnitLoad INTERCH, 2, workpiece1;

Defines payload workpiece1 on the mechanical unit INTERCH axis 2.

Example 3
MechUnitLoad INTERCH, 3, workpiece2;

Defines payload workpiece2 on the mechanical unit INTERCH axis 3.

Example 4
MoveL homeside2, v1000, fine, gun1;

The axes of the mechanical unit INTERCH move to the switch position homeside2
with mounted payload on both axes 2 and 3.

Example 5
ActUnit STN1;

MechUnitLoad STN1, 1, workpiece1;

The mechanical unit STN1 is activated. Defines payload workpiece1 on the
mechanical unit STN1 axis 1.

Limitations
If this instruction is preceded by a move instruction, that move instruction must be
programmed with a stop point (zonedata fine), not a fly-by point. Otherwise
restart after power failure will not be possible.

Continues on next page
388 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.145 MechUnitLoad - Defines a payload for a mechanical unit
RobotWare - OS
Continued

MechUnitLoad cannot be executed in a RAPID routine connected to any of the
following special system events: PowerOn, Stop, QStop, Restart or Step.

Syntax
MechUnitLoad

[MechUnit ':='] <variable (VAR) of mecunit> ','

[AxisNo ':='] <expression (IN) of num> ','

[Load ':='] <persistent (PERS) of loaddata> ';'

Related information

SeeFor information about

Product manual - IRBP /D2009Identification of payload for external
mechanical units

mecunit - Mechanical unit on page 1658Definition of mechanical unit data

loaddata - Load data on page 1650Definition of load data

GripLoad - Defines the payload for a robot on
page 266

Define payload for the robot

Technical reference manual - RAPID Instructions, Functions and Data types 389
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.145 MechUnitLoad - Defines a payload for a mechanical unit

RobotWare - OS
Continued

1.146 MotionProcessModeSet - Set motion process mode

Usage
MotionProcessModeSet is used to set themotion processmode (Motion Process
Mode) for a TCP robot.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in any motion tasks.

Basic examples
The following example illustrates the instruction MotionProcessModeSet:

MotionProcessModeSet OPTIMAL_CYCLE_TIME_MODE;

! Do cycle-time critical movement

..

MotionProcessModeSet ACCURACY_MODE;

! Do cutting with high accuracy

..

Changing the motion process mode used for the TCP robot in run time.

Arguments
MotionProcessModeSet Mode

Mode

Data type: motionprocessmode
The motion process mode to be used. It is an integer constant of data type
motionprocessmode.

Program execution
The motion process mode applies for the TCP robot until a new
MotionProcessModeSet instruction is executed, see Related information on
page 391.
The default configured value for motion process mode is automatically set:

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Continues on next page
390 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.146 MotionProcessModeSet - Set motion process mode
RobotWare - OS

Predefined data
The following symbolic constants of the data type motionprocessmode are
predefined and can be used to specify the integer in argument Mode.
The default mode is defined by the system parameter Use Motion Process Mode
in type Robot, topic Motion.

DescriptionConstant
value

Symbolic constant

This mode gives the shortest possible
cycle time.

1OPTIMAL_CYCLE_TIME_MODE

This mode improves path accuracy
mainly for large robots.

2LOW_SPEED_ACCURACY_MODE

This mode is recommended for low
speed contact applications where
maximum servo stiffness is important.

3LOW_SPEED_STIFF_MODE

This mode improves path accuracy
mainly for small robots.

4ACCURACY_MODE

User defined modes.5MPM_USER_MODE_1

6MPM_USER_MODE_2

7MPM_USER_MODE_3

8MPM_USER_MODE_4

Primarily intended for flexible grippers
in press tending applications.

9PRESS_TENDING_MODE

Limitations
The mode can only be changed when the robot is standing still, otherwise a fine
point is enforced.

Syntax
MotionProcessModeSet

[Mode ':='] < expression (IN) of motionprocessmode> ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Advanced robot motion

Technical referencemanual - System paramet-
ers

Configuration of Motion Process Mode
parameters.

TuneServo - Tuning servos on page 967Tuning servos.

Technical reference manual - RAPID Instructions, Functions and Data types 391
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.146 MotionProcessModeSet - Set motion process mode

RobotWare - OS
Continued

1.147 MotionSup - Deactivates/Activates motion supervision

Usage
MotionSup (Motion Supervision) is used to deactivate or activate the motion
supervision function for robot movements during program execution.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Description
Motion supervision is the name of a collection of functions for high sensitivity,
model-based supervision of the robot. It contains the function for joint load
supervision, joint collision supervision, and collision detection. Because the
supervision is designed to be very sensitive it may trip if there are large process
forces acting on the robot.
If the load is not correctly defined, use the load identification service routine to
specify it. If large external process forces are present in most parts of the
application, such as during deburring, then use the system parameters to raise
the supervision level of the motion supervision until it no longer triggers. If, the
external forces are only temporary, such as during the closing of a large spotweld
gun, then the MotionSup instruction should be used to raise the supervision level
(or turn the function off) for those parts of the application where the disturbance
acts.

Basic examples
The following example illustrates the instruction MotionSup:

Example 1
! If the motion supervision is active in the system parameters,

! then it is active by default during program execution

...

! If motion supervision is deactivated in the system parameters

! then it cannot be activated using the MotionSup instruction

...

! Deactivate motion supervision during program execution

MotionSup \Off;

...

! Activate motion supervision again during program execution

MotionSup \On;

...

! Tune the supervision level to 200% (makes the function less

! sensitive) of the level in

! the system parameters

MotionSup \On \TuneValue:= 200;

...

! Activate motion supervision again.

! No back off at a motion collision

MotionSup \On \NoBackoff;

Continues on next page
392 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.147 MotionSup - Deactivates/Activates motion supervision
Collision Detection

Arguments
MotionSup[\On] | [\Off] [\TuneValue] [\NoBackoff]

[\On]

Data type: switch
Activate themotion supervision function during program execution (if it has already
been activated in system parameters).

[\Off]

Data type: switch
Deactivate the motion supervision function during program execution.
One of the arguments \On or \Off must be specified.

[\TuneValue]

Data type: num
Tuning the motion supervision sensitivity level in percent (1 - 300%) of system
parameter level. A higher level gives more robust sensitivity. This argument can
only be combined with argument \On.

[\NoBackoff]

Data type: switch
If this switch is used, the robot does not back off at a motion collision. This argument
can only be combined with argument \On.

Program execution
The specified motion supervision applies for the next executed movement
instruction until a new MotionSup instruction is executed.
If the motion supervision function is active both in the system parameters and in
the RAPID program, and themotion supervision is triggered because of a collision,
then

• the robot will stop as quickly as possible
• the robot will back up to remove any residual forces (if \NoBackoff switch

has not been used on last MotionSup instruction)
• the program execution will stop with an error message

If motion supervision is active in system parameters it is then active by default
during program execution (TuneValue:=100, and back up to remove any residual
forces). These values are set automatically

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 393
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.147 MotionSup - Deactivates/Activates motion supervision

Collision Detection
Continued

Limitations
• Motion supervision is never active for external axes or when one or more

joints are run in independent joint mode. When using the robot in the soft
servo mode it may be necessary to turn the motion supervision off to avoid
accidental tripping.

• If motion supervision is deactivated in the system parameters, then it cannot
be activated using the MotionSup instruction.

Syntax
MotionSup

['\' On] | ['\' Off]

['\' Tunevalue':='< expression (IN) of num>]

['\' NoBackoff] ';'

Related information

SeeFor information about

motsetdata - Motion settings data on page 1660Motion settings data

Technical reference manual - RAPID OverviewGeneral description of the function

Technical referencemanual - System parametersTuning using system parameters

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification service
routine

394 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.147 MotionSup - Deactivates/Activates motion supervision
Collision Detection
Continued

1.148 MoveAbsJ - Moves the robot to an absolute joint position

Usage
MoveAbsJ (Move Absolute Joint) is used to move the robot and external axes to
an absolute position defined in axes positions.
Examples of use:

• the end point is a singular point
• for ambiguous positions on the IRB 6400C, e.g. for movements with the tool

over the robot
The final position of the robot during amovement with MoveAbsJ is neither affected
by the given tool and work object nor by active program displacement. The robot
uses this data to calculate the load, TCP velocity, and the corner path. The same
tools can be used in adjacent movement instructions.
The robot and external axes move to the destination position along a non-linear
path. All axes reach the destination position at the same time.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction MoveAbsJ:
See also More examples on page 398.

Example 1
MoveAbsJ p50, v1000, z50, tool2;

The robot with the tool tool2 is moved along a non-linear path to the absolute
axis position, p50, with velocity data v1000 and zone data z50.

Example 2
MoveAbsJ *, v1000\T:=5, fine, grip3;

The robot with the tool grip3 is moved along a non-linear path to a stop point
which is stored as an absolute axis position in the instruction (marked with an *).
The entire movement takes 5 seconds.

Arguments
MoveAbsJ [\Conc] ToJointPos [\ID] [\NoEOffs] Speed [\V] | [\T] Zone

[\Z] [\Inpos] Tool [\WObj] [\TLoad]

[\Conc]

Concurrent
Data type:switch
Subsequent instructions are executed while the robot is moving. The argument is
usually not used but is used to shorten the cycle time when, for example,
communicating with external equipment if synchronization is not required.
Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath
movement instructions with the argument \Conc are not permitted.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 395
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.148 MoveAbsJ - Moves the robot to an absolute joint position

RobotWare - OS

If this argument is omitted and the ToJointPos is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
zone.
This argument cannot be used in coordinated synchronized movement in a
MultiMove System.

ToJointPos

To Joint Position
Data type: jointtarget
The destination absolute joint position of the robot and external axes. It is defined
as a named position or stored directly in the instruction (marked with an * in the
instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in MultiMove systems, if the movement is
synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

[\NoEOffs]

No External Offsets
Data type: switch
If the argument \NoEOffs is set then the movement with MoveAbsJ is not affected
by active offsets for external axes.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the tool reorientation, and external axes.

[\V]

Velocity
Data type: num
This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Continues on next page
396 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.148 MoveAbsJ - Moves the robot to an absolute joint position
RobotWare - OS
Continued

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Z]

Zone

Data type: num
This argument is used to specify the position accuracy of the robot TCP directly
in the instruction. The length of the corner path is given in mm, which is substituted
for the corresponding zone that is specified in the zone data.

[\Inpos]

In position
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
robots TCP in the stop point. The stop point data substitutes the zone specified in
the Zone parameter.

Tool

Data type: tooldata
The tool in use during the movement.
The position of the TCP and the load on the tool are defined in the tool data. The
TCP position is used to calculate the velocity and the corner path for themovement.

[\WObj]

Work Object
Data type: wobjdata
The work object used during the movement.
This argument can be omitted if the tool is held by the robot. If the robot holds the
work object, that is, the tool is stationary, or with coordinated external axes, then
the argument must be specified.
In the case of a stationary tool or coordinated external axes, the data used by the
system to calculate the velocity and the corner path for the movement is defined
in the work object.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 397
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.148 MoveAbsJ - Moves the robot to an absolute joint position

RobotWare - OS
Continued

To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
A movement with MoveAbsJ is not affected by active program displacement and
if executed with switch \NoEOffs there will be no offset for external axes. Without
switch \NoEOffs the external axes in the destination target are affected by active
offset for external axes.
The tool is moved to the destination absolute joint position with interpolation of
the axis angles. This means that each axis is moved with constant axis velocity
and that all axes reach the destination joint position at the same time, which results
in a non-linear path.
Generally speaking, the TCP is moved at approximate programmed velocity. The
tool is reoriented and the external axes are moved at the same time as the TCP
moves. If the programmed velocity for reorientation or for the external axes cannot
be attained, the velocity of the TCP will be reduced.
A corner path is usually generated when movement is transferred to the next
section of the path. If a stop point is specified in the zone data program execution
only continues when the robot and external axes have reached the appropriate
joint position.

More examples
More examples of how to use the instruction MoveAbsJ are illustrated below.

Example 1
MoveAbsJ *, v2000\V:=2200, z40 \Z:=45, grip3;

The tool, grip3, is moved along a non-linear path to an absolute joint position
stored in the instruction. The movement is carried out with data set to v2000 and
z40. The velocity and zone size of the TCP are 2200mm/s and 45mm respectively.

Example 2
MoveAbsJ p5, v2000, fine \Inpos := inpos50, grip3;

Continues on next page
398 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.148 MoveAbsJ - Moves the robot to an absolute joint position
RobotWare - OS
Continued

The tool, grip3, is moved along a non-linear path to an absolute joint position p5.
The robot considers it to be in the point when 50% of the position condition and
50% of the speed condition for a stop point fine are satisfied. It waits at most for
2 seconds for the conditions to be satisfied. See predefined data inpos50 of data
type stoppointdata.

Example 3
MoveAbsJ \Conc, *, v2000, z40, grip3;

The tool, grip3, is moved along a non-linear path to an absolute joint position
stored in the instruction. Subsequent logical instructions are executed while the
robot moves.

Example 4
MoveAbsJ \Conc, * \NoEOffs, v2000, z40, grip3;

Same movement as above but the movement is not affected by active offsets for
external axes.

Example 5
GripLoad obj_mass;

MoveAbsJ start, v2000, z40, grip3 \WObj:= obj;

The robot moves the work object obj in relation to the fixed tool grip3 along a
non-linear path to an absolute axis position start.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 399
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.148 MoveAbsJ - Moves the robot to an absolute joint position

RobotWare - OS
Continued

Limitations
To run backwards with the instruction MoveAbsJ involved and avoiding problems
with singular points or ambiguous areas, it is essential that the subsequent
instructions fulfil certain requirements as follows (see figure below).
The figure shows limitation for backward execution with MoveAbsJ.

.

xx0500002201

Syntax
MoveAbsJ

['\' Conc ',']

[ToJointPos ':='] < expression (IN) of jointtarget >

['\' ID ':=' < expression (IN) of identno >]

['\' NoEoffs] ','

[Speed ':='] < expression (IN) of speeddata >

['\' V ':=' < expression (IN) of num >]

| ['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata>

['\' Z ':='] < expression (IN) of num >

['\' Inpos' :=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

jointtarget - Joint position data on page 1647Definition of jointtarget

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

stoppointdata - Stop point data on page 1722Definition of stop point data

Continues on next page
400 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.148 MoveAbsJ - Moves the robot to an absolute joint position
RobotWare - OS
Continued

SeeFor information about

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewConcurrent program execution

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification service
routine

Technical reference manual - System parametersSystem input signal SimMode for run-
ning the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystemparameterModalPayLoadMode
for activating and deactivating payload.
(Topic Controller, TypeGeneral RAPID,
Action values, ModalPayLoadMode)

Technical reference manual - RAPID Instructions, Functions and Data types 401
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.148 MoveAbsJ - Moves the robot to an absolute joint position

RobotWare - OS
Continued

1.149 MoveC - Moves the robot circularly

Usage
MoveC is used to move the tool center point (TCP) circularly to a given destination.
During the movement the orientation normally remains unchanged relative to the
circle.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction MoveC:
See also More examples on page 406.

Example 1
MoveC p1, p2, v500, z30, tool2;

The TCP of the tool, tool2, is moved circularly to the position p2 with speed data
v500 and zone data z30. The circle is defined from the start position, the circle
point p1, and the destination point p2.

Example 2
MoveC *, *, v500 \T:=5, fine, grip3;

The TCP of the tool, grip3, is moved circularly to a fine point stored in the
instruction (marked by the second *). The circle point is also stored in the instruction
(marked by the first *). The complete movement takes 5 seconds.

Example 3
MoveL p1, v500, fine, tool1;

MoveC p2, p3, v500, z20, tool1;

MoveC p4, p1, v500, fine, tool1;

The figure shows how a complete circle is performed by two MoveC instructions.

xx0500002212

Arguments
MoveC [\Conc] CirPoint ToPoint [\ID] Speed [\V] | [\T] Zone [\Z]

[\Inpos] Tool [\WObj] [\Corr] [\TLoad]

Continues on next page
402 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.149 MoveC - Moves the robot circularly
RobotWare - OS

[\Conc]

Concurrent
Data type:switch
Subsequent instructions are executed while the robot is moving. The argument is
usually not used but can be used to avoid unwanted stops caused by overloaded
CPUwhen using fly-by points. This is useful when the programmed points are very
close together at high speeds. The argument is also useful when, for example,
communicating with external equipment and synchronization between the external
equipment and robot movement is not required.
Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.
If this argument is omitted and the ToPoint is not a stop point then the subsequent
instruction is executed some time before the robot has reached the programmed
zone.
This argument cannot be used in coordinated synchronized movement in a
MultiMove System.

CirPoint

Data type:robtarget
The circle point of the robot. The circle point is a position on the circle between
the start point and the destination point. To obtain the best accuracy it should be
placed about halfway between the start and destination points. If it is placed too
close to the start or destination point, the robot may give a warning. The circle
point is defined as a named position or stored directly in the instruction (marked
with an * in the instruction). The position of the external axes are not used.

ToPoint

Data type:robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in MultiMove systems, if the movement is
synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation, and external axes.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 403
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.149 MoveC - Moves the robot circularly

RobotWare - OS
Continued

[\V]

Velocity
Data type: num
This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
and external axes move. It is then substituted for the corresponding speed data.

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Z]

Zone
Data type: num
This argument is used to specify the position accuracy of the robot TCP directly
in the instruction. The length of the corner path is given in mm, which is substituted
for the corresponding zone specified in the zone data.

[\Inpos]

In position
Data type:stoppoint data
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (object coordinate system) to which the robot position in the
instruction is related.
This argument can be omitted and if it is then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used this argument must be specified in order for a circle relative to the
work object to be executed.

Continues on next page
404 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.149 MoveC - Moves the robot circularly
RobotWare - OS
Continued

[\Corr]

Correction
Data type: switch
Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position if this argument is present.
The RobotWare option Path Offset is required when using this argument.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
The robot and external units are moved to the destination point as follows:

• The TCP of the tool is moved circularly at a constant programmed velocity.
• The tool is reoriented at a constant velocity from the orientation at the start

position to the orientation at the destination point.
• The reorientation is performed relative to the circular path. Thus, if the

orientation relative to the path is the same at the start and the destination
points, the relative orientation remains unchanged during themovement (see
figure below).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 405
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.149 MoveC - Moves the robot circularly

RobotWare - OS
Continued

The figure shows tool orientation during circular movement.

xx0500002214

The orientation in the circle point is not reached. It is only used to distinguish
between two possible directions of reorientation. The accuracy of the reorientation
along the path depends only on the orientation at the start and destination points.
Different modes for tool orientation during circle path are described in instruction
CirPathMode.
Uncoordinated external axes are executed at constant velocity in order for them
to arrive at the destination point at the same time as the robot axes. The position
in the circle position is not used.
If it is not possible to attain the programmed velocity for the reorientation or for
the external axes, the velocity of the TCP will be reduced.
A corner path is usually generated when movement is transferred to the next
section of a path. If a stop point is specified in the zone data, program execution
only continues when the robot and external axes have reached the appropriate
position.
If the starting point, circle point, and the destination point are collinear, then the
MoveC instruction will result in a linear movement.

More examples
More examples of how to use the instruction MoveC are illustrated below.

Example 1
MoveC *, *, v500 \V:=550, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved circularly to a position stored in the
instruction. Themovement is carried out with data set to v500 and z40; the velocity
and zone size of the TCP are 550 mm/s and 45 mm respectively.

Example 2
MoveC p5, p6, v2000, fine \Inpos := inpos50, grip3;

The TCP of the tool, grip3, is moved circularly to a stop point p6. The robot
considers it to be in the point when 50% of the position condition and 50% of the
speed condition for a stop point fine are satisfied. It waits at most for 2 seconds
for the conditions to be satisfied. See predefined data inpos50 of data type
stoppointdata.

Example 3
MoveC \Conc, *, *, v500, z40, grip3;

Continues on next page
406 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.149 MoveC - Moves the robot circularly
RobotWare - OS
Continued

The TCP of the tool, grip3, is moved circularly to a position stored in the
instruction. The circle point is also stored in the instruction. Subsequent logical
instructions are executed while the robot moves.

Example 4
MoveC cir1, p15, v500, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved circularly to a position, p15 via the circle
point cir1. These positions are specified in the object coordinate system for
fixture.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Limitations
There are some limitations in how the CirPoint and the ToPoint can be placed.

θ
α

start

CirPoint

ToPoint

xx1700001575

• Minimum distance between start and ToPoint is 0.1 mm
• Minimum distance between start and CirPoint is 0.1 mm
• Minimum distance between CirPoint and ToPoint is 0.1 mm
• If the system parameter Restrict placing of circle points is set to Yes, then

the following additional limitations are active:
- The angle of the circular path (θ in the picture above) may not be larger

than 240°.
- The circle point must be in the middle part of the circular path (α must

be 25-75% of θ, according to the picture above).
The accuracy can be poor near the limits, e.g. if the start point and the ToPoint
on the circle are close to each other then the fault caused by the leaning of the
circle can be much greater than the accuracy with which the points have been
programmed.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 407
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.149 MoveC - Moves the robot circularly

RobotWare - OS
Continued

Ensure that the robot can reach the circle point during program execution and
divide the circle movement order if necessary.
A change of execution mode from forward to backward or vice versa while the
robot is stopped on a circular path is not permitted and will result in an error
message.

WARNING

The instruction MoveC (or any other instruction including circular movement)
should never be started from the beginning with TCP between the circle point
and the end point. Otherwise the robot will not take the programmed path
(positioning around the circular path in another direction compared with that
which is programmed).
To minimize the risk, set the system parameter Restrict placing of circlepoints
to Yes (type Motion Planner, topic Motion).

Syntax
MoveC

['\' Conc ',']

[CirPoint ':='] < expression (IN) of robtarget> ','

[ToPoint ':='] < expression (IN) of robtarget> ','

['\' ID ':=' < expression (IN) of identno>] ','

[Speed ':='] < expression (IN) of speeddata>

['\' V ':=' < expression (IN) of num>]

| ['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata>

['\' Z ':=' < expression (IN) of num>]

['\' Inpos ':=' < expression (IN) of stoppointdata>] ','

[Tool ':='] < persistent (PERS) of tooldata>

['\' WObj ':=' < persistent (PERS) of wobjdata>]

['\' Corr]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

stoppointdata - Stop point data on page 1722Definition of stop point data

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

CorrWrite - Writes to a correction generator on page168Writes to a corrections entry

CirPathMode - Tool reorientation during circle path on
page 120

Tool reorientation during circle
path

Continues on next page
408 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.149 MoveC - Moves the robot circularly
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewConcurrent program execution

Technical reference manual - System parametersSystem parameters

MoveL - Moves the robot linearly on page 457Example of how to use TLoad,
Total Load.

GripLoad - Defines the payload for a robot on page 266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification
service routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated
mode without payload.
(Topic I/O, Type System Input,
Action values, SimMode)

Technical reference manual - System parametersSystemparameterModalPayLoad-
Mode for activating and deactivat-
ing payload.
(Topic Controller, Type General
RAPID, Action values,ModalPay-
LoadMode)

Application manual - Controller software IRC5Path Offset

Technical reference manual - RAPID Instructions, Functions and Data types 409
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.149 MoveC - Moves the robot circularly

RobotWare - OS
Continued

1.150 MoveCAO - Moves the robot circularly and sets analog output in the corner

Usage
MoveCAO (Move Circular Analog Output) is used to move the tool center point
(TCP) circularly to a given destination. The specified analog output is set in the
middle of the corner path at the destination point. During the movement the
orientation normally remains unchanged relative to the circle.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction MoveCAO:

Example 1
MoveCAO p1, p2, v500, z30, tool2, ao1, 1.1;

The TCP of the tool, tool2, is moved circularly to the position p2 with speed data
v500 and zone data z30. The circle is defined from the start position, the circle
point p1, and the destination point p2. Output ao1 is set in the middle of the corner
path at p2.

Arguments
MoveCAO CirPoint ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal

Value [\TLoad]

CirPoint

Data type: robtarget
The circle point of the robot. The circle point is a position on the circle between
the start point and the destination point. To obtain the best accuracy it should be
placed about halfway between the start and destination points. If it is placed too
close to the start or destination point the robot may give a warning. The circle point
is defined as a named position or stored directly in the instruction (marked with
an * in the instruction). The position of the external axes are not used.

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in MultiMove systems, if the movement is
synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Continues on next page
410 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.150 MoveCAO - Moves the robot circularly and sets analog output in the corner
RobotWare - OS

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation, and external axes.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
and external axes move. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (object coordinate system) to which the robot position in the
instruction is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified in order for a circle relative to
the work object to be executed.

Signal

Data type: signalao
The name of the analog output signal to be changed.

Value

Data type: num
The desired value of signal.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 411
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.150 MoveCAO - Moves the robot circularly and sets analog output in the corner

RobotWare - OS
Continued

To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveC for more information about circular movement, MoveC
- Moves the robot circularly on page 402.
The analog output signal is set in the middle of the corner path for flying points,
as shown in figure below.
The figure shows set of analog output signal in the corner path with MoveCAO.

MoveCAO p2, p2, v500, z30, tool2, ao1, 1.1;

StartPoint

CirPoint

ToPoint

Set the signal

Next point

Zone

xx1400001116

For stop points we recommend the use of "normal" programming sequence with
MoveC and SetAO. But when using stop point in instruction MoveCAO the analog
output signal is set when the robot reaches the stop point.
The specified I/O signal is set in executionmode continuously and stepwise forward,
but not in stepwise backward.

Limitations
General limitations according to instruction MoveC, see MoveC - Moves the robot
circularly on page 402.

Continues on next page
412 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.150 MoveCAO - Moves the robot circularly and sets analog output in the corner
RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed Value argument for the specified analog
output signal Signal is outside limits.

ERR_AO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
MoveCAO

[CirPoint ':='] < expression (IN) of robtarget > ','

[ToPoint ':='] < expression (IN) of robtarget > ','

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

| ['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >] ','

[Signal ':='] < variable (VAR) of signalao >] ','

[Value ':='] < expression (IN) of num >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveC - Moves the robot circularly on page 402Move the robot circularly

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewMovements with I/O settings

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on page266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 413
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.150 MoveCAO - Moves the robot circularly and sets analog output in the corner

RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O System, Type System In-
put, Action values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID,Action values,ModalPayLoad-
Mode)

414 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.150 MoveCAO - Moves the robot circularly and sets analog output in the corner
RobotWare - OS
Continued

1.151 MoveCDO - Moves the robot circularly and sets digital output in the corner

Usage
MoveCDO (Move Circular Digital Output) is used to move the tool center point (TCP)
circularly to a given destination. The specified digital output is set/reset in the
middle of the corner path at the destination point. During the movement the
orientation normally remains unchanged relative to the circle.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction MoveCDO:

Example 1
MoveCDO p1, p2, v500, z30, tool2, do1,1;

The TCP of the tool, tool2, is moved circularly to the position p2 with speed data
v500 and zone data z30. The circle is defined from the start position, the circle
point p1, and the destination point p2. Output do1 is set in the middle of the corner
path at p2.

Arguments
MoveCDO CirPoint ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal

Value [\TLoad]

CirPoint

Data type: robtarget
The circle point of the robot. The circle point is a position on the circle between
the start point and the destination point. To obtain the best accuracy it should be
placed about halfway between the start and destination points. If it is placed too
close to the start or destination point the robot may give a warning. The circle point
is defined as a named position or stored directly in the instruction (marked with
an * in the instruction). The position of the external axes are not used.

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in MultiMove systems, if the movement is
synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 415
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.151 MoveCDO - Moves the robot circularly and sets digital output in the corner

RobotWare - OS

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation, and external axes.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
and external axes move. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (object coordinate system) to which the robot position in the
instruction is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified in order for a circle relative to
the work object to be executed.

Signal

Data type: signaldo
The name of the digital output signal to be changed.

Value

Data type: dionum
The desired value of signal (0 or 1).

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.

Continues on next page
416 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.151 MoveCDO - Moves the robot circularly and sets digital output in the corner
RobotWare - OS
Continued

To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveC for more information about circular movement.
The digital output signal is set/reset in the middle of the corner path for flying
points, as shown in figure below.
The figure shows set/reset of digital output signal in the corner path with MoveCDO.

xx0500002215

For stop points we recommend the use of “normal” programming sequence with
MoveC + SetDO. But when using stop point in instruction MoveCDO the digital output
signal is set/reset when the robot reaches the stop point.
The specified I/O signal is set/reset in execution mode continuously and stepwise
forward, but not in stepwise backward.

Limitations
General limitations according to instruction MoveC.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 417
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.151 MoveCDO - Moves the robot circularly and sets digital output in the corner

RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
MoveCDO

[CirPoint ':='] < expression (IN) of robtarget > ','

[ToPoint ':='] < expression (IN) of robtarget > ','

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

| ['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >] ','

[Signal ':='] < variable (VAR) of signaldo >] ','

[Value ':='] < expression (IN) of dionum >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveC - Moves the robot circularly on page 402Move the robot circularly

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewMovements with I/O settings

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on page266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Continues on next page
418 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.151 MoveCDO - Moves the robot circularly and sets digital output in the corner
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID,Action values,ModalPayLoad-
Mode)

Technical reference manual - RAPID Instructions, Functions and Data types 419
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.151 MoveCDO - Moves the robot circularly and sets digital output in the corner

RobotWare - OS
Continued

1.152 MoveCGO - Moves the robot circularly and set a group output signal in the
corner

Usage
MoveCGO (Move Circular GroupOutput) is used tomove the tool center point (TCP)
circularly to a given destination. The specified group output signal is set in the
middle of the corner path at the destination point. During the movement the
orientation normally remains unchanged relative to the circle.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction MoveCGO:

Example 1
MoveCGO p1, p2, v500, z30, tool2, go1 \Value:=5;

The TCP of the tool, tool2, is moved circularly to the position p2 with speed data
v500 and zone data z30. The circle is defined from the start position, the circle
point p1, and the destination point p2. Group output signal go1 is set in the middle
of the corner path at p2.

Arguments
MoveCGO CirPoint ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal

[\Value] | [\DValue] [\TLoad]

CirPoint

Data type: robtarget
The circle point of the robot. The circle point is a position on the circle between
the start point and the destination point. To obtain the best accuracy it should be
placed about halfway between the start and destination points. If it is placed too
close to the start or destination point the robot may give a warning. The circle point
is defined as a named position or stored directly in the instruction (marked with
an * in the instruction). The position of the external axes are not used.

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in MultiMove systems, if the movement is
synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Continues on next page
420 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.152 MoveCGO - Moves the robot circularly and set a group output signal in the corner
RobotWare - OS

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation, and external axes.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
and external axes move. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (object coordinate system) to which the robot position in the
instruction is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified in order for a circle relative to
the work object to be executed.

Signal

Data type: signalgo
The name of the group output signal to be changed.

[\Value]

Data type: num
The desired value of signal.

[\DValue]

Data type: dnum
The desired value of signal.
If none of the arguments \Value or \DValue is entered, an error message will be
displayed.

[\TLoad]

Total load

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 421
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.152 MoveCGO - Moves the robot circularly and set a group output signal in the corner

RobotWare - OS
Continued

Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveC for more information about circular movement, MoveC
- Moves the robot circularly on page 402.
The group output signal is set in the middle of the corner path for flying points, as
shown in figure below.
The figure shows set of group output signal in the corner path with MoveCGO.

MoveCGO p2, p2, v500, z30, tool2, go1 \Value:=5;

StartPoint

CirPoint

ToPoint

Set the signal

Next point

Zone

xx1400001116

Continues on next page
422 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.152 MoveCGO - Moves the robot circularly and set a group output signal in the corner
RobotWare - OS
Continued

For stop points we recommend the use of "normal" programming sequence with
MoveC and SetGO. But when using stop point in instruction MoveCGO the group
output signal is set when the robot reaches the stop point.
The specified I/O signal is set in executionmode continuously and stepwise forward,
but not in stepwise backward.

Limitations
General limitations according to instruction MoveC, see MoveC - Moves the robot
circularly on page 402.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Value or DValue argument for the specified group output
signal is outside limits.

ERR_GO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
MoveCGO

[CirPoint ':='] < expression (IN) of robtarget > ','

[ToPoint ':='] < expression (IN) of robtarget > ','

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >] ','

[Signal ':='] < variable (VAR) of signalgo >] ','

['\' Value ':='] < expression (IN) of num >]

| ['\' Dvalue’ :=’] < expression (IN) of dnum >

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveC - Moves the robot circularly on page 402Move the robot circularly

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 423
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.152 MoveCGO - Moves the robot circularly and set a group output signal in the corner

RobotWare - OS
Continued

SeeFor information about

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewMovements with I/O settings

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on page266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O System, Type System In-
put, Action values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID,Action values,ModalPayLoad-
Mode)

424 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.152 MoveCGO - Moves the robot circularly and set a group output signal in the corner
RobotWare - OS
Continued

1.153 MoveCSync - Moves the robot circularly and executes a RAPID procedure

Usage
MoveCSync (Move Circular Synchronously) is used to move the tool center point
(TCP) circularly to a given destination. The specified RAPID procedure is ordered
to execute at the middle of the corner path in the destination point. During the
movement the orientation normally remains unchanged relative to the circle.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction MoveCSync:

Example 1
MoveCSync p1, p2, v500, z30, tool2, "proc1";

The TCP of the tool, tool2, is moved circularly to the position p2 with speed data
v500 and zone data z30. The circle is defined from the start position, the circle
point p1, and the destination point p2. Procedure proc1 is executed in the middle
of the corner path at p2.

Example 2
MoveCSync p1, p2, v500, z30, tool2, "MyModule:proc1";

The same as in example 1 above, but here the locally declared procedure proc1
in module MyModule will be called in the middle of the corner path.

Arguments
MoveCSync CirPoint ToPoint [\ID] Speed [\T] Zone Tool [\WObj]

ProcName [\TLoad]

CirPoint

Data type: robtarget
The circle point of the robot. The circle point is a position on the circle between
the start point and the destination point. To obtain the best accuracy it should be
placed about halfway between the start and destination points. If it is placed too
close to the start or destination point the robot may give a warning. The circle point
is defined as a named position or stored directly in the instruction (marked with
an * in the instruction). The position of the external axes are not used.

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 425
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.153 MoveCSync - Moves the robot circularly and executes a RAPID procedure

RobotWare - OS

other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation and external axes.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
and external axes move. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (object coordinate system) to which the robot position in the
instruction is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used, this argument must be specified.

ProcName

Procedure Name
Data type: string
Name of the RAPID procedure to be executed at the middle of the corner path in
the destination point.
The procedure will execute on TRAP level (see Program execution below).

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.

Continues on next page
426 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.153 MoveCSync - Moves the robot circularly and executes a RAPID procedure
RobotWare - OS
Continued

If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveC for more information about circular movements.
The specified RAPID procedure is ordered to execute when the TCP reaches the
middle of the corner path in the destination point of the MoveCSync instruction, as
shown in the figure below.
The figure shows that the order to execute the user defined RAPID procedure is
done at the middle of the corner path.

xx0500002216

For stop points we recommend the use of“ normal” programming sequence with
MoveC + and other RAPID instructions in sequence.
The table describes execution of the specified RAPID procedure in different
execution modes:

Execution of RAPID procedureExecution mode

According to this descriptionContinuously or Cycle

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 427
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.153 MoveCSync - Moves the robot circularly and executes a RAPID procedure

RobotWare - OS
Continued

Execution of RAPID procedureExecution mode

In the stop pointForward step

Not at allBackward step

MoveCSync is an encapsulation of the instructions TriggInt and TriggC. The
procedure call is executed on TRAP level.
If the middle of the corner path in the destination point is reached during the
deceleration after a program stop, the procedure will not be called (program
execution is stopped). The procedure call will be executed at next program start.

Limitation
General limitations according to instruction MoveC.
When the robot reaches the middle of the corner path there is normally a delay of
2-30 ms until the specified RAPID routine is executed depending on what type of
movement is being performed at the time.
Switching executionmode after program stop from continuously or cycle to stepwise
forward or backward results in an error. This error tells the user that the mode
switch can result in missed execution of the RAPID procedure in the queue for
execution on the path.
Instruction MoveCSync cannot be used on TRAP level. The specified RAPID
procedure cannot be tested with stepwise execution.

Syntax
MoveCSync

[CirPoint ':='] < expression (IN) of robtarget > ','

[ToPoint ':='] < expression (IN) of robtarget > ','

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >] ','

[ProcName ':='] < expression (IN) of string >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveC - Moves the robot circularly on page 402Moves the robot circularly

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Continues on next page
428 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.153 MoveCSync - Moves the robot circularly and executes a RAPID procedure
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - RAPID OverviewCoordinate systems

TriggInt - Defines a position related interrupt on
page 898

Defines a position related interrupt

TriggC - Circular robot movement with events on
page 873

Circular robot movement with events

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification service
routine

Technical reference manual - System parametersSystem input signal SimMode for run-
ning the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystemparameterModalPayLoadMode
for activating and deactivating payload.
(Topic Controller, TypeGeneral RAPID,
Action values, ModalPayLoadMode)

Technical reference manual - RAPID Instructions, Functions and Data types 429
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.153 MoveCSync - Moves the robot circularly and executes a RAPID procedure

RobotWare - OS
Continued

1.154 MoveExtJ - Move one or several mechanical units without TCP

Usage
MoveExtJ (Move External Joints) is used to move linear or rotating external axes.
The external axes can belong to one or several mechanical units without TCP.
This instruction can only be used with an actual program task defined as a Motion
Task and if the task controls one or several mechanical units without TCP.

Basic examples
The following examples illustrate the instruction MoveExtJ:
See also More examples on page 432.

Example 1
MoveExtJ jpos10, vrot10, z50;

Move rotational external axes to joint position jpos10 with speed 10 degrees/s
with zone data z50.

Example 2
MoveExtJ \Conc, jpos20, vrot10 \T:=5, fine \InPos:=inpos20;

Move external axes to joint position jpos20 in 5. The program execution goes
forward at once but the external axes stops in the position jpos20 until the
convergence criteria in inpos20 are fulfilled.

Arguments
MoveExtJ [\Conc] ToJointPos [\ID] [\UseEOffs] Speed [\T] Zone

[\Inpos]

[\Conc]

Concurrent
Data type: switch
Subsequent instructions are executed while the external axis is moving. The
argument is usually not used but can be used to avoid unwanted stops caused by
overloaded CPU when using fly-by points. This is useful when the programmed
points are very close together at high speeds. The argument is also useful when,
for example, communicating with external equipment and synchronization between
the external equipment and robot movement is not required.
Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath
movement instructions with the argument \Conc are not permitted.
If this argument is omitted and the ToJointPos is not a stop point then the
subsequent instruction is executed some time before the external axes has reached
the programmed zone.
This argument cannot be used in coordinated synchronized movement in a
MultiMove System.

ToJointPos

To Joint Position

Continues on next page
430 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.154 MoveExtJ - Move one or several mechanical units without TCP
RobotWare - OS

Data type: jointtarget
The destination absolute joint position of the external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization ID
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

[\UseEOffs]

Use External Offset
Data type: switch
The offset for external axes, setup by instruction EOffsSet, is activated for
MoveExtJ instruction when the argument UseEOffs is used. See instruction
EOffsSet for more information about external offset.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
linear or rotating external axis.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the external
axes move. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data defines stop point or fly-by point. If it is a
fly-by point then the zone size describes the deceleration and acceleration for the
linear or rotational external axes.

[\Inpos]

In position
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
external axis in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Program execution
The linear or rotating external axes are moved to the programmed point with the
programmed velocity.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 431
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.154 MoveExtJ - Move one or several mechanical units without TCP

RobotWare - OS
Continued

More examples
CONST jointtarget j1 :=

[[9E9,9E9,9E9,9E9,9E9,9E9],[0,9E9,9E9,9E9,9E9,9E9]];

CONST jointtarget j2 :=
[[9E9,9E9,9E9,9E9,9E9,9E9],[30,9E9,9E9,9E9,9E9,9E9]];

CONST jointtarget j3 :=
[[9E9,9E9,9E9,9E9,9E9,9E9],[60,9E9,9E9,9E9,9E9,9E9]];

CONST jointtarget j4 :=
[[9E9,9E9,9E9,9E9,9E9,9E9],[90,9E9,9E9,9E9,9E9,9E9]];

CONST speeddata rot_ax_speed := [0, 0, 0, 45];

MoveExtJ j1, rot_ax_speed, fine;

MoveExtJ j2, rot_ax_speed, z20;

MoveExtJ j3, rot_ax_speed, z20;

MoveExtJ j4, rot_ax_speed, fine;

In this example the rotating single axis is moved to joint position 0, 30, 60, and 90
degrees with the speed of 45 degrees/s.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Syntax
MoveExtJ

['\' Conc ',']

[ToJointPos ':='] < expression (IN) of jointtarget >

['\' ID ':=' < expression (IN) of identno >]','

['\' UseEOffs ',']

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos ':=' < expression (IN) of stoppointdata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

jointtarget - Joint position data on page 1647Definition of jointtarget

speeddata - Speed data on page 1718Definition of velocity

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewConcurrent program execution

432 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.154 MoveExtJ - Move one or several mechanical units without TCP
RobotWare - OS
Continued

1.155 MoveJ - Moves the robot by joint movement

Usage
MoveJ is used to move the robot quickly from one point to another when that
movement does not have to be in a straight line.
The robot and external axes move to the destination position along a non-linear
path. All axes reach the destination position at the same time.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction MoveJ:
See also More examples on page 436.

Example 1
MoveJ p1, vmax, z30, tool2;

The tool center point (TCP) of the tool, tool2, is moved along a non-linear path
to the position, p1, with speed data vmax and zone data z30.

Example 2
MoveJ *, vmax \T:=5, fine, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a stop point stored
in the instruction (marked with an *). The entire movement takes 5 seconds.

Arguments
MoveJ [\Conc] ToPoint [\ID] Speed [\V] | [\T] Zone [\Z] [\Inpos]

Tool [\WObj] [\TLoad]

[\Conc]

Concurrent
Data type: switch
Subsequent instructions are executed while the robot is moving. The argument is
usually not used but can be used to avoid unwanted stops caused by overloaded
CPUwhen using fly-by points. This is useful when the programmed points are very
close together at high speeds. The argument is also useful when, for example,
communicating with external equipment and synchronization between the external
equipment and robot movement is not required.
Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath
movement instructions with the argument \Conc are not permitted.
If this argument is omitted and the ToPoint is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
zone.
This argument cannot be used in coordinated synchronized movement in a
MultiMove system.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 433
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.155 MoveJ - Moves the robot by joint movement

RobotWare - OS

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
This argument must be used in a MultiMove system, if coordinated synchronized
movement, and is not allowed in any other cases.
The specified id number must be the same in all cooperating program tasks. The
id number gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the tool reorientation, and external axes.

[\V]

Velocity
Data type: num
This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Z]

Zone
Data type: num
This argument is used to specify the position accuracy of the robot TCP directly
in the instruction. The length of the corner path is given in mm, which is substituted
for the corresponding zone specified in the zone data.

[\Inpos]

In position
Data type: stoppointdata

Continues on next page
434 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.155 MoveJ - Moves the robot by joint movement
RobotWare - OS
Continued

This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 435
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.155 MoveJ - Moves the robot by joint movement

RobotWare - OS
Continued

Program execution
The tool center point is moved to the destination point with interpolation of the axis
angles. This means that each axis is moved with constant axis velocity and that
all axes reach the destination point at the same time, which results in a non-linear
path.
Generally speaking, the TCP is moved at the approximate programmed velocity
(regardless of whether or not the external axes are coordinated). The tool is
reoriented and the external axes are moved at the same time that the TCP moves.
If the programmed velocity for reorientation or for the external axes cannot be
attained then the velocity of the TCP will be reduced.
A corner path is usually generated when movement is transferred to the next
section of the path. If a stop point is specified in the zone data the program
execution only continues when the robot and external axes have reached the
appropriate position.

More examples
More examples of how to use the instruction MoveJ are illustrated below.

Example 1
MoveJ *, v2000\V:=2200, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a position stored
in the instruction. The movement is carried out with data set to v2000 and z40;
the velocity and zone size of the TCP are 2200 mm/s and 45 mm respectively.

Example 2
MoveJ p5, v2000, fine \Inpos := inpos50, grip3;

The TCP of the tool, grip3, is moved in a non-linear path to a stop point p5. The
robot considers it to be in the point when 50% of the position condition and 50%
of the speed condition for a stop point fine are satisfied. It waits at most for 2
seconds for the conditions to be satisfied. See predefined data inpos50 of data
type stoppointdata.

Example 3
MoveJ \Conc, *, v2000, z40, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a position stored
in the instruction. Subsequent logical instructions are executed while the robot
moves.

Example 4
MoveJ start, v2000, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved along a non-linear path to a position, start.
This position is specified in the object coordinate system for fixture.

Continues on next page
436 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.155 MoveJ - Moves the robot by joint movement
RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Syntax
MoveJ

['\' Conc ',']

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

['\' V ':=' < expression (IN) of num >]

| ['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata >

['\' Z ':=' < expression (IN) of num >]

['\' Inpos ':=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

stoppointdata - Stop point data on page 1722Definition of stop point data

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewConcurrent program execution

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on page266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulatedmode
without payload.
(Topic I/O, Type System Input, Ac-
tion values, SimMode)

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 437
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.155 MoveJ - Moves the robot by joint movement

RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID, Action values, ModalPay-
LoadMode)

438 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.155 MoveJ - Moves the robot by joint movement
RobotWare - OS
Continued

1.156 MoveJAO - Moves the robot by joint movement and sets analog output in the
corner

Usage
MoveJAO (Move Joint Analog Output) is used to move the robot quickly from one
point to another when that movement does not have to be in a straight line. The
specified analog output signal is set at the middle of the corner path.
The robot and external axes move to the destination position along a non-linear
path. All axes reach the destination position at the same time.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction MoveJAO:

Example 1
MoveJAO p1, vmax, z30, tool2, ao1, 1.1;

The tool center point (TCP) of the tool, tool2 , is moved along a non-linear path
to the position, p1, with speed data vmax and zone data z30. Output ao1 is set in
the middle of the corner path at p1.

Arguments
MoveJAO ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal Value

[\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the tool reorientation, and external axes.

[\T]

Time
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 439
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.156 MoveJAO - Moves the robot by joint movement and sets analog output in the corner

RobotWare - OS

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

Signal

Data type: signalao
The name of the analog output signal to be changed.

Value

Data type: num
The desired value of signal.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital

Continues on next page
440 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.156 MoveJAO - Moves the robot by joint movement and sets analog output in the corner
RobotWare - OS
Continued

input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveJ for more information about joint movement, MoveJ -
Moves the robot by joint movement on page 433.
The analog output signal is set in the middle of the corner path for flying points,
as shown in figure below.
The figure shows set of analog output signal in the corner path with MoveJAO.

MoveJAO p2, vmax, z30, tool2, ao1, 1.1;

p2

p3

p1
Zone

Sets the signal

xx1400001118

For stop points we recommend the use of "normal" programming sequence with
MoveJ and SetAO. But when using stop point in instruction MoveJAO, the analog
output signal is set when the robot reaches the stop point.
The specified I/O signal is set in executionmode continuously and stepwise forward,
but not in stepwise backward.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed Value argument for the specified analog
output signal Signal is outside limits.

ERR_AO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 441
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.156 MoveJAO - Moves the robot by joint movement and sets analog output in the corner

RobotWare - OS
Continued

Syntax
MoveJAO

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

| ['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata>

['\' WObj ':=' < persistent (PERS) of wobjdata >] ','

[Signal ':='] < variable (VAR) of signalao>] ','

[Value ':='] < expression (IN) of num >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveJ - Moves the robot by joint movement on
page 433

Moves the robot by joint movement

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewMovements with I/O settings

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID, Action values,ModalPayLoad-
Mode)

442 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.156 MoveJAO - Moves the robot by joint movement and sets analog output in the corner
RobotWare - OS
Continued

1.157 MoveJDO - Moves the robot by joint movement and sets digital output in the
corner

Usage
MoveJDO (Move Joint Digital Output) is used to move the robot quickly from one
point to another when that movement does not have to be in a straight line. The
specified digital output signal is set/reset at the middle of the corner path.
The robot and external axes move to the destination position along a non-linear
path. All axes reach the destination position at the same time.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction MoveJDO:

Example 1
MoveJDO p1, vmax, z30, tool2, do1, 1;

The tool center point (TCP) of the tool, tool2 , is moved along a non-linear path
to the position, p1, with speed data vmax and zone data z30. Output do1 is set in
the middle of the corner path at p1.

Arguments
MoveJDO ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal Value

[\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the tool reorientation, and external axes.

[\T]

Time
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 443
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.157 MoveJDO - Moves the robot by joint movement and sets digital output in the corner

RobotWare - OS

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

Signal

Data type: signaldo
The name of the digital output signal to be changed.

Value

Data type: dionum
The desired value of signal (0 or 1).

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital

Continues on next page
444 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.157 MoveJDO - Moves the robot by joint movement and sets digital output in the corner
RobotWare - OS
Continued

input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveJ for more information about joint movement.
The digital output signal is set/reset in the middle of the corner path for flying
points, as shown in figure below.
The figure shows set/reset of digital output signal in the corner path with MoveJDO.

xx0500002196

For stop points we recommend the use of “normal” programming sequence with
MoveJ + SetDO. But when using stop point in instruction MoveJDO, the digital
output signal is set/reset when the robot reaches the stop point.
The specified I/O signal is set/reset in execution mode continuously and stepwise
forward, but not in stepwise backward.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
MoveJDO

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

| ['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 445
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.157 MoveJDO - Moves the robot by joint movement and sets digital output in the corner

RobotWare - OS
Continued

[Tool ':='] < persistent (PERS) of tooldata>

['\' WObj ':=' < persistent (PERS) of wobjdata >] ','

[Signal ':='] < variable (VAR) of signaldo>] ','

[Value ':='] < expression (IN) of dionum >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveJ - Moves the robot by joint movement on
page 433

Moves the robot by joint movement

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewMovements with I/O settings

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID, Action values,ModalPayLoad-
Mode)

446 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.157 MoveJDO - Moves the robot by joint movement and sets digital output in the corner
RobotWare - OS
Continued

1.158 MoveJGO - Moves the robot by joint movement and set a group output signal
in the corner

Usage
MoveJGO (Move Joint Group Output) is used to move the robot quickly from one
point to another when that movement does not have to be in a straight line. The
specified group output signal is set at the middle of the corner path.
The robot and external axes move to the destination position along a non-linear
path. All axes reach the destination position at the same time.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction MoveJGO:

Example 1
MoveJGO p1, vmax, z30, tool2, go1 \Value:=5;

The tool center point (TCP) of the tool, tool2 , is moved along a non-linear path
to the position, p1, with speed data vmax and zone data z30. Group output signal
go1 is set in the middle of the corner path at p1.

Arguments
MoveJGO ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal [\Value]

| [\DValue] [\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the tool reorientation, and external axes.

[\T]

Time
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 447
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.158 MoveJGO - Moves the robot by joint movement and set a group output signal in the corner

RobotWare - OS

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

Signal

Data type: signalgo
The name of the group output signal to be changed.

[\Value]

Data type: num
The desired value of signal.

[\DValue]

Data type: dnum
The desired value of signal.
If none of the arguments \Value or \DValue is entered, an error message will be
displayed.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.

Continues on next page
448 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.158 MoveJGO - Moves the robot by joint movement and set a group output signal in the corner
RobotWare - OS
Continued

The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveJ for more information about joint movement.
The group output signal is set in the middle of the corner path for flying points, as
shown in figure below.
The figure shows set of group output signal in the corner path with MoveJGO.

MoveJGO p2, vmax, z30, tool2, go1 \Value:=5;

p2

p3

p1
Zone

Sets the signal

xx1400001118

For stop points we recommend the use of "normal" programming sequence with
MoveJ + SetGO. But when using stop point in instruction MoveJGO, the group output
signal is set when the robot reaches the stop point.
The specified I/O signal is set in executionmode continuously and stepwise forward,
but not in stepwise backward.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Value or DValue argument for the specified group output
signal is outside limits.

ERR_GO_LIM

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 449
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.158 MoveJGO - Moves the robot by joint movement and set a group output signal in the corner

RobotWare - OS
Continued

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

there is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
MoveJGO

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata>

['\' WObj ':=' < persistent (PERS) of wobjdata >] ','

[Signal ':='] < variable (VAR) of signalgo>] ','

['\' Value ':='] < expression (IN) of num >]

| ['\' Dvalue’ :=’] < expression (IN) of dnum >

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveJ - Moves the robot by joint movement on
page 433

Moves the robot by joint movement

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewMovements with I/O settings

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Continues on next page
450 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.158 MoveJGO - Moves the robot by joint movement and set a group output signal in the corner
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID, Action values,ModalPayLoad-
Mode)

Technical reference manual - RAPID Instructions, Functions and Data types 451
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.158 MoveJGO - Moves the robot by joint movement and set a group output signal in the corner

RobotWare - OS
Continued

1.159 MoveJSync - Moves the robot by joint movement and executes a RAPID
procedure

Usage
MoveJSync (Move Joint Synchronously) is used to move the robot quickly from
one point to another when that movement does not have to be in a straight line.
The specified RAPID procedure is ordered to execute at the middle of the corner
path in the destination point.
The robot and external axes move to the destination position along a non-linear
path. All axes reach the destination position at the same time.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction MoveJSync:

Example 1
MoveJSync p1, vmax, z30, tool2, "proc1";

The tool center point (TCP) of the tool, tool2, is moved along a non-linear path
to the position, p1, with speed data vmax and zone data z30. Procedure proc1 is
executed in the middle of the corner path at p1.

Example 2
MoveJSync p1, vmax, z30, tool2, "MyModule:proc1";

The same as in example 1 above, but here the locally declared procedure proc1
in module MyModule will be called in the middle of the corner path.

Arguments
MoveJSync ToPoint [\ID] Speed [\T] Zone Tool [\WObj] ProcName

[\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata

Continues on next page
452 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.159 MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
RobotWare - OS

The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the tool reorientation, and external axes.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

ProcName

Procedure Name
Data type: string
Name of the RAPID procedure to be executed at the middle of the corner path in
the destination point. The procedure call is a late binding call, and therefore inherits
its properties.
The procedure will execute on TRAP level (see Program execution below).

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 453
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.159 MoveJSync - Moves the robot by joint movement and executes a RAPID procedure

RobotWare - OS
Continued

To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveJ for more information about joint movements.
The specified RAPID procedure is ordered to execute when the TCP reaches the
middle of the corner path in the destination point of the MoveJSync instruction, as
shown in the figure
below.

xx0500002195

For stop points we recommend the use of “normal” programming sequence with
MoveJ + other RAPID instructions in sequence.
The table describes execution of the specified RAPID procedure in different
execution modes:

Execution of RAPID procedureExecution mode

According to this descriptionContinuously or Cycle

In the stop pointForward step

Not at allBackward step

MoveJSync is an encapsulation of the instructions TriggInt and TriggJ. The
procedure call is executed on TRAP level.

Continues on next page
454 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.159 MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
RobotWare - OS
Continued

If the middle of the corner path in the destination point is reached during the
deceleration after a program stop, the procedure will not be called (program
execution is stopped). The procedure call will be executed at next program start.

Limitation
When the robot reaches the middle of the corner path there is normally a delay of
2-30 ms until the specified RAPID routine is executed, depending on what type of
movement is being performed at the time.
Switching executionmode after program stop from continuously or cycle to stepwise
forward or backward results in an error. This error tells the user that the mode
switch can result in missed execution of the RAPID procedure in the queue for
execution on the path.
Instruction MoveJSync cannot be used on TRAP level. The specified RAPID
procedure cannot be tested with stepwise execution.

Syntax
MoveJSync

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

'\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj '=' < persistent (PERS) of wobjdata >] ','

[ProcName '='] < expression (IN) of string >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveJ - Moves the robot by joint movement on
page 433

Moves the robot by joint movement

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

TriggInt - Defines a position related interrupt on
page 898

Defines a position related interrupt

TriggJ - Axis-wise robot movements with events on
page 909

Axis-wise robot movements with
events

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 455
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.159 MoveJSync - Moves the robot by joint movement and executes a RAPID procedure

RobotWare - OS
Continued

SeeFor information about

GripLoad - Defines the payload for a robot on page266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulatedmode
without payload.
(Topic I/O, Type System Input, Ac-
tion values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID, Action values, ModalPay-
LoadMode)

456 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.159 MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
RobotWare - OS
Continued

1.160 MoveL - Moves the robot linearly

Usage
MoveL is used to move the tool center point (TCP) linearly to a given destination.
When the TCP is to remain stationary then this instruction can also be used to
reorientate the tool.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
System, in Motion tasks.

Basic examples
The following examples illustrate the instruction MoveL:
See also More examples on page 460.

Example 1
MoveL p1, v1000, z30, tool2;

The TCP of the tool, tool2, is moved linearly to the position p1, with speed data
v1000and zone data z30.

Example 2
MoveL *, v1000\T:=5, fine, grip3;

The TCP of the tool, grip3, is moved linearly to a stop point stored in the instruction
(marked with an *). The complete movement takes 5 seconds.

Arguments
MoveL [\Conc] ToPoint [\ID] Speed [\V] | [\T] Zone [\Z] [\Inpos]

Tool [\WObj] [\Corr] [\TLoad]

[\Conc]

Concurrent
Data type: switch
Subsequent instructions are executed while the robot is moving. The argument is
usually not used but can be used to avoid unwanted stops caused by overloaded
CPUwhen using fly-by points. This is useful when the programmed points are very
close together at high speeds. The argument is also useful when, for example,
communicating with external equipment and synchronization between the external
equipment and robot movement is not required.
Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.
If this argument is omitted and the ToPoint is not a stop point then the subsequent
instruction is executed some time before the robot has reached the programmed
zone.
This argument cannot be used in coordinated synchronized movement in a
MultiMove System.

ToPoint

Data type: robtarget

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 457
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.160 MoveL - Moves the robot linearly

RobotWare - OS

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity for the
tool center point, the tool reorientation, and external axes.

[\V]

Velocity
Data type: num
This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Z]

Zone
Data type: num
This argument is used to specify the position accuracy of the robot TCP directly
in the instruction. The length of the corner path is given in mm, which is substituted
for the corresponding zone specified in the zone data.

[\Inpos]

In position
Data type: stoppointdata

Continues on next page
458 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.160 MoveL - Moves the robot linearly
RobotWare - OS
Continued

This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary tool or coordinated external
axes are used then this argument must be specified to perform a linear movement
relative to the work object.

[\Corr]

Correction
Data type: switch
Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position if this argument is present.
The RobotWare option Path Offset is required when using this argument.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 459
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.160 MoveL - Moves the robot linearly

RobotWare - OS
Continued

input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
The robot and external units are moved to the destination position as follows:

• The TCP of the tool is moved linearly at constant programmed velocity.
• The tool is reoriented at equal intervals along the path.
• Uncoordinated external axes are executed at a constant velocity in order for

them to arrive at the destination point at the same time as the robot axes.
If it is not possible to attain the programmed velocity for the reorientation or for
the external axes then the velocity of the TCP will be reduced.
A corner path is usually generated when movement is transferred to the next
section of a path. If a stop point is specified in the zone data then program execution
only continues when the robot and external axes have reached the appropriate
position.

More examples
More examples of how to use the instruction MoveL are illustrated below.

Example 1
MoveL *, v2000 \V:=2200, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved linearly to a position stored in the instruction.
The movement is carried out with data set to v2000 and z40. The velocity and
zone size of the TCP are 2200 mm/s and 45 mm respectively.

Example 2
MoveL p5, v2000, fine \Inpos := inpos50, grip3;

The TCP of the tool, grip3, is moved linearly to a stop point p5. The robot considers
it to be in the point when 50% of the position condition and 50% of the speed
condition for a stop point fine are satisfied. It waits at most for 2 seconds for the
conditions to be satisfied. See predefined data inpos50 of data type
stoppointdata.

Example 3
MoveL \Conc, *, v2000, z40, grip3;

The TCP of the tool, grip3, is moved linearly to a position stored in the instruction.
Subsequent logical instructions are executed while the robot moves.

Example 4
MoveL start, v2000, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved linearly to a position, start. This position
is specified in the object coordinate system for fixture.

Continues on next page
460 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.160 MoveL - Moves the robot linearly
RobotWare - OS
Continued

Example with TLoad
MoveL p1, v1000, fine, tool2;

! Pick up the payload

Set gripperdo;

MoveL p2, v1000, z30, tool2 \TLoad:=tool2piece;

MoveL p3, v1000, fine, tool2 \TLoad:=tool2piece;

! Release the payload

Reset gripperdo;

MoveL p4, v1000, fine, tool2;

The TCP of the tool, tool2, is moved linearly to position p1 where a payload is
picked up. From that position the TCP is moved to position p2 and p3 using the
total load tool2piece. The loaddata in the current tooldata is not considered.
The payload is released, and when moving to position p4 the load of the tool is
considered again.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Syntax
MoveL

['\' Conc ',']

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

['\' V ':=' < expression (IN) of num >]

| ['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata >

['\' Z ':='< expression (IN) of num >]

['\' Inpos ':=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

['\' Corr]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

stoppointdata - Stop point data on page 1722Definition of stop point data

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 461
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.160 MoveL - Moves the robot linearly

RobotWare - OS
Continued

SeeFor information about

zonedata - Zone data on page 1778Definition of zone data

CorrWrite - Writes to a correction generator on
page 168

Writes to a corrections entry

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewConcurrent program execution

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification service
routine

Technical reference manual - System parametersSystem input signal SimMode for run-
ning the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General RAP-
ID, Action values, ModalPayLoad-
Mode)

Application manual - Controller software IRC5Path Offset

462 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.160 MoveL - Moves the robot linearly
RobotWare - OS
Continued

1.161 MoveLAO - Moves the robot linearly and sets analog output in the corner

Usage
MoveLAO (Move Linearly Analog Output) is used to move the tool center point
(TCP) linearly to a given destination. The specified analog output signal is set at
the middle of the corner path.
When the TCP is to remain stationary then this instruction can also be used to
reorient the tool.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction MoveLAO:

Example 1
MoveLAO p1, v1000, z30, tool2, ao1, 1.1;

The TCP of the tool, tool2, is moved linearly to the position p1 with speed data
v1000 and zone data z30. Output ao1 is set in the middle of the corner path at
p1.

Arguments
MoveLAO ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal Value

[\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity for the
tool center point, the tool reorientation, and external axes.

[\T]

Time
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 463
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.161 MoveLAO - Moves the robot linearly and sets analog output in the corner

RobotWare - OS

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

Signal

Data type: signalao
The name of the analog output signal to be changed.

Value

Data type: num
The desired value of signal.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital

Continues on next page
464 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.161 MoveLAO - Moves the robot linearly and sets analog output in the corner
RobotWare - OS
Continued

input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveL for more information about linear movements.
The analog output signal is set in the middle of the corner path for flying points,
as shown in the figure below.
The figure shows set of analog output signal in the corner path with MoveLAO.

MoveLAO p2, v1000, z30, tool2, ao1, 1.1;

p2

p3

p1
Zone

Sets the signal

xx1400001118

For stop points we recommend the use of "normal" programming sequence with
MoveL and SetAO. But when using stop point in instruction MoveLAO, the analog
output signal is set when the robot reaches the stop point.
The specified I/O signal is set in executionmode continuously and stepwise forward,
but not in stepwise backward.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed Value argument for the specified analog
output signal Signal is outside limits.

ERR_AO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 465
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.161 MoveLAO - Moves the robot linearly and sets analog output in the corner

RobotWare - OS
Continued

Syntax
MoveLAO

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':='] < persistent (PERS) of wobjdata > ','

[Signal ':='] < variable (VAR) of signalao >] ','

[Value ':='] < expression (IN) of num >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveL - Moves the robot linearly on page 457Moves the robot linearly

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewMovements with I/O settings

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General RAP-
ID, Action values, ModalPayLoad-
Mode)

466 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.161 MoveLAO - Moves the robot linearly and sets analog output in the corner
RobotWare - OS
Continued

1.162 MoveLDO - Moves the robot linearly and sets digital output in the corner

Usage
MoveLDO (Move Linearly Digital Output) is used to move the tool center point (TCP)
linearly to a given destination. The specified digital output signal is set/reset at the
middle of the corner path.
When the TCP is to remain stationary then this instruction can also be used to
reorient the tool.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction MoveLDO:

Example 1
MoveLDO p1, v1000, z30, tool2, do1,1;

The TCP of the tool, tool2, is moved linearly to the position p1 with speed data
v1000 and zone data z30. Output do1 is set in the middle of the corner path at
p1.

Arguments
MoveLDO ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal Value

[\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity for the
tool center point, the tool reorientation, and external axes.

[\T]

Time
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 467
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.162 MoveLDO - Moves the robot linearly and sets digital output in the corner

RobotWare - OS

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

Signal

Data type: signaldo
The name of the digital output signal to be changed.

Value

Data type: dionum
The desired value of signal (0 or 1).

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital

Continues on next page
468 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.162 MoveLDO - Moves the robot linearly and sets digital output in the corner
RobotWare - OS
Continued

input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveL for more information about linear movements.
The digital output signal is set/reset in the middle of the corner path for flying
points, as shown in the figure below.
The figure shows set/reset of digital output signal in the corner path with MoveLDO.

xx0500002193

For stop points we recommend the use of "normal" programming sequence with
MoveL and SetDO. But when using stop point in instruction MoveLDO, the digital
output signal is set/reset when the robot reaches the stop point.
The specified I/O signal is set/reset in execution mode continuously and stepwise
forward, but not in stepwise backward.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
MoveLDO

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

| ['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 469
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.162 MoveLDO - Moves the robot linearly and sets digital output in the corner

RobotWare - OS
Continued

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':='] < persistent (PERS) of wobjdata > ','

[Signal ':='] < variable (VAR) of signaldo >] ','

[Value ':='] < expression (IN) of dionum >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';’

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveL - Moves the robot linearly on page 457Moves the robot linearly

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewMovements with I/O settings

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General RAP-
ID, Action values, ModalPayLoad-
Mode)

470 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.162 MoveLDO - Moves the robot linearly and sets digital output in the corner
RobotWare - OS
Continued

1.163 MoveLGO -Moves the robot linearly and sets group output signal in the corner

Usage
MoveLGO (Move Linearly Group Output) is used to move the tool center point (TCP)
linearly to a given destination. The specified group output signal is set at the middle
of the corner path.
When the TCP is to remain stationary then this instruction can also be used to
reorient the tool.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction MoveLGO:

Example 1
MoveLGO p1, v1000, z30, tool2, go1 \Value:=5;

The TCP of the tool, tool2, is moved linearly to the position p1 with speed data
v1000 and zone data z30. Group output signal go1 is set in the middle of the
corner path at p1.

Arguments
MoveLGO ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal [\Value]

| [\DValue] [\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity for the
tool center point, the tool reorientation, and external axes.

[\T]

Time
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 471
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.163 MoveLGO - Moves the robot linearly and sets group output signal in the corner

RobotWare - OS

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

Signal

Data type: signalgo
The name of the group output signal to be changed.

[\Value]

Data type: num
The desired value of signal.

[\DValue]

Data type: dnum
The desired value of signal.
If none of the arguments \Value or \DValue is entered, an error message will be
displayed.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.

Continues on next page
472 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.163 MoveLGO - Moves the robot linearly and sets group output signal in the corner
RobotWare - OS
Continued

The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveL for more information about linear movements.
The specified group output signal is set in the middle of the corner path for flying
points, as shown in the figure below.
The figure shows set of group output signal in the corner path with MoveLGO.

MoveLGO p2, v1000, z30, tool2, go1 \Value:=5;

p2

p3

p1
Zone

Sets the signal

xx1400001118

For stop points we recommend the use of “normal” programming sequence with
MoveL + SetGO. But when using stop point in instruction MoveLGO, the group output
signal is set when the robot reaches the stop point.
The specified I/O signal is set in executionmode continuously and stepwise forward,
but not in stepwise backward.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 473
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.163 MoveLGO - Moves the robot linearly and sets group output signal in the corner

RobotWare - OS
Continued

Cause of errorName

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
MoveLGO

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':='] < persistent (PERS) of wobjdata > ','

[Signal ':='] < variable (VAR) of signaldo >] ','

['\' Value ':='] < expression (IN) of num >]

| ['\' Dvalue' :='] < expression (IN) of dnum >

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveL - Moves the robot linearly on page 457Moves the robot linearly

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

Technical reference manual - RAPID OverviewMovements with I/O settings

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Continues on next page
474 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.163 MoveLGO - Moves the robot linearly and sets group output signal in the corner
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General RAP-
ID, Action values, ModalPayLoad-
Mode)

Technical reference manual - RAPID Instructions, Functions and Data types 475
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.163 MoveLGO - Moves the robot linearly and sets group output signal in the corner

RobotWare - OS
Continued

1.164 MoveLSync - Moves the robot linearly and executes a RAPID procedure

Usage
MoveLSync (Move Linearly Synchronously) is used to move the tool center point
(TCP) linearly to a given destination. The specified RAPID procedure is ordered
to execute at the middle of the corner path in the destination point.
When the TCP is to remain stationary then this instruction can also be used to
reorient the tool.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction MoveLSync:

Example 1
MoveLSync p1, v1000, z30, tool2, "proc1";

The TCP of the tool, tool2, is moved linearly to the position p1 with speed data
v1000 and zone data z30. Procedure proc1 is executed in the middle of the
corner path at p1.

Example 2
MoveLSync p1, v1000, z30, tool2, "proc1";

The same as in example 1 above, but here the locally declared procedure proc1
in module MyModule will be called in the middle of the corner path.

Arguments
MoveLSync ToPoint [\ID] Speed [\T] Zone Tool [\WObj] ProcName

[\TLoad]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity for the
tool center point, the tool reorientation, and external axes.

Continues on next page
476 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.164 MoveLSync - Moves the robot linearly and executes a RAPID procedure
RobotWare - OS

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

ProcName

Procedure Name
Data type: string
Name of the RAPID procedure to be executed at the middle of the corner path in
the destination point. The procedure call is a late binding call, and therefore inherits
its properties.
The procedure will execute on TRAP level (see Program execution below).

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 477
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.164 MoveLSync - Moves the robot linearly and executes a RAPID procedure

RobotWare - OS
Continued

the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveL for more information about linear movements.
The specified RAPID procedure is ordered to execute when the TCP reaches the
middle of the corner path in the destination point of the MoveLSync instruction, as
shown in the figure below.
The figure shows that the order to execute the user defined RAPID procedure is
done in the middle of the corner path.

xx0500002194

For stop points we recommend the use of “normal” programming sequence with
MoveL + other RAPID instructions in sequence.
The table describes execution of the specified RAPID procedure in different
execution modes:

Execution of RAPID procedure:Execution mode:

According to this descriptionContinuously or Cycle

In the stop pointForward step

Not at allBackward step

MoveLSync is an encapsulation of the instructions TriggInt and TriggL. The
procedure call is executed on TRAP level.
If the middle of the corner path in the destination point is reached during the
deceleration after a program stop, the procedure will not be called (program
execution is stopped). The procedure call will be executed at next program start.

Continues on next page
478 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.164 MoveLSync - Moves the robot linearly and executes a RAPID procedure
RobotWare - OS
Continued

Limitation
When the robot reaches the middle of the corner path there is normally a delay of
2-30 ms until the specified RAPID routine is executed, depending on what type of
movement is being performed at the time.
Switching executionmode after program stop from continuously or cycle to stepwise
forward or backward results in an error. This error tells the user that the mode
switch can result in missed execution of the RAPID procedure in the queue for
execution on the path.
Instruction MoveLSync cannot be used on TRAP level. The specified RAPID
procedure cannot be tested with stepwise execution.

Syntax
MoveLSync

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata > ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >] ','

[ProcName ':='] < expression (IN) of string >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther positioning instructions

MoveL - Moves the robot linearly on page 457Moves the robot linearly

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewCoordinate systems

TriggInt - Defines a position related interrupt on
page 898

Defines a position related interrupt

TriggL - Linear robot movements with events on
page 917

Linear robot movements with events

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification service
routine

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 479
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.164 MoveLSync - Moves the robot linearly and executes a RAPID procedure

RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System parametersSystem input signal SimMode for run-
ning the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystem parameterModalPayLoadMode
for activating and deactivating payload.
(Topic Controller, Type General RAPID,
Action values, ModalPayLoadMode)

480 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.164 MoveLSync - Moves the robot linearly and executes a RAPID procedure
RobotWare - OS
Continued

1.165 MovePnP - Moves the robot along a pick and place path

Usage
MovePnP is used to move the tool center point (TCP) quickly along a pick and place
path as illustrated in the below picture.
The path includes two vertical movements connected by a top point. The height
of the top point as well as the heights of the vertical movements are configurable
to make the path assuming different shapes.
The different shape types are:

• Five points shape, as seen in the below picture.
• Four points shape, square like.
• Three points shape, arc like.
• Unsymmetrical, any of the above combinations.

xx1700001194

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 481
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path

SCARA robots

The path on the horizontal plane looks like an arc which curvature departures from
a linear motion by an offset parameter that cannot be explicitly specified. This
parameter is computed internally with the specific aim to minimize the cycle time.

xx1800002597

Basic examples
The following example illustrates the instruction MovePnP.
See also More examples on page 486.

Example 1
VAR num my_pnp_height := 130;

VAR pnpdata my_pnpdata

my_pnpdata.smooth_start := 50;

my_pnpdata.smooth_end := 50;

MoveL pStart, v300, fine, tool2;

MovePnP pEnd, v300, \PnPHeight:=my_pnp_height, fine, tool2
\PnPDataIN:=my_pnpdata;

Continues on next page
482 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path
SCARA robots
Continued

Five points shape path. It is configured by setting the optional parameters
smooth_start and smooth_end to a value between 0 and 100.

xx1700001195

Arguments
MovePnP ToPoint [\ID] Speed [\PnPHeight] Zone [\Inpos] Tool [\WObj]

[\TLoad] [\PnPDataIN] [\SignalIN] [\Value] [\MaxTime]
[\TimeFlag] [\PnPTrigg] [\PnPTriggOption]

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement is
synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the tool reorientation, and additional axes. The speed data not
used to generate the optimal path. The path executed using the MovePnP instruction
is optimized for the maximum speed of the robot.

[\PnPHeight]

Data type: num
The height of the top point specified in mm with respect to the robot base. If the
value is not specified, the height will correspond to the top (zero) position of axis
three.

Zone

Data type: zonedata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 483
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path

SCARA robots
Continued

Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

In position
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point moved to
the specified destination point.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital

Continues on next page
484 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path
SCARA robots
Continued

input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

[\PnPDataIN]

Data type: pnpdata
pnpdata is a data structure used to configure pick and place paths. If not specified,
the path will be configured using the default values.

[\SignalIN]

Data type: signaldi
The name of the signal.

[\Value]

Data type: dionum
The desired value of the signal.

[\MaxTime]

Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the condition is met then the error handler will be called, if there
is one, with the error code ERR_WAIT_MAXTIME. If there is no error handler then
the execution will be stopped.

[\TimeFlag]

Data type: bool
The output parameter contains the value TRUE if the maximum permitted waiting
time runs out before the condition is met. If this parameter is included in the
instruction then it is not considered to be an error if the MaxTime runs out. This
argument is ignored if the MaxTime argument is not included in the instruction.

[\PnPTrigg]

Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

Note

The triggering condition is set when the robot’s TCP is at a point along the path
according to the parameter PnPTriggOption.

[\PnPTriggOption]

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 485
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path

SCARA robots
Continued

Specifies which part of the movement is associated with the triggering conditions
specified by PnPTrigg.
The valid options are:

DescriptionValue

The first vertical movement, from the start point.1

The horizontal movement.2

The second vertical movement, towards the end point.3

xx1800001532

Figure 1.1:

Default value is 2 (i.e. if \PnPTriggOption is omitted, the triggering will be
specified along the horizontal movement).

Program execution
The robot TCP is moved to the destination position as follows:

1 The TCP moves vertically above the current robot position by a distance
specified by a percentage of the path height.

2 The TCP reaches the top point computed as the middle point of the path with
a path height specified by the \PnPHeight parameter.

3 The TCP continues to move to a point above the end position described by
a distance specified by a percentage of the path height.

4 The TCP moves vertically to the end position.
(The optional parameter \SignalIN can be used to wait for a digital input
signal before starting the motion to the end position).

5 The optional argument \PnPTrigg can be used to synchronize themovement
with an external device while the TCP travels along the horizontal path or
the vertical movement (depending on the optional argument
\PnPTriggOption).

More examples
More examples of the instruction MovePnP are illustrated below.

Example 1
VAR num my_pnp_height := 130;

Continues on next page
486 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path
SCARA robots
Continued

VAR pnpdata my_pnpdata

my_pnpdata.smooth_start := 100;

my_pnpdata.smooth_end := 100;

MoveL pStart, v300, fine, tool2;

MovePnP pEnd, v300, \PnPHeight:=my_pnp_height, fine, tool2
\PnPDataIN:=my_pnpdata;

Four points shape, square like. It is configured by setting the optional parameters
smooth_start and smooth_end to 100.

xx1700001196

Example 2
VAR num my_pnp_height := 130;

VAR pnpdata my_pnpdata

my_pnpdata.smooth_start := 0;

my_pnpdata.smooth_end := 0;

MoveL pStart, v300, fine, tool2;

MovePnP pEnd, v300, \PnPHeight:=my_pnp_height, fine, tool2
\PnPDataIN:=my_pnpdata;

Three points shape, arc like. It is configured by setting the optional parameters
smooth_start and smooth_end to 0.

xx1700001197

Example 3
VAR num my_pnp_height := 130;

VAR pnpdata my_pnpdata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 487
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path

SCARA robots
Continued

my_pnpdata.smooth_start := 100;

my_pnpdata.smooth_end := 50;

MoveL pStart, v300, fine, tool2;

MovePnP pEnd, v300, \PnPHeight:=my_pnp_height, fine, tool2
\PnPDataIN:=my_pnpdata;

Four points unsymmetrical shape. It is configured by setting the optional parameters
smooth_start and smooth_end to different values.

xx1800000951

Example 4
VAR num my_pnp_height := 130;

VAR pnpdata my_pnpdata

my_pnpdata.smooth_start := 100;

my_pnpdata.smooth_end := 100;

MoveL pStart, v300, fine, tool2;

MovePnP pEnd, v300, \PnPHeight:=my_pnp_height, fine, tool2
\PnPDataIN:=my_pnpdata;

Four points shape with different pick and place levels. It is configured by setting
the optional parameters smooth_start and smooth_end to 100 (no difference
from pick and place on the same level).

xx1800000952

Example 5
VAR num my_pnp_height := 130;

VAR pnpdata my_pnpdata

my_pnpdata.smooth_start := 50;

Continues on next page
488 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path
SCARA robots
Continued

my_pnpdata.smooth_end := 50;

MoveL pStart, v300, fine, tool2;

MovePnP pEnd, v300, \PnPHeight:=my_pnp_height, fine, tool2
\PnPDataIN:=my_pnpdata;

Five points shape with different pick and place levels. Note that the shape will be
unsymmetrical even if the optional parameters smooth_start and smooth_end
are set to the same value.

xx1800000953

Example 6
VAR num my_pnp_height := 130;

VAR pnpdata my_pnpdata

VAR triggdata open_gripper;

my_pnpdata.smooth_start := 50;

my_pnpdata.smooth_end := 50;

TriggIO open_gripper, 25 \DOp:=doGripper, 0;

MoveL pStart, v300, fine, tool2;

MovePnP pEnd, v300, \PnPHeight:=my_pnp_height, fine, tool2
\PnPDataIN:=my_pnpdata \PnPTrigg:=open_gripper
\PnPTriggOption:=3;

The digital output signal doGripper is set to the value 0 when the TCP is at a
position where the vertical distance to pEnd is 25 mm.

xx1800001531

Limitations
MovePnP does not support backwards execution.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 489
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path

SCARA robots
Continued

MovePnP is only available for SCARA robots.

Syntax
MovePnP

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

['\' PnPHeight ':=' < expression (IN) of num >] ','

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos ':=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

['\' TLoad ':=' < persistent (PERS) of loaddata >]

['\' PnPDataIN ':=' < expression (IN) of pnpdata >]

['\' SignalIN ':=' < variable (VAR) of signaldi >]

['\' Value ':=' < expression (IN) of dionum >]

['\' MaxTime ':=' < expression (IN) of num >]

['\' TimeFlag ':=' < variable (VAR) of bool >]

['\' PnPTrigg ':=' < variable (VAR) of triggdata >]

['\' PnPTriggOption ':=' < variable (VAR) of num >]';'

Related information

SeeFor information about

pnpdata - Configure pick and place paths on
page 1681

Configuring pick and place paths

490 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.165 MovePnP - Moves the robot along a pick and place path
SCARA robots
Continued

1.166 MToolRotCalib - Calibration of rotation for moving tool

Usage
MToolRotCalib (Moving Tool Rotation Calibration) is used to calibrate the rotation
of a moving tool.
The position of the robot and its movements are always related to its tool coordinate
system, that is, the TCP and tool orientation. To get the best accuracy it is important
to define the tool coordinate system as correctly as possible.
The calibration can also be done with a manual method using the FlexPendant
(described in Operating manual - IRC5 with FlexPendant, section Programming
and testing).

Description
To define the tool orientation, you need a world fixed tip within the robot’s working
space.
Before using the instruction MToolRotCalib some preconditionsmust be fulfilled:

• The tool that is to be calibrated must be mounted on the robot and defined
with correct component robhold(TRUE).

• If using the robot with absolute accuracy then the load and center of gravity
for the tool should already be defined. LoadIdentify can be used for the
load definition.

• The TCP value of the tool must already be defined. The calibration can be
done with the instruction MToolTCPCalib.

• tool0, wobj0, and PDispOff must be activated before jogging the robot.
• Jog the TCP of the actual tool as close as possible to the world fixed tip

(origin of the tool coordinate system) and define a jointtarget for the
reference point RefTip.

• Jog the robot without changing the tool orientation so the world fixed tip is
pointing at some point on the positive z-axis of the tool coordinate system,
and define a jointtarget for point ZPos.

• Optionally jog the robot without changing the tool orientation so the world
fixed tip is pointing at some point on the positive x-axis of the tool coordinate
system, and define a jointtarget for point XPos.

As a help for pointing out the positive z-axis and x-axis, some type of elongator
tool can be used.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 491
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.166 MToolRotCalib - Calibration of rotation for moving tool

RobotWare - OS

See the figure below for a definition of jointtarget for RefTip, ZPos, and optional
XPos.

xx0500002192

Note

It is not recommended to modify the positions RefTip, ZPos, and XPos in the
instruction MToolRotCalib.

Basic examples
The following examples illustrate the instruction MToolRotCalib:

Example 1
! Created with the world fixed tip pointing at origin, positive

! z-axis, and positive x-axis of the wanted tool coordinate

! system.

CONST jointtarget pos_tip := [...];

CONST jointtarget pos_z := [...];

CONST jointtarget pos_x := [...];

PERS tooldata tool1:= [TRUE, [[20, 30, 100], [1, 0, 0 ,0]], [0.001,
[0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]];

! Instructions for creating or ModPos of pos_tip, pos_z, and pos_x

MoveAbsJ pos_tip, v10, fine, tool0;

MoveAbsJ pos_z, v10, fine, tool0;

MoveAbsJ pos_x, v10, fine, tool0;

! Only tool calibration in the z direction

MToolRotCalib pos_tip, pos_z, tool1;

The tool orientation (tframe.rot) in the z direction of tool1 is calculated. The
x and y directions of the tool orientation are calculated to coincide with the wrist
coordinate system.

Example 2
! Calibration with complete tool orientation

MToolRotCalib pos_tip, pos_z \XPos:=pos_x, tool1;

Continues on next page
492 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.166 MToolRotCalib - Calibration of rotation for moving tool
RobotWare - OS
Continued

The complete tool orientation (tframe.rot) of tool1 is calculated.

Arguments
MToolRotCalib RefTip ZPos [\XPos]Tool

RefTip

Data type: jointtarget
The point where the TCP of the tool is pointing at the world fixed tip.

ZPos

Data type: jointtarget
The elongator point that defines the positive z direction.

[\XPos]

Data type: jointtarget
The elongator point that defines the x positive direction. If this point is omitted then
the x and y directions of the tool will coincide with the corresponding axes in the
wrist coordinate system.

Tool

Data type: tooldata
The persistent variable of the tool that is to be calibrated.

Program execution
The system calculates and updates the tool orientation (tfame.rot) in the specified
tooldata. The calculation is based on the specified 2 or 3 jointtarget. The
remaining data in tooldata such as TCP (tframe.trans) is not changed.

Syntax
MToolRotCalib

[RefTip ':='] < expression (IN) of jointtarget > ','

[ZPos ':='] < expression (IN) of jointtarget >

['\' XPos ':=' < expression (IN) of jointtarget >] ','

[Tool ':='] < persistent (PERS) of tooldata > ';'

Related information

SeeFor information about

MToolTCPCalib - Calibration of TCP for moving
tool on page 494

Calibration of TCP for a moving tool

SToolTCPCalib - Calibration of TCP for stationary
tool on page 802

Calibration of TCP for a stationary tool

SToolRotCalib - Calibration of TCP and rotation
for stationary tool on page 799

Calibration of TCP and rotation for a
stationary tool

Technical reference manual - RAPID Instructions, Functions and Data types 493
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.166 MToolRotCalib - Calibration of rotation for moving tool

RobotWare - OS
Continued

1.167 MToolTCPCalib - Calibration of TCP for moving tool

Usage
MToolTCPCalib (Moving Tool TCP Calibration) is used to calibrate Tool Center
Point - TCP for a moving tool.
The position of the robot and its movements are always related to its tool coordinate
system, that is, the TCP and tool orientation. To get the best accuracy it is important
to define the tool coordinate system as correctly as possible.
The calibration can also be done with a manual method using the FlexPendant
(described in Operating manual - IRC5 with FlexPendant, section Programming
and testing).

Description
To define the TCP of a tool you need a world fixed tip within the robot’s working
space.
Before using the instruction MToolTCPCalib some preconditionsmust be fulfilled:

• The tool that is to be calibrated must be mounted on the robot and defined
with correct component robhold (TRUE).

• If using the robot with absolute accuracy then the load and center of gravity
for the tool should already be defined. LoadIdentify can be used for the
load definition.

• tool0, wobj0, and PDispOff must be activated before jogging the robot.
• Jog the TCP of the actual tool as close as possible to the world fixed tip and

define a jointtarget for the first point p1.
• Define the further three positions (p2, p3, and p4) all with different

orientations.
Definition of 4 jointtargets p1....p4, see figure below.

xx0500002191

Continues on next page
494 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.167 MToolTCPCalib - Calibration of TCP for moving tool
RobotWare - OS

Note

It is not recommended to modify the positions Pos1 to Pos4 in the instruction
MToolTCPCalib.
The reorientation between the 4 positions should be as big as possible, putting
the robot in different configurations.Its also good practice to check the quality
of the TCP after a calibration. Which can be performed by reorientation of the
tool to check if the TCP is standing still.

Basic examples
The following example illustrates the instruction MToolTCPCalib:

Example 1
! Created with actual TCP pointing at the world fixed tip

CONST jointtarget p1 := [...];

CONST jointtarget p2 := [...];

CONST jointtarget p3 := [...];

CONST jointtarget p4 := [...];

PERS tooldata tool1:= [TRUE, [[0, 0, 0], [1, 0, 0 ,0]], [0.001,
[0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]];

VAR num max_err;

VAR num mean_err;

...

! Instructions for createing or ModPos of p1 - p4

MoveAbsJ p1, v10, fine, tool0;

MoveAbsJ p2, v10, fine, tool0;

MoveAbsJ p3, v10, fine, tool0;

MoveAbsJ p4, v10, fine, tool0;

...

MToolTCPCalib p1, p2, p3, p4, tool1, max_err, mean_err;

The TCP value (tframe.trans) of tool1will be calibrated and updated. max_err
and mean_err will hold the max. error in mm from the calculated TCP and the
mean error in mm from the calculated TCP, respectively.

Arguments
MToolTCPCalib Pos1 Pos2 Pos3 Pos4 Tool MaxErr MeanErr

Pos1

Data type: jointtarget
The first approach point.

Pos2

Data type: jointtarget
The second approach point.

Pos3

Data type: jointtarget
The third approach point.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 495
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.167 MToolTCPCalib - Calibration of TCP for moving tool

RobotWare - OS
Continued

Pos4

Data type: jointtarget
The fourth approach point.

Tool

Data type: tooldata
The persistent variable of the tool that is to be calibrated.

MaxErr

Data type: num
The maximum error in mm for one approach point.

MeanErr

Data type: num
The average distance that the approach points are from the calculated TCP, that
is, how accurately the robot was positioned relative to the tip.

Program execution
The system calculates and updates the TCP value in the wrist coordinate system
(tfame.trans) in the specified tooldata. The calculation is based on the specified
4 jointtarget. The remaining data in tooldata, such as tool orientation
(tframe.rot), is not changed.

Syntax
MToolTCPCalib

[Pos1 ':='] < expression (IN) of jointtarget > ','

[Pos2 ':='] < expression (IN) of jointtarget > ','

[Pos3 ':='] < expression (IN) of jointtarget > ','

[Pos4 ':='] < expression (IN) of jointtarget > ','

[Tool ':='] < persistent (PERS) of tooldata > ','

[MaxErr ':='] < variable (VAR) of num > ','

[MeanErr ':='] < variable (VAR) of num > ';'

Related information

SeeFor information about

MToolRotCalib - Calibration of rotation for moving
tool on page 491

Calibration of rotation for a moving tool

SToolTCPCalib - Calibration of TCP for stationary
tool on page 802

Calibration of TCP for a stationary tool

SToolRotCalib - Calibration of TCP and rotation
for stationary tool on page 799

Calibration of TCP and rotation for a
stationary tool

496 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.167 MToolTCPCalib - Calibration of TCP for moving tool
RobotWare - OS
Continued

1.168 Open - Opens a file or serial channel

Usage
Open is used to open a file or serial channel for reading or writing.

Basic examples
The following examples illustrate the instruction Open:
See also More examples on page 499.

Example 1
VAR iodev logfile;

...

Open "HOME:" \File:= "LOGFILE1.DOC", logfile \Write;

The file LOGFILE1.DOC in unit HOME: is opened for writing. The reference name
logfile is used later in the program when writing to the file.

Example 2
VAR iodev logfile;

...

Open "LOGFILE1.DOC", logfile \Write;

Same result as example 1.The default directory is HOME:.

Arguments
Open Object [\File] IODevice [\Read] | [\Write] | [\Append] [\Bin]

Object

Data type: string
The I/O object (I/O device) that is to be opened, e.g. "HOME:", "TEMP:", "com1:"
or "pc:"(option).
The table describes different I/O devices on the robot controller.

Type of I/O deviceI/O device name

SD-card"HOME:" or diskhome i

SD-card"TEMP:" or disktemp i

e.g. USB memory stick"RemovableDisk1:" or usbdisk1 i

"RemovableDisk2:" or usbdisk2 i

"RemovableDisk3:" or usbdisk3 i

Serial channel"com1:" ii

Mounted disk"pc:" iii

RAM disk memory"RAMDISK:" or diskram i, iv

i RAPID string defining a device name.
ii User defined serial channel name defined in the system parameters.
iii Application protocol, server path defined in the system parameters.
iv The RAM disk memory is not for permanent storage of any data. The size is around 100 Mb and it

is cleared at each shut down.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 497
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.168 Open - Opens a file or serial channel

RobotWare - OS

The following table describes different I/O devices on the virtual controller.

Type of I/O deviceI/O device name

"HOME:" or diskhome i

Hard Drive"TEMP:" or disktemp

e.g. USB memory stick"RemovableDisk1:" or usbdisk1
"RemovableDisk2:" or usbdisk2
"RemovableDisk3:" or usbdisk3

Hard Drive"RAMDISK:" or diskram i

..\TEMP (points to the TEMP
folder which is located in the
same folder as your virtual
system)

i RAPID string defining a device name.

[\File]

Data type: string
The name of the file to be opened, e.g. "LOGFILE1.DOC" or
"LOGDIR/LOGFILE1.DOC"

The complete path can also be specified in the argument Object,
"HOME:/LOGDIR/LOGFILE.DOC".

IODevice

Data type: iodev
A reference to the file or serial channel to open. This reference is then used for
reading from and writing to the file or serial channel.

[\Read]

Data type: switch
Opens a file or serial channel for reading. When reading from a file the reading is
started from the beginning of the file.

[\Write]

Data type: switch
Opens a file or serial channel for writing. If the selected file already exists then its
contents are deleted. Anything subsequently written is written at the start of the
file.

[\Append]

Data type: switch
Opens a file or serial channel for writing. If the selected file already exists then
anything subsequently written is written at the end of the file.
Open a file or serial channel with \Append and without the \Bin arguments. The
instruction opens a character-based file or serial channel for writing.
Open a file or serial channel with \Append and \Bin arguments. The instruction
opens a binary file or serial channel for both reading and writing. The arguments
\Read, \Write, \Append are mutually exclusive. If none of these are specified
then the instruction acts in the same way as the \Write argument for

Continues on next page
498 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.168 Open - Opens a file or serial channel
RobotWare - OS
Continued

character-based files or a serial channel (instruction without \Bin argument) and
in the same way as the \Append argument for binary files or a serial channel
(instruction with \Bin argument).

[\Bin]

Data type: switch
The file or serial channel is opened in a binary mode. If none of the arguments
\Read, \Write or \Append are specified then the instruction opens a binary file
or serial channel for both reading and writing, with the file pointer at the end of the
file.
The Rewind instruction can be used to set the file pointer to the beginning of the
file if desirable.
The set of instructions to access a binary file or serial channel is different from the
set of instructions to access a character-based file.

More examples
More examples of how to use the instruction Open are illustrated below.

Example 1
VAR iodev printer;

...

Open "com1:", printer \Bin;

WriteStrBin printer, "This is a message to the printer\0D";

Close printer;

The serial channel com1: is opened for binary reading and writing. The reference
name printer is used later when writing to and closing the serial channel.

Example 2
VAR iodev io_device;

VAR rawbytes raw_data_out;

VAR rawbytes raw_data_in;

VAR num float := 0.2;

VAR string answer;

ClearRawBytes raw_data_out;

PackDNHeader "10", "20 1D 24 01 30 64", raw_data_out;

PackRawBytes float, raw_data_out, (RawBytesLen(raw_data_out)+1)
\Float4;

Open "/FCI1:/dsqc328_1", io_device \Bin;

WriteRawBytes io_device, raw_data_out;

ReadRawBytes io_device, raw_data_in \Time:=1;

Close io_device;

UnpackRawBytes raw_data_in, 1, answer \ASCII:=10;

In this example raw_data_out is cleared and then packed with DeviceNet header
and a float with value 0.2.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 499
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.168 Open - Opens a file or serial channel

RobotWare - OS
Continued

A device, "/FCI1/:dsqc328_1", is opened and the current valid data in
raw_data_out is written to the device. Then the program waits for at most 1
second to read from the device, which is stored in the raw_data_in.
After having closed the device “/FCI1/:dsqc328_1”, then the read data is
unpacked as a string of 10 characters and stored in the string named answer.

Program execution
The specified file or serial channel is opened so that it is possible to read from or
write to it.
It is possible to open the same physical file several times at the same time but
each invocation of the Open instruction will return a different reference to the file
(data type iodev). For example, it is possible to have one write pointer and one
different read pointer to the same file at the same time.
The iodev variable used when opening a file or serial channel must be free from
use. If it has been used previously to open a file then this file must be closed before
issuing a new Open instruction with the same iodev variable.
At Program Stop and moved PP to Main, any open file or serial channel in the
program task will be closed and the I/O descriptor in the variable of type iodev
will be reset. An exception to the rule is variables that are installed shared in the
system of type global VAR or LOCAL VAR. Such file or serial channel belonging
to the whole system will still be open.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

A file cannot be opened.ERR_FILEOPEN

Syntax
Open

[Object ':='] <expression (IN) of string>

['\' File ':=' <expression (IN) of string>] ','

[IODevice ':='] <variable (VAR) of iodev>

['\' Read] |

['\' Write] |

['\' Append]

['\' Bin] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWriting to, reading from and closing files
or serial channels

Application manual - Controller software IRC5Fieldbus Command Inteface
File and serial channel handling

500 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.168 Open - Opens a file or serial channel
RobotWare - OS
Continued

1.169 OpenDir - Open a directory

Usage
OpenDir is used to open a directory for further investigation.

Basic examples
The following example illustrates the instruction OpenDir:

Example 1
PROC lsdir(string dirname)

VAR dir directory;

VAR string filename;

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

TPWrite filename;

ENDWHILE

CloseDir directory;

ENDPROC

This example prints out the names of all files or subdirectories under the specified
directory.

Arguments
OpenDir Dev Path

Dev

Data type: dir
A variable with reference to the directory, fetched by OpenDir. This variable is
then used for reading from the directory.

Path

Data type: string
Path to the directory.

Limitations
Open directories should always be closed by the user after reading (instruction
CloseDir).

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The path points to a non-existing directory or there are too
many directories open at the same time.

ERR_FILEACC

Syntax
OpenDir

[Dev ':='] < variable (VAR) of dir> ','

[Path ':='] < expression (IN) of string> ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 501
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.169 OpenDir - Open a directory

RobotWare - OS

Related information

SeeFor information about

dir - File directory structure on page 1610Directory

MakeDir - Create a new directory on page 372Make a directory

RemoveDir - Delete a directory on page 595Remove a directory

ReadDir - Read next entry in a directory on
page 1394

Read a directory

CloseDir - Close a directory on page 140Close a directory

RemoveFile - Delete a file on page 597Remove a file

RenameFile - Rename a file on page 600Rename a file

Application manual - Controller software IRC5File and serial channel handling

502 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.169 OpenDir - Open a directory
RobotWare - OS
Continued

1.170 PackDNHeader - Pack DeviceNet Header into rawbytes data

Usage
PackDNHeader is used to pack the header of a DeviceNet explicit message into
a container of type rawbytes.
The data part of the DeviceNet message can afterwards be set with the instruction
PackRawBytes.

Basic examples
The following examples illustrate the instruction PackDNHeader:

Example 1
VAR rawbytes raw_data;

PackDNHeader "0E", "6,20 01 24 01 30 06,9,4", raw_data;

Pack the header for DeviceNet explicit message with service code "0E" and path
string "6,2001 24 01 30 06,9,4" into raw_data corresponding to get the
serial number from some I/O device.
This message is ready to send without filling the message with additional data.

Example 2
VAR rawbytes raw_data;

PackDNHeader "10", "20 1D 24 01 30 64", raw_data;

Pack the header for DeviceNet explicit message with service code "10" and path
string "201D 24 01 30 64" into raw_data corresponding to set the filter time
for the rising edge on insignal 1 for some I/O device.
This message must be increased with data for the filter time. This can be done
with instruction PackRawBytes starting at index RawBytesLen(raw_data)+1
(done after PackDNHeader).

Arguments
PackDNHeader Service Path RawData

Service

Data type: string
The service to be done such as get or set attribute. To be specified with a
hexadecimal code in a string e.g. "IF".

2 charactersString length

'0' -' 9', 'a' -'f', 'A' - 'F'Format

"00" - "FF"Range

The values for the Service is found in the EDS file. For more descriptions, see
the Open DeviceNet Vendor Association ODVA DeviceNet Specification revision
2.0.

Path

Data type: string
Continues on next page

Technical reference manual - RAPID Instructions, Functions and Data types 503
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.170 PackDNHeader - Pack DeviceNet Header into rawbytes data

RobotWare - OS

The values for the Path is found in the EDS file. For more descripotions, see the
Open DeviceNet Vendor Association ODVA DeviceNet Specification revision 2.0.
Support for both long string format (e.g. "6,20 1D 24 01 30 64,8,1") and short
string format (e.g. "20 1D 24 01 30 64").

RawData

Data type: rawbytes
Variable container to be packed with message header data starting at index 1 in
RawData.

Program execution
During program execution the DeviceNet message RawData container is:

• first completely cleared
• and then the header part is packed with data

Format DeviceNet Header
The instruction PackDNHeader will create a DeviceNet message header with
following format:

NoteNo of bytesRawData Header-
Format

Internal IRC5 code for DeviceNet1Format

Hex code for service1Service

In bytes1Size of Path

ASCII charsxPath

The data part of the DeviceNet message can afterwards be set with the instruction
PackRawBytes starting at index fetched with (RawBytesLen(my_rawdata)+1).

Syntax
PackDNHeader

[Service ':='] < expression (IN) of string> ','

[Path ':='] < expression (IN) of string> ','

[RawData ':='] < variable (VAR) of rawbytes> ';'

Related information

SeeFor information about

rawbytes - Raw data on page 1689rawbytes data

RawBytesLen - Get the length of rawbytes data on
page 1390

Get the length of rawbytes data

ClearRawBytes - Clear the contents of rawbytes
data on page 133

Clear the contents of rawbytes data

CopyRawBytes - Copy the contents of rawbytes
data on page 157

Copy the contents of rawbytes data

PackRawBytes - Pack data into rawbytes data on
page 506

Pack data to rawbytes data

WriteRawBytes - Write rawbytes data on page1082Write rawbytes data

Continues on next page
504 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.170 PackDNHeader - Pack DeviceNet Header into rawbytes data
RobotWare - OS
Continued

SeeFor information about

ReadRawBytes - Read rawbytes data on page 586Read rawbytes data

UnpackRawBytes - Unpack data from rawbytes data
on page 995

Unpack data from rawbytes data

Technical reference manual - RAPID OverviewBit/Byte Functions

Technical reference manual - RAPID OverviewString functions

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 505
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.170 PackDNHeader - Pack DeviceNet Header into rawbytes data

RobotWare - OS
Continued

1.171 PackRawBytes - Pack data into rawbytes data

Usage
PackRawBytes is used to pack the contents of variables of type num, dnum, byte,
or string into a container of type rawbytes.

Basic examples
The following example illustrates the instruction PackRawBytes:

VAR rawbytes raw_data;

VAR num integer := 8;

VAR dnum bigInt := 4294967295;

VAR num float := 13.4;

VAR byte data1 := 122;

VAR byte byte1;

VAR string string1:="abcdefg";

PackDNHeader "10", "20 1D 24 01 30 64", raw_data;

Pack the header for DeviceNet into raw_data.
Then pack requested field bus data in raw_datawith PackRawBytes. The example
below shows how different data can be added.

Example 1
PackRawBytes integer, raw_data, (RawBytesLen(raw_data)+1) \IntX :=

DINT;

The contents of the next 4 bytes after the header in raw_data will be 8 decimal.

Example 2
PackRawBytes bigInt, raw_data, (RawBytesLen(raw_data)+1) \IntX :=

UDINT;

The contents of the next 4 bytes after the header in raw_datawill be 4294967295
decimal.

Example 3
PackRawBytes bigInt, raw_data, (RawBytesLen(raw_data)+1) \IntX :=

LINT;

The contents of the next 8 bytes after the header in raw_datawill be 4294967295
decimal.

Example 4
PackRawBytes float, raw_data, RawBytesLen(raw_data)+1) \Float4;

The contents of the next 4 bytes in raw_data will be 13.4 decimal.

Example 5
PackRawBytes data1, raw_data, (RawBytesLen(raw_data)+1) \ASCII;

The contents of the next byte in raw_data will be 122, the ASCII code for "z".

Example 6
PackRawBytes string1, raw_data, (RawBytesLen(raw_data)+1) \ASCII;

The contents of next 7 bytes in raw_data will be "abcdefg", coded in ASCII.

Example 7
byte1 := StrToByte("1F" \Hex);

Continues on next page
506 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.171 PackRawBytes - Pack data into rawbytes data
RobotWare - OS

PackRawBytes byte1, raw_data, (RawBytesLen(raw_data)+1) \Hex1;

The contents of the next byte in raw_data will be "1F", hexadecimal.

Arguments
PackRawBytes Value RawData [\Network] StartIndex [\Hex1]|[\IntX

] | [\Float4] | [\ASCII]

Value

Data type: anytype
Data to be packed into RawData.
Allowed data types are: num, dnum, byte, or string. Array cannot be used.

RawData

Data type: rawbytes
Variable container to be packed with data.

[\Network]

Data type: switch
Indicates that integer and float shall be packed in big-endian (network order)
representation in RawData. ProfiBus and InterBus use big-endian.
Without this switch, integer and floatwill be packed in little-endian (not network
order) representation in RawData. DeviceNet uses little-endian.
Only relevant together with optional parameter \IntX - UINT, UDINT, INT, DINT
and \Float4.

StartIndex

Data type: num
StartIndex between 1 and 1024 indicates where the first byte contained in Value
shall be placed in RawData.

[\Hex1]

Data type: switch
The Value to be packed has byte format and shall be converted to hexadecimal
format and stored in 1 byte in RawData.

[\IntX]

Data type: inttypes
The Value to be packed has num or dnum format. It is an integer and shall be stored
in RawData according to this specified constant of data type inttypes.
See Predefined data on page 508.

[\Float4]

Data type: switch
The Value to be packed has num format and shall be stored as float, 4 bytes, in
RawData.

[\ASCII]

Data type: switch

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 507
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.171 PackRawBytes - Pack data into rawbytes data

RobotWare - OS
Continued

The Value to be packed has byte or string format.
If the Value to be packed has byte format then it will be stored in RawData as 1
byte interpreting Value as ASCII code for a character.
If the Value to be packed has string format (1-80 characters) then it will be stored
in RawData as ASCII characters with the same number of characters as contained
in Value. String data is not NULL terminated by the system in data of type
rawbytes. It is up to the programmer to add string header if necessary (required
for DeviceNet).
One of the arguments \Hex1, \IntX, \Float4, or \ASCII must be programmed.
The following combinations are allowed:

Allowed optional parameters:Data type of Value:

\IntXnum *)

\IntXdnum **)

\Float4num

\ASCII (1-80 characters)string

\Hex1 \ASCIIobbyte

*) Must be an integer within the value range of selected symbolic constant USINT,
UINT, UDINT, SINT, INT or DINT.
**) Must be an integer within the value range of selected symbolic constant USINT,
UINT, UDINT, ULINT, SINT, INT, DINT or LINT.

Program execution
During program execution the data is packed from the variable of type anytype
into a container of type rawbytes.
The current length of valid bytes in the RawData variable is set to:

• (StartIndex + packed_number_of_bytes - 1)
• The current length of valid bytes in the RawData variable is not changed if

the complete pack operation is done inside the old current length of valid
bytes in the RawData variable.

Predefined data
The following symbolic constants of the data type inttypes are predefined and
can be used to specify the integer in parameter \IntX.

Integer value rangeInteger formatConstant
value

Symbolic con-
stant

0 ... 255Unsigned 1 byte integer1USINT

0 ... 65 535Unsigned 2 byte integer2UINT

0 ... 8 388 608 *)Unsigned 4 byte integer4UDINT

0 ... 4 294 967 295 ****)

0 ... 4 503 599 627 370 496**)Unsigned 8 byte integer8ULINT

- 128... 127Signed 1 byte integer- 1SINT

- 32 768 ... 32 767Signed 2 byte integer- 2INT

Continues on next page
508 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.171 PackRawBytes - Pack data into rawbytes data
RobotWare - OS
Continued

Integer value rangeInteger formatConstant
value

Symbolic con-
stant

- 8 388 607 ... 8 388 608 *)Signed 4 byte integer- 4DINT

-2 147 483 648 ... 2 147 483 647
***)

- 4 503 599 627 370 496... 4 503
599 627 370 496 **)

Signed 8 byte integer- 8LINT

*) RAPID limitation for storage of integer in data type num.
**) RAPID limitation for storage of integer in data type dnum.
***) Range when using a dnum variable and inttype DINT.
****) Range when using a dnum variable and inttype UDINT.

Syntax
PackRawBytes

[Value ':='] < expression (IN) of anytype> ','

[RawData ':='] < variable (VAR) of rawbytes>

['\' Network] ','

[StartIndex ':='] < expression (IN) of num>

['\' Hex1]

| ['\' IntX ':=' < expression (IN) of inttypes>]

| ['\' Float4]

| ['\' ASCII] ';'

Related information

SeeFor information about

rawbytes - Raw data on page 1689rawbytes data

RawBytesLen - Get the length of rawbytes data
on page 1390

Get the length of rawbytes data

ClearRawBytes - Clear the contents of raw-
bytes data on page 133

Clear the contents of rawbytes data

CopyRawBytes - Copy the contents of raw-
bytes data on page 157

Copy the contents of rawbytes data

PackDNHeader - Pack DeviceNet Header into
rawbytes data on page 503

Pack DeviceNet header into rawbytes data

WriteRawBytes - Write rawbytes data on
page 1082

Write rawbytes data

ReadRawBytes - Read rawbytes data on
page 586

Read rawbytes data

UnpackRawBytes - Unpack data from rawbytes
data on page 995

Unpack data from rawbytes data

Technical referencemanual - RAPIDOverviewBit/Byte Functions

Technical referencemanual - RAPIDOverviewString functions

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 509
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.171 PackRawBytes - Pack data into rawbytes data

RobotWare - OS
Continued

1.172 PathAccLim - Reduce TCP acceleration along the path

Usage
PathAccLim (Path Acceleration Limitation) is used to set or reset limitations on
TCP acceleration and/or TCP deceleration along the movement path.
The limitation will be performed along the movement path, that is, the acceleration
in the path frame. It is the tangential acceleration/deceleration in the path direction
that will be limited.
The instruction does not limit the total acceleration of the equipment, that is, the
acceleration in world frame, so it cannot be directly used to protect the equipment
from large accelerations.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

xx0500002184

Basic examples
The following examples illustrate the instruction PathAccLim:
See also More examples on page 512.

Example 1
PathAccLim TRUE \AccMax := 4, TRUE \DecelMax := 4;

TCP acceleration and TCP deceleration are limited to 4 m/s2 .

Example 2
PathAccLim FALSE, FALSE;

The TCP acceleration and deceleration is reset to maximum (default).

Continues on next page
510 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.172 PathAccLim - Reduce TCP acceleration along the path
RobotWare - OS

Arguments
PathAccLim AccLim [\AccMax] DecelLim [\DecelMax]

AccLim

Data type: bool
TRUE if there is to be a limitation of the acceleration, FALSE otherwise.

[\AccMax]

Data type: num
The absolute value of the acceleration limitation in m/s2 . Only to be used when
AccLim is TRUE.

DecelLim

Data type: bool
TRUE if there is to be a limitation of the deceleration, FALSE otherwise.

[\DecelMax]

Data type: num
The absolute value of the deceleration limitation in m/s2 . Only to be used when
DecelLim is TRUE.

Program execution
The acceleration/deceleration limitations applies for the next executed movement
instruction until a new PathAccLim instruction is executed.
The maximum acceleration/deceleration (PathAccLim FALSE, FALSE) are
automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.
If there is a combination of instructions AccSet and PathAccLim the system
reduces the acceleration/deceleration in the following order:

• according AccSet
• according PathAccLim

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 511
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.172 PathAccLim - Reduce TCP acceleration along the path

RobotWare - OS
Continued

More examples
More examples of how to use the instruction PathAccLim are illustrated below.

xx0500002183

Example 1
MoveL p1, v1000, fine, tool0;

PathAccLim TRUE\AccMax := 4, FALSE;

MoveL p2, v1000, z30, tool0;

MoveL p3, v1000, fine, tool0;

PathAccLim FALSE, FALSE;

TCP acceleration is limited to 4 m/s2 between p1 and p3.

Example 2
MoveL p1, v1000, fine, tool0;

MoveL p2, v1000, z30, tool0;

PathAccLim TRUE\AccMax :=3, TRUE\DecelMax := 4;

MoveL p3, v1000, fine, tool0;

PathAccLim FALSE, FALSE;

TCP acceleration is limited to 3 m/s2 between p2’ and p3.
TCP deceleration is limited to 4 m/s2 between p2’ and p3.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The parameter \AccMax or \DecelMax is set too low.ERR_ACC_TOO_LOW

Limitations
Theminimum acceleration/deceleration allowed is 0.1 m/s2 . The recommendation
is to have the acceleration and deceleration limit symmetrical, that is to have the
same value on AccMax and DecelMax.

Syntax
PathAccLim

[AccLim ':='] < expression (IN) of bool >

['\' AccMax ':=' <expression (IN) of num >] ','

[DecelLim ':='] < expression (IN) of bool>

Continues on next page
512 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.172 PathAccLim - Reduce TCP acceleration along the path
RobotWare - OS
Continued

['\' DecelMax ':=' <expression (IN) of num >] ';'

Related information

SeeFor information about

AccSet - Reduces the acceleration on page 21Reduction of acceleration

motsetdata - Motion settings data on page 1660Motion settings data

WorldAccLim - Control acceleration in world co-
ordinate system on page 1066

Control acceleration in world coordinate
system

Technical reference manual - RAPID Overview,
section RAPID summary - Motion

Positioning instructions

Technical reference manual - RAPID Instructions, Functions and Data types 513
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.172 PathAccLim - Reduce TCP acceleration along the path

RobotWare - OS
Continued

1.173 PathRecMoveBwd - Move path recorder backwards

Usage
PathRecMoveBwd is used to move the robot backwards along a recorded path.

Basic examples
The following example illustrates the instruction PathRecMoveBwd:
See also More examples on page 515.

Example 1
VAR pathrecid fixture_id;

PathRecMoveBwd \ID:=fixture_id \ToolOffs:=[0, 0, 10] \Speed:=v500;

The robot is moved backwards to the position in the programwhere the instruction
PathRecStart planted the fixture_id identifier. The TCP offset is 10 mm in Z
direction and the speed is set to 500 mm/s.

Arguments
PathRecMoveBwd [\ID] [\ToolOffs] [\Speed]

[\ID]

Identifier
Data type: pathrecid
Variable that specifies the ID position to move backward to. Data type pathrecid
is a non-value type, only used as an identifier for naming the recording position.
If no ID position is specified then the backward movement is in a single system
done to the closest recorded ID position. But in a MultiMove Synchronized Mode,
the backward movements is done to the closest of the following positions:

• Back to the position where the synchronized movement started
• Back to the closest recorded ID position

[\ToolOffs]

Tool Offset
Data type: pos
Provides clearance offset for TCP during motion. A cartesian offset coordinate is
applied to the TCP coordinates. Positive Z offset value indicates clearance. This
is useful when the robot runs a process adding material. If running synchronized
motion then all or none of the mechanical units needs to use the argument. If no
offset is desired for some of themechanical units then a zero offset can be applied.
Even non TCP mechanical units need to use the argument if a TCP robot in a
different task is used.

[\Speed]

Data type: speeddata
Speed replaces the speed original used during forwardmotion. Speeddata defines
the velocity for the tool center point, the tool reorientation, and the external axis.
If present, this speed will be used throughout the backward movement. If omitted,
the backwardmotion will execute with the speed in the original motion instructions.

Continues on next page
514 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.173 PathRecMoveBwd - Move path recorder backwards
Path Recovery

Program execution
The path recorder is activatedwith the PathRecStart instruction. After the recorder
has been started then all move instructions will be recorded and the robot can be
moved backwards along its recorded path at any point by executing
PathRecMoveBwd.

Synchronized motion
Running the path recorder in synchronization motion adds a few considerations.

• All tasks involved in the synchronization recorded motion must order
PathRecMoveBwd before any of the robots start to move.

• All synchronization handling is recorded and executed in reverse. For
example, if PathRecMoveBwd is ordered fromwithin a synchronization block
to an independent position then the path recorder will automatically change
state to independent at the SyncMoveOn instruction.

• SyncMoveOn is considered as a breakpoint without path identifier. That is,
if the path recorder has been started by means of PathRecStart and
PathRecMoveBwd without the optional argument \ID is executed within a
synchronizedmotion block, then the robot will move backwards to the position
the robot was at when SyncMoveOn was executed. Since the backward
movement stops before SyncMoveOn, the state will be changed to
independent.

• WaitSyncTask is considered as a breakpoint without path identifier. That
is, if the path recorder has been started by the means of PathRecStart and
PathRecMoveBwd is executed then the robot will move back no longer than
to the position the robot was at when WaitSyncTask was executed.

More examples
More examples of how to use the instruction PathRecMoveBwd are illustrated
below.

Example 1 - Independent motion
VAR pathrecid safe_id;

CONST robtarget p0 := [...];

...

CONST robtarget p4 := [...];

VAR num choice;

MoveJ p0, vmax, z50, tool1;

PathRecStart safe_id;

MoveJ p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, z50, tool1;

ERROR:

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 515
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.173 PathRecMoveBwd - Move path recorder backwards

Path Recovery
Continued

TPReadFK choice,"Go to safe?",stEmpty,stEmpty,stEmpty,stEmpty,"Yes";

IF choice=5 THEN

IF PathRecValidBwd(\ID:=safe_id) THEN

StorePath;

PathRecMoveBwd \ID:=safe_id \ToolOffs:=[0, 0 , 10];

Stop;

!Fix problem

PathRecMoveFwd;

RestoPath;

StartMove;

RETRY;

ENDIF

ENDIF

xx0500002135

This example shows how the path recorder can be utilized to extract the robot from
narrow spaces upon error without programming a designated path.
A part is being manufactured. At the approach point, p0, the path recorder is
started and given the path recorder identifier safe_id. Assume that when the
robot moves from p3 to p4 that a recoverable error arises. At that point the path
is stored by executing StorePath. By storing the path the error handler can start
a new movement and later on restart the original movement. When the path has

Continues on next page
516 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.173 PathRecMoveBwd - Move path recorder backwards
Path Recovery
Continued

been stored the path recorder is used to move the robot out to the safe position,
p0, by executing PathRecMoveBwd.
Note that a tool offset is applied to provide clearance from, for example, a newly
added weld. When the robot has been moved out the operator can do what is
necessary to fix the error (for example clean the torch of welding). Then the robot
is moved back to the error location by the means of PathRecMoveFwd. At the error
location the path level is switched back to base level by RestoPath and a retry
attempt is made.

Example 2 - Synchronized motion
T_ROB1

VAR pathrecid HomeROB1;

CONST robtarget pR1_10:=[...];

...

CONST robtarget pR1_60:=[...];

PathRecStart HomeROB1;

MoveJ pR1_10, v1000, z50, tGun;

MoveJ pR1_20, v1000, z50, tGun;

MoveJ pR1_30, v1000, z50, tGun;

SyncMoveOn sync1, tasklist;

MoveL pR1_40 \ID:=1, v1000, z50, tGun\wobj:=pos1;

MoveL pR1_50 \ID:=2, v1000, z50, tGun\wobj:=pos1;

MoveL pR1_60 \ID:=3, v1000, z50, tGun\wobj:=pos1;

SyncMoveOff sync2;

ERROR

StorePath \KeepSync;

TEST ERRNO

CASE ERR_PATH_STOP:

PathRecMoveBwd \ID:= HomeROB1\ToolOffs:=[0,0,10];

ENDTEST

!Perform service action

PathRecMoveFwd \ToolOffs:=[0,0,10];

RestoPath;

StartMove;

T_ROB2
VAR pathrecid HomeROB2;

CONST robtarget pR2_10:=[...];

...

CONST robtarget pR2_50:=[...];

PathRecStart HomeROB2;

MoveJ pR2_10, v1000, z50, tGun;

MoveJ pR2_20, v1000, z50, tGun;

SyncMoveOn sync1, tasklist;

MoveL pR2_30 \ID:=1, v1000, z50, tGun\wobj:=pos1;

MoveL pR2_40 \ID:=2, v1000, z50, tGun\wobj:=pos1;

MoveL pR2_50 \ID:=3, v1000, z50, tGun\wobj:=pos1;

SyncMoveOff sync2;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 517
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.173 PathRecMoveBwd - Move path recorder backwards

Path Recovery
Continued

ERROR

StorePath \KeepSync;

TEST ERRNO

CASE ERR_PATH_STOP:

PathRecMoveBwd \ToolOffs:=[0,0,10];

ENDTEST

!Perform service action

PathRecMoveFwd \ToolOffs:=[0,0,10];

RestoPath;

StartMove;

T_ROB3
VAR pathrecid HomePOS1;

CONST jointtarget jP1_10:=[...];

...

CONST jointtarget jP1_40:=[...];

PathRecStart HomePOS1;

MoveExtJ jP1_10, v1000, z50;

SyncMoveOn sync1, tasklist;

MoveExtJ jP1_20 \ID:=1, v1000, z50;

MoveExtJ jP1_30 \ID:=2, v1000, z50;

MoveExtJ jP1_40 \ID:=3, v1000, z50;

SyncMoveOff sync2;

ERROR

StorePath \KeepSync;

TEST ERRNO

CASE ERR_PATH_STOP:

PathRecMoveBwd \ToolOffs:=[0,0,0];

DEFAULT:

PathRecMoveBwd \ID:=HomePOS1\ToolOffs:=[0,0,0];

ENDTEST

!Perform service action

PathRecMoveFwd \ToolOffs:=[0,0,0];

RestoPath;

StartMove;

A system is consisting of threemanipulators that all run in separate tasks. Assume
that T_ROB1 experiences an error ERR_PATH_STOPwithin the synchronized block,
sync1. Upon error it is desired to move back to the home position marked with
the path recorder identifier HomeROB1 to perform service of the robot’s external
equipment. This is done by using PathRecMoveBwd and suppling the pathrecid
identifier.
Since the error occurred during synchronizedmotion it is necessary that the second
TCP robotT_ROB2 and the external axis T_POS1 also orders PathRecMoveBwd.
Thesemanipulators do not have to move back further than before the synchronized
motion started. By not suppling PathRecMoveBwd at ERR_PATH_STOP with a path
recorder identifier the path recorder ability to stop after SyncMoveOn is utilized.

Continues on next page
518 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.173 PathRecMoveBwd - Move path recorder backwards
Path Recovery
Continued

Note that the external axis that does not have a TCP still adds a zero tool offset to
enable the possibility for the TCP robots to do so.
The DEFAULT behavior in the ERROR handler in this example is that all manipulators
first do the synchronized movements backwards and then the independent
movements backwards to the start point of the recorded path. This is obtained by
specifying \ID in PathRecMoveBwd for all manipulators.

Limitations
Movements using the path recorder cannot be performed on base level, that is,
StorePath has to be executed before PathRecMoveBwd.
It is never possible to move backwards through a SynchMoveOff statement.
It is never possible to move backwards through a WaitSyncTask statement.
SyncMoveOn must be preceded by at least one independent movement if it is
desired to move back to the position where the synchronized movement started.
If it is not desired to return to the point where PathRecMoveBwd was executed (by
executing PathRecMoveFwd) then the PathRecorder has to be stopped by the
means of PathRecStop. PathRecStop\Clear also clears the recorded path.
PathRecMoveBwd cannot be executed in a RAPID routine connected to any of the
following special system events: PowerOn, Stop, QStop, Restart,Reset or Step.

Syntax
PathRecMoveBwd

['\' ID ':=' < variable (VAR) of pathrecid >]

['\' ToolOffs ':=' <expression (IN) of pos>]

['\' Speed ':=' <expression (IN) of speeddata>]';'

Related information

SeeFor information about

pathrecid - Path recorder identifier on page1679Path Recorder Identifier

PathRecStart - Start the path recorder on
page 523

Start - stop the path recorder

PathRecStop - Stop the path recorder on
page 526

PathRecValidBwd - Is there a valid backward
path recorded on page 1369

Check for valid recorded path

PathRecValidFwd - Is there a valid forward path
recorded on page 1372

PathRecMoveFwd -Move path recorder forward
on page 520

Move path recorder forward

StorePath - Stores the path when an interrupt
occurs on page 816

Store - restore paths

RestoPath - Restores the path after an interrupt
on page 610

Technical reference manual - RAPID OverviewOther positioning instructions

Technical reference manual - RAPID OverviewError Recovery

Technical reference manual - RAPID Instructions, Functions and Data types 519
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.173 PathRecMoveBwd - Move path recorder backwards

Path Recovery
Continued

1.174 PathRecMoveFwd - Move path recorder forward

Usage
PathRecMoveFwd is used to move the robot back to the position where
PathRecMoveBwdwas executed. It is also possible tomove the robot partly forward
by supplying an identifier that has been passed during the backward movement.

Basic examples
The following example illustrates the instruction PathRecMoveFwd:
See also More examples on page 521.

Example 1
PathRecMoveFwd;

The robot is moved back to the position where the path recorder started the
backward movement.

Arguments
PathRecMoveFwd [\ID] [\ToolOffs] [\Speed]

[\ID]
Identifier
Data type: pathrecid
Variable that specifies the ID position to move forward to. Data type pathrecid
is a non-value type only used as an identifier for naming the recording position.
If no ID position is specified then the forward movement will always be done to
interrupt position on the original path.

[\ToolOffs]
Tool Offset
Data type: pos
Provides clearance offset for TCP during motion. A cartesian coordinate is applied
to the TCP coordinates. This is useful when the robot runs a process adding
material.

[\Speed]

Data type: speeddata
Speed overrides the original speed used during forwardmotion. Speeddata defines
the velocity for the tool center point, the tool reorientation, and the external axis.
If present, this speed will be used throughout the forward movement. If omitted,
the forward motion will execute with the speed in the original motion instructions.

Continues on next page
520 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.174 PathRecMoveFwd - Move path recorder forward
PathRecovery

Program execution
The path recorder is activatedwith the PathRecStart instruction. After the recorder
has been started the robot can be moved backwards along its executed path by
executing PathRecMoveBwd. The robot can thereafter be ordered back to the
position where the backward execution started by calling PathRecMoveFwd. It is
also possible to move the robot partly forward by supplying an identifier that has
been passed during the backward movement.

More examples
More examples of how to use the instruction PathRecMoveFwd are illustrated
below.

VAR pathrecid start_id;

VAR pathrecid mid_id;

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

PathRecStart start_id;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStart mid_id;

MoveL p3, vmax, z50, tool1;

StorePath;

PathRecMoveBwd \ID:=start_id;

PathRecMoveFwd \ID:=mid_id;

PathRecMoveFwd;

RestoPath;

xx0500002133

The example above will start the path recorder and the starting point will be tagged
with the path identifier start_id. Thereafter the robot will move forward with
traditional move instructions and then move back to the path recorder identifier
start_id using the recorded path. Finally it will move forward again in two steps
by the means of PathRecMoveFwd.

Limitations
Movements using the path recorder have to be performed on trap-level, i.e.
StorePath must execute prior to PathRecMoveFwd.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 521
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.174 PathRecMoveFwd - Move path recorder forward

PathRecovery
Continued

To be able to execute PathRecMoveFwd a PathRecMoveBwd must have been
executed before.
If it is not desired to return to the point where PathRecMoveBwd was executed (by
executing PathRecMoveFwd) then the PathRecorder has to be stopped by the
means of PathRecStop. PathRecStop\Clear also clears recorded path.
PathRecMoveFwd cannot be executed in a RAPID routine connected to any of the
following special system events: PowerOn, Stop, QStop, Restart, Reset or Step.

Syntax
PathRecMoveFwd '('

['\' ID ':=' < variable (VAR) of pathid >]

['\' ToolOffs ':=' <expression (IN) of pos>]

['\' Speed ':=' <expression (IN) of speeddata>]';'

Related information

SeeFor information about

pathrecid - Path recorder identifier on page 1679Path Recorder Identifiers

PathRecStart - Start the path recorder on page523Start - stop the path recorder
PathRecStop - Stop the path recorder on page526

PathRecValidBwd - Is there a valid backward path
recorded on page 1369

Check for valid recorded path

PathRecValidFwd - Is there a valid forward path
recorded on page 1372

PathRecMoveBwd -Move path recorder backwards
on page 514

Move path recorder backward

StorePath - Stores the path when an interrupt oc-
curs on page 816

Store - restore paths

RestoPath - Restores the path after an interrupt on
page 610

Technical reference manual - RAPID OverviewOther positioning instructions

Technical reference manual - RAPID OverviewError Recovery
Technical reference manual - RAPID Overview

522 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.174 PathRecMoveFwd - Move path recorder forward
PathRecovery
Continued

1.175 PathRecStart - Start the path recorder

Usage
PathRecStart is used to start recording the robot’s path. The path recorder will
store path information during execution of the RAPID program.

Basic examples
The following example illustrates the instruction PathRecStart:

Example 1
VAR pathrecid fixture_id;

PathRecStart fixture_id;

The path recorder is started and the starting point (the instruction’s position in the
RAPID program) is tagged with the identifier fixture_id.

Arguments
PathRecStart ID

ID

Identifier
Data type:pathrecid
Variable that specifies the name of the recording start position. Data type
pathrecid is a non-value type only used as an identifier for naming the recording
position.

Program execution
When the path recorder is ordered to start the robot path will be recorded internally
in the robot controller. The recorded sequence of program positions can be
traversed backwards by means of PathRecMoveBwd causing the robot to move
backwards along its executed path.

More examples
More examples of how to use the instruction PathRecStart are illustrated below.

Example 1
VAR pathrecid origin_id;

VAR pathrecid corner_id;

VAR num choice;

MoveJ p1, vmax, z50, tool1;

PathRecStart origin_id;

MoveJ p2, vmax, z50, tool1;

PathRecStart corner_id;

MoveL p3, vmax, z50, tool1;

MoveAbsJ jt4, vmax, fine, tool1;

ERROR

TPReadFK choice,"Extract
to:",stEmpty,stEmpty,stEmpty,"Origin","Corner";

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 523
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.175 PathRecStart - Start the path recorder

Path Recovery

IF choice=4 OR choice=5 THEN

StorePath;

IF choice=4 THEN

PathRecMoveBwd \ID:=origin_id;

ELSE

PathRecMoveBwd \ID:=corner_id;

ENDIF

Stop;

!Fix problem

PathRecMoveFwd;

RestoPath;

StartMove;

RETRY;

ENDIF

In the example above the path recorder is used for moving the robot to a service
position if an error during normal execution occurs.
The robot is executing along a path. After the position p1 the path recorder is
started. After the point p2 another path identifier is inserted. Assume that a
recoverable error occurs while moving from position p3 to position jt4. The error
handler will now be invoked, and the user can choose between extracting the robot
to position Origin (point p1) or Corner (point p2). Then the path level is switched
with StorePath to be able to restart at the error location later on. When the robot
has backed out from the error location it’s up to the user solving the error (usually
fixing the robots surrounding equipment).
Then the robot is ordered back to the error location. The path level is switched
back to normal, and a retry attempt is made.

Limitations
The path recorder can only be started and will only record the path in the base
path level, i.e. movements at StorePath level are not recorded.

Syntax
PathRecStart

[ID ':='] < variable (VAR) of pathrecid> ';'

Related information

SeeFor information about

pathrecid - Path recorder identifier on page 1679Path Recorder Identifiers

PathRecStop - Stop the path recorder on page526Stop the path recorder

PathRecValidBwd - Is there a valid backward path
recorded on page 1369

Check for valid recorded path

PathRecValidFwd - Is there a valid forward path
recorded on page 1372

PathRecMoveBwd - Move path recorder back-
wards on page 514

Play the path recorder backward

PathRecMoveFwd - Move path recorder forward
on page 520

Play the path recorder forward

Continues on next page
524 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.175 PathRecStart - Start the path recorder
Path Recovery
Continued

SeeFor information about

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID Instructions, Functions and Data types 525
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.175 PathRecStart - Start the path recorder

Path Recovery
Continued

1.176 PathRecStop - Stop the path recorder

Usage
PathRecStop is used to stop recording the robot’s path.

Basic examples
The following example illustrates the instruction PathRecStop:
See also More examples below.

Example 1
PathRecStop \Clear;

The path recorder is stopped and the buffer of stored path information is cleared.

Arguments
PathRecStop [\Clear]

[\Clear]

Data type: switch
Clear the recorded path.

Program execution
When the path recorder is ordered to stop the recording of the path will stop. The
optional argument \Clearwill clear the buffer of stored path information preventing
the recorded path to be executed by mistake.
After the recorder has been stopped with PathRecStop, earlier recorded paths
cannot be used for back-up movements (PathRecMoveBwd). It is possible to use
earlier recorded paths if PathRecStart is ordered again from the same position
that the path recorder was stopped in. See the following example.

More examples
More examples of how to use the instruction PathRecStop are illustrated below.

LOCAL VAR pathrecid id1;

LOCAL VAR pathrecid id2;

LOCAL CONST robtarget p0:= [...];

......

LOCAL CONST robtarget p6 := [...];

PROC example1()

MoveL p0, vmax, z50, tool1;

PathRecStart id1;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStop;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStart id2;

MoveL p5, vmax, z50, tool1;

MoveL p6, vmax, z50, tool1;

Continues on next page
526 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.176 PathRecStop - Stop the path recorder
Path Recovery

StorePath;

PathRecMoveBwd \ID:=id1;

PathRecMoveFwd;

RestoPath;

StartMove;

MoveL p7, vmax, z50, tool1;

ENDPROC

PROC example2()

MoveL p0, vmax, z50, tool1;

PathRecStart id1;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStop;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, z50, tool1;

PathRecStart id2;

MoveL p2, vmax, z50, tool1;

MoveL p5, vmax, z50, tool1;

MoveL p6, vmax, z50, tool1;

StorePath;

PathRecMoveBwd \ID:=id1;

PathRecMoveFwd;

RestoPath;

StartMove;

MoveL p7, vmax, z50, tool1;

ENDPROC

PathRecStop_

The above examples describe recording of the robot path when the recording is
stopped in the middle of the sequence. In example1 the PathRecMoveBwd
\ID:=id1; order is valid and the robot will execute the following path: p6 -> p5
-> p2 -> p1 -> p0

The reason that the order is valid is because of the recorder being stopped and
started in the exact same robot position. If this behavior isn’t desirable the stop
order should include the optional argument \Clear. In that way the recorded path
will be cleared and it will never be possible to back-up to previous path recorder
identifiers.
The only difference in example2 is where the recorder was started the second
time. In this case PathRecMoveBwd \ID:=id1will cause an error. This is because
no recorded path exists between p4, p3 and p2. It is possible to execute
PathRecMoveBwd \ID:=id2.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 527
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.176 PathRecStop - Stop the path recorder

Path Recovery
Continued

Syntax
PathRecStop

['\'switch Clear] ';'

Related information

SeeFor information about

pathrecid - Path recorder identifier on page 1679Path Recorder Identifiers

PathRecStart - Start the path recorder on page523Start the path recorder

PathRecValidBwd - Is there a valid backward path
recorded on page 1369

Check for valid recorded path

PathRecValidFwd - Is there a valid forward path
recorded on page 1372

PathRecMoveBwd -Move path recorder backwards
on page 514

Play the recorder backward

PathRecMoveFwd - Move path recorder forward
on page 520

Play the recorder forwards

Technical reference manual - RAPID OverviewMotion in general

528 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.176 PathRecStop - Stop the path recorder
Path Recovery
Continued

1.177 PathResol - Override path resolution

Usage
PathResol (Path Resolution) is used to override the configured geometric path
sample time defined in the system parameters for the mechanical units that are
controlled from current program task.
The geometric path sample time is used in applications with sensor inputs. Observe
that it is not used for defining the geometric path in normal application, a legacy
functionality.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in any motion tasks.

Description
Example of when to use PathResol:

• Using coordinated interpolation.
• UsingWeldguide.
• Using the option Conveyor Tracking.

Basic examples
The following example illustrates the instruction PathResol:

MoveJ p1,v1000,fine,tool1;

PathResol 150;

With the robot at a stop point the path sample time is increased to 150 % of the
configured value.

Arguments
PathResol PathSampleTime

PathSampleTime

Data type: num
Override as a percent of the configured path sample time. 100% corresponds to
the configured path sample time. Within the range 25-400%.

Program execution
The path resolutions of all subsequent positioning instructions are affected until
a new PathResol instruction is executed. This will affect the path resolution during
all program execution of movements (default path level and path level after
StorePath) and also during jogging.
In a MultiMove system at synchronized coordinated mode the following points are
valid:

• All mechanical units involved in synchronized coordinatedmode will run with
the current path resolution for actual (used) motion planner.

• New path resolution order against actual motion planner affects the
synchronized coordinated movement and future independent movement in
that motion planner.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 529
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.177 PathResol - Override path resolution

RobotWare - OS

• New path resolution order against another motion planner only affects future
independent movement in that motion planner.

About connection between program task and motion planner see Application
manual - MultiMove.
The default value for override of path sample time is 100%. This value is
automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.
The current override of path sample time can be read from the variable C_MOTSET
(data type motsetdata) in the component pathresol.

Limitation
If this instruction is preceded by a move instruction then that move instruction
must be programmed with a stop point (zonedata fine), not a fly-by point.
Otherwise restart after power failure will not be possible.
PathResol cannot be executed in a RAPID routine connected to any of following
special system events: PowerOn, Stop, QStop,Restart, or Step.

Syntax
PathResol

[PathSampleTime ':='] < expression (IN) of num>' ;'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewPositioning instructions

Technical reference manual - RAPID OverviewMotion settings

Technical reference manual - System parametersConfiguration of path resolution

motsetdata - Motion settings data on page 1660Motion settings data

530 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.177 PathResol - Override path resolution
RobotWare - OS
Continued

1.178 PDispOff - Deactivates program displacement

Usage
PDispOff (Program Displacement Off) is used to deactivate a program
displacement.
Program displacement is activated by the instruction PDispSet or PDispOn and
applies to all movements until some other program displacement is activated or
until program displacement is deactivated.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction PDispOff:

Example 1
PDispOff;

Deactivation of a program displacement.

Example 2
MoveL p10, v500, z10, tool1;

PDispOn \ExeP:=p10, p11, tool1;

MoveL p20, v500, z10, tool1;

MoveL p30, v500, z10, tool1;

PDispOff;

MoveL p40, v500, z10, tool1;

A program displacement is defined as the difference between the positions p10
and p11. This displacement affects the movement to p20 and p30 but not to p40.

Program execution
Active program displacement is reset. This means that the program displacement
coordinate system is the same as the object coordinate system, and thus all
programmed positions will be related to the latter.

Syntax
PDispOff ';'

Related information

SeeFor information about

PDispOn - Activates program displacement on
page 532

Definition of program displacement using
two positions

PDispSet - Activates program displacement us-
ing known frame on page 537

Definition of program displacement using
known frame

Technical reference manual - RAPID Instructions, Functions and Data types 531
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.178 PDispOff - Deactivates program displacement

RobotWare - OS

1.179 PDispOn - Activates program displacement

Usage
PDispOn (Program Displacement On) is used to define and activate a program
displacement using two robot positions.
Program displacement is used, for example, after a search has been carried out
or when similar motion patterns are repeated at several different places in the
program.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction PDispOn:
See also More examples on page 534.

Example 1
MoveL p10, v500, z10, tool1;

PDispOn \ExeP:=p10, p20, tool1;

Activation of a program displacement (parallel displacement). This is calculated
based on the difference between positions p10 and p20.

Example 2
MoveL p10, v500, fine \Inpos := inpos50, tool1;

PDispOn *, tool1;

Activation of a program displacement (parallel displacement). Since a stop point
that is accurately defined has been used in the previous instruction the argument
\ExeP does not have to be used. The displacement is calculated on the basis of
the difference between the robot’s actual position and the programmed point (*)
stored in the instruction.

Example 3
PDispOn \Rot \ExeP:=p10, p20, tool1;

Activation of a program displacement including a rotation. This is calculated based
on the difference between positions p10 and p20.

Arguments
PDispOn [\Rot] [\ExeP] ProgPoint Tool [\WObj]

[\Rot]

Rotation
Data type: switch
The difference in the tool orientation is taken into consideration and this involves
a rotation of the program.

[\ExeP]

Executed Point
Data type: robtarget

Continues on next page
532 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.179 PDispOn - Activates program displacement
RobotWare - OS

The new robot position used for calculation of the displacement. If this argument
is omitted then the robot’s current position at the time of the program execution is
used.

ProgPoint

Programmed Point
Data type: robtarget
The robot’s original position at the time of programming.

Tool

Data type: tooldata
The tool used during programming, i.e. the TCP to which the ProgPoint position
is related.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the ProgPoint position is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If a stationary TCP or coordinated external axes are used then
this argument must be specified.
The arguments Tool and \WObj are used both to calculate the ProgPoint during
programming and to calculate the current position during program execution if no
\ExeP argument is programmed.

Program execution
Program displacement means that the ProgDisp coordinate system is translated
in relation to the object coordinate system. Since all positions are related to the
ProgDisp coordinate system, all programmed positions will also be displaced.
See figure below, which shows parallel displacement of a programmed position
using program displacement.

xx0500002186

Program displacement is activated when the instruction PDispOn is executed and
remains active until some other program displacement is activated (the instruction

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 533
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.179 PDispOn - Activates program displacement

RobotWare - OS
Continued

PDispSet or PDispOn) or until program displacement is deactivated (the instruction
PDispOff).
Only one program displacement can be active at the same time. Several PDispOn
instructions, on the other hand, can be programmed one after the other and in this
case the different program displacements will be added.
Program displacement is calculated as the difference between ExeP and
ProgPoint. If ExeP has not been specified then the current position of the robot
at the time of the program execution is used instead. Since it is the actual position
of the robot that is used, the robot should not move when PDispOn is executed.
If the argument \Rot is used then the rotation is also calculated based on the tool
orientation at the two positions. The displacement will be calculated in such a way
that the new position (ExeP) will have the same position and orientation in relation
to the displaced coordinate system, ProgDisp, as the old position (ProgPoint)
had in relation to the original object coordinate system. See the figure below, which
shows translation and rotation of a programmed position.

xx0500002187

The program displacement is automatically reset
• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

More examples
More examples of how to use the instruction PDispOn are illustrated below.

Example 1
PROC draw_square()

PDispOn *, tool1;

MoveL *, v500, z10, tool1;

MoveL *, v500, z10, tool1;

MoveL *, v500, z10, tool1;

Continues on next page
534 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.179 PDispOn - Activates program displacement
RobotWare - OS
Continued

MoveL *, v500, z10, tool1;

PDispOff;

ENDPROC

...

MoveL p10, v500, fine \Inpos := inpos50, tool1;

draw_square;

MoveL p20, v500, fine \Inpos := inpos50, tool1;

draw_square;

MoveL p30, v500, fine \Inpos := inpos50, tool1;

draw_square;

The routine draw_square is used to execute the same motion pattern at three
different positions based on the positions p10, p20, and p30. See the figure below,
which shows that when using program displacement the motion patterns can be
reused.

xx0500002185

Example 2
SearchL sen1, psearch, p10, v100, tool1\WObj:=fixture1;

PDispOn \ExeP:=psearch, *, tool1 \WObj:=fixture1;

A search is carried out in which the robot’s searched position is stored in the
position psearch. Any movement carried out after this starts from this position
using a program displacement (parallel displacement). The latter is calculated
based on the difference between the searched position and the programmed point
(*) stored in the instruction. All positions are based on the fixture1 object
coordinate system.

Syntax
PDispOn

[['\' Rot]

[’\’ ExeP ’:=’ < expression (IN) of robtarget>]’,’]

[ProgPoint' :='] < expression (IN) of robtarget> ','

[Tool ':='] < persistent (PERS) of tooldata>

['\'WObj' :=' < persistent (PERS) of wobjdata>] ';'

Related information

SeeFor information about

PDispOff - Deactivates program displacement
on page 531

Deactivation of program displacement

PDispSet - Activates program displacement us-
ing known frame on page 537

Definition of program displacement using
known frame

Technical reference manual - System paramet-
ers

Coordinate systems

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 535
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.179 PDispOn - Activates program displacement

RobotWare - OS
Continued

SeeFor information about

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

536 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.179 PDispOn - Activates program displacement
RobotWare - OS
Continued

1.180 PDispSet - Activates program displacement using known frame

Usage
PDispSet (Program Displacement Set) is used to define and activate a program
displacement using known frame.
Program displacement is used, for example, when similar motion patterns are
repeated at several different places in the program.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction PDispSet:

Example 1
VAR pose xp100 := [[100, 0, 0], [1, 0, 0, 0]];

...

PDispSet xp100;

Activation of the xp100 program displacement meaning that:
• The ProgDisp coordinate system is displaced 100 mm from the object

coordinate system in the direction of the positive x-axis (see figure below).
• As long as this program displacement is active all positions will be displaced

100 mm in the direction of the x-axis.
The figure shows a 100 mm program displacement along the x-axis.

xx0500002199

Arguments
PDispSet DispFrame

DispFrame

Displacement Frame
Datatype: pose
The program displacement is defined as data of the type pose.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 537
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.180 PDispSet - Activates program displacement using known frame

RobotWare - OS

Program execution
Programdisplacement involves translating and/or rotating the ProgDisp coordinate
system relative to the object coordinate system. Since all positions are related to
the ProgDisp coordinate system, all programmed positions will also be displaced.
See the figure below, which shows translation and rotation of a programmed
position.

xx0500002204

Program displacement is activated when the instruction PDispSet is executed
and remains active until some other program displacement is activated (the
instruction PDispSet or PDispOn) or until program displacement is deactivated
(the instruction PDispOff).
Only one program displacement can be active at the same time. Program
displacements cannot be added to one another using PDispSet.
The program displacement is automatically reset

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Syntax
PDispSet

[DispFrame ':='] < expression (IN) of pose> ';'

Related information

SeeFor information about

PDispOff - Deactivates program displacement
on page 531

Deactivation of program displacement

PDispOn - Activates program displacement on
page 532

Definition of program displacement using
two positions

pose - Coordinate transformations on page1685Definition of data of the type pose

Technical reference manual - RAPID OverviewCoordinate systems

Continues on next page
538 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.180 PDispSet - Activates program displacement using known frame
RobotWare - OS
Continued

SeeFor information about

PDispOn - Activates program displacement on
page 532

Examples of how program displacement
can be used

Technical reference manual - RAPID Instructions, Functions and Data types 539
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.180 PDispSet - Activates program displacement using known frame

RobotWare - OS
Continued

1.181 ProcCall - Calls a new procedure

Usage
A procedure call is used to transfer program execution to another procedure. When
the procedure has been fully executed the program execution continues with the
instruction following the procedure call.
It is usually possible to send a number of arguments to the new procedure. These
control the behavior of the procedure and make it possible for the same procedure
to be used for different things.

Basic examples
The following examples illustrate the instruction ProcCall:

Example 1
weldpipe1;

Calls the weldpipe1 procedure.

Example 2
errormessage;

Set do1;

...

PROC errormessage()

TPWrite "ERROR";

ENDPROC

The errormessage procedure is called.When this procedure is ready the program
execution returns to the instruction following the procedure call, Set do1.

Arguments
Procedure { Argument }

Procedure

Identifier
The name of the procedure to be called.

Argument

Data type: In accordance with the procedure declaration.
The procedure arguments (in accordance with the parameters of the procedure).

Basic examples
Basic examples of the instruction ProcCall are illustrated below.

Example 1
weldpipe2 10, lowspeed;

Calls the weldpipe2 procedure including two arguments.

Example 2
weldpipe3 10 \speed:=20;

Calls the weldpipe3 procedure including one mandatory and one optional
argument.

Continues on next page
540 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.181 ProcCall - Calls a new procedure
RobotWare - OS

Limitations
The procedure’s arguments must agree with its parameters:

• All mandatory arguments must be included.
• They must be placed in the same order.
• They must be of the same data type.
• They must be of the correct type with respect to the access-mode (input,

variable, or persistent).
A routine can call a routine which, in turn, calls another routine. A routine can also
call itself, that is, a recursive call. The number of routine levels permitted depends
on the number of parameters. More than 10 levels are usually permitted.

Syntax
<procedure> [<argument list>] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewArguments, parameters

Technical reference manual - RAPID Instructions, Functions and Data types 541
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.181 ProcCall - Calls a new procedure

RobotWare - OS
Continued

1.182 ProcerrRecovery - Generate and recover from process-move error

Usage
ProcerrRecovery can be used to generate process error during robot movement
and get the possibility to handle the error and restart the process and themovement
from an ERROR handler.

Basic examples
The following examples illustrate the instruction ProcerrRecovery:
See also More examples on page 543.
The examples below are not realistic but are shown for pedagogic reasons.

Example 1
MoveL p1, v50, z30, tool2;

ProcerrRecovery \SyncOrgMoveInst;

MoveL p2, v50, z30, tool2;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StartMove;

RETRY;

ENDIF

The robot movement stops on its way to p1 and the program execution transfers
to the ERROR handler in the routine that created the actual path on which the error
occurred, in this case the path to MoveL p1. The movement is restarted with
StartMove and the execution is continued with RETRY.

Example 2
MoveL p1, v50, fine, tool2;

ProcerrRecovery \SyncLastMoveInst;

MoveL p2, v50, z30, tool2;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StartMove;

RETRY;

ENDIF

The robot movement stops at once on its way to p2. The program execution
transfers to the ERROR handler in the routine where the program is currently
executing or is going to execute a move instruction when the error occurred, in
this case MoveL p2. Themovement is restarted with StartMove and the execution
is continued with RETRY.

Arguments
ProcerrRecovery[\SyncOrgMoveInst] | [\SyncLastMoveInst]

[\ProcSignal]

[\SyncOrgMoveInst]

Data type: switch

Continues on next page
542 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.182 ProcerrRecovery - Generate and recover from process-move error
RobotWare - OS

The error can be handled in the routine that created the actual path on which the
error occurred.

[\SyncLastMoveInst]

Data type: switch
The error can be handled in the routine where the program is currently executing
a move instruction when the error occurred.
If the program is currently not executing amove instruction when the error occurred
then the transfer of the execution to the ERROR handler will be delayed until the
program executes the next move instruction. This means that the transfer to the
ERROR handler will be delayed if the robot is in a stop point or between the prefetch
point and the middle of the corner path. The error can be handled in that routine.

[\ProcSignal]
Data type: signaldo
Optional parameter that let the user turn on/off the use of the instruction. If this
parameter is used and the signal value is 0, an recoverable error will be thrown,
and no process error will be generated.

Program execution
Execution of ProcerrRecovery in continuous mode results in the following:

• At once the robot is stopped on its path.
• The variable ERRNO is set to ERR_PATH_STOP.
• The execution is transferred to some ERROR handler according the rules for

asynchronously raised errors.
This instruction does nothing in any step mode.
For description of asynchronously raised errors that are generated with
ProcerrRecovery, see Technical reference manual manual - RAPID kernel.
ProcerrRecovery can also be used in MultiMove system to transfer the execution
to the ERROR handler in several program tasks if running in synchronized mode.

More examples
More examples of how to use the instruction ProcerrRecovery are illustrated
below.

Example with ProcerrRecovery\SyncOrgMoveInst
MODULE user_module

VAR intnum proc_sup_int;

PROC main()

...

MoveL p1, v1000, fine, tool1;

do_process;

...

ENDPROC

PROC do_process()

my_proc_on;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 543
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.182 ProcerrRecovery - Generate and recover from process-move error

RobotWare - OS
Continued

MoveL p2, v200, z10, tool1;

MoveL p3, v200, fine, tool1;

my_proc_off;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

my_proc_on;

StartMove;

RETRY;

ENDIF

ENDPROC

TRAP iprocfail

my_proc_off;

ProcerrRecovery \SyncOrgMoveInst;

ENDTRAP

PROC my_proc_on()

SetDO do_myproc, 1;

CONNECT proc_sup_int WITH iprocfail;

ISignalDI di_proc_sup, 1, proc_sup_int;

ENDPROC

PROC my_proc_off()

SetDO do_myproc, 0;

IDelete proc_sup_int;

ENDPROC

ENDMODULE

Asynchronously raised errors generated by ProcerrRecovery with switch
\SyncOrgMoveInst can, in this example, be treated in the routine do_process
because the path on which the error occurred is always created in the routine
do_process.
A process flow is started by setting the signal do_myproc to 1. The signal
di_proc_sup supervise the process, and an asynchronous error is raised if
di_proc_sup becomes 1. In this simple example the error is resolved by setting
do_myproc to 1 again before resuming the movement.

Example with ProcerrRecovery\SyncLastMoveInst
MODULE user_module

PROC main()

...

MoveL p1, v1000, fine, tool1;

do_process;

...

ENDPROC

PROC do_process()

proc_on;

proc_move p2, v200, z10, tool1;

proc_move p3, v200, fine, tool1;

proc_off;

Continues on next page
544 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.182 ProcerrRecovery - Generate and recover from process-move error
RobotWare - OS
Continued

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StorePath;

p4 := CRobT(\Tool:=tool1);

! Move to service station and fix the problem

MoveL p4, v200, fine, tool1;

RestoPath;

proc_on;

StartMoveRetry;

ENDIF

ENDPROC

ENDMODULE

MODULE proc_module (SYSMODULE, NOSTEPIN)

VAR intnum proc_sup_int;

VAR num try_no := 0;

TRAP iprocfail

proc_off;

ProcerrRecovery \SyncLastMoveInst;

ENDTRAP

PROC proc_on()

SetDO do_proc, 1;

CONNECT proc_sup_int WITH iprocfail;

ISignalDI di_proc_sup, 1, proc_sup_int;

ENDPROC

PROC proc_off()

SetDO do_proc, 0;

IDelete proc_sup_int;

ENDPROC

PROC proc_move (robtarget ToPoint, speeddata Speed, zonedata Zone,
PERS tooldata Tool)

MoveL ToPoint, Speed, Zone, Tool;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

try_no := try_no + 1;

IF try_no < 4 THEN

proc_on;

StartMoveRetry;

ELSE

RaiseToUser \Continue;

ENDIF

ENDPROC

ENDMODULE

Asynchronously raised errors generated by ProcerrRecovery with switch
\SyncLastMoveInst can in this example be treated in the routine proc_move
because all move instructions are always created in the routine proc_move. When

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 545
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.182 ProcerrRecovery - Generate and recover from process-move error

RobotWare - OS
Continued

program pointer is in routine do_process the transfer to ERROR handler will be
delayed until running the next MoveL in routine proc_move. Note that the
movements are always stopped at once.
A process flow is started by setting the signal do_myproc to 1. The signal
di_proc_sup supervise the process, and an asynchronous error is raised if
di_proc_sup becomes 1. In this simple example the error is resolved by setting
do_myproc to 1 again before resuming the movement.
When using predefined NOSTEPIN routine we recommend using the option switch
parameter \SyncLastMoveInst because then the predefined routine can make
the decision to handle some error situation within the routine while others must
be handled by the end user.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Execution of ProcerrRecovery in continuous mode.ERR_PATH_STOP

The optional parameter \ProcSignal is used and the
signal is off when the instruction is executed.

ERR_PROCSIGNAL_OFF

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Limitations
Error recovery from asynchronously raised process errors can only be done if the
motion task with the process move instruction is executing on base level when the
process error occurs. So error recovery cannot be done if the program task with
the process instruction executes in:

• any event routine
• any routine handler (ERROR, BACKWARD or UNDO)
• user execution level (service routine)

See Technical reference manual manual - RAPID kernel, Error recovery,
Asynchronously raised errors.
If no error handler with a StartMove + RETRY or a StartMoveRetry is used, the
program execcution will hang. The only way to reset this is to do a PP to main.

Syntax
ProcerrRecovery

['\' SyncOrgMoveInst] | [' \' SyncLastMoveInst]

['\' ProcSignal' :='] < variable (VAR) of signaldo > ';'

Continues on next page
546 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.182 ProcerrRecovery - Generate and recover from process-move error
RobotWare - OS
Continued

Related information

SeeFor information about

Technical reference manual - RAPID OverviewError handlers

Technical reference manual manual - RAPID ker-
nel, Error recover

Asynchronously raised errors

RaiseToUser - Propagates an error to user level
on page 571

Propagates an error to user level

StartMoveRetry - Restarts robot movement and
execution on page 784

Resumemovement and program execu-
tion

Technical reference manual - RAPID Instructions, Functions and Data types 547
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.182 ProcerrRecovery - Generate and recover from process-move error

RobotWare - OS
Continued

1.183 PrxActivAndStoreRecord - Activate and store the recorded profile data

Usage
PrxActivAndStoreRecord is used to activate the recorded profile data and store
it in a file.
Can be used instead of calling both PrxActivRecord and PrxStoreRecord.

Basic example
PrxActivAndStoreRecord SSYNC1, 1, "profile.log";

Profile of sensor movement activated and is stored in the file profile.log.

Arguments
PrxActivAndStoreRecord MechUnit Delay File_name

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Delay

Data type: num
The delay in seconds can be used to shift the record in time. It must be between
0.01 and 0.1. If given the value 0 no delay is added. The delay is not saved in the
profile, it is just used for the activation. If the delay should be used together with
a saved profile the delay has to be specified again in the instruction
PrxUseFileRecord.

File_name

Data type: string
Name of the file where the profile is stored.

Program execution
PrxActivAndStoreRecord must be executed at least 0.2 seconds before start
of sensor movement if the record is to be used for synchronization.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an error handler. The system variable ERRNO will be set to:

Cause of errorName

Error in the activated profile.ERR_ACTIV_PROF

Error in the stored profile.ERR_STORE_PROF

Error in the used profile.ERR_USE_PROF

Syntax
PrxActivAndStoreRecord

[MechUnit ':='] < expression (IN) of mechunit> ','

[Delay ':='] < expression (IN) of num > ','

Continues on next page
548 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.183 PrxActivAndStoreRecord - Activate and store the recorded profile data
Machine Synchronization

[File_name ':='] < expression (IN) of string > ';'

Related information

SeeFor information about

PrxActivRecord - Activate the recorded profile data on
page 550

Activate the recorded profile data

PrxDeactRecord - Deactivate a record on page 553Deactivate a record

PrxStoreRecord - Store the recorded profile data on
page 562

Store the recorded profile data

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 549
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.183 PrxActivAndStoreRecord - Activate and store the recorded profile data

Machine Synchronization
Continued

1.184 PrxActivRecord - Activate the recorded profile data

Usage
PrxActivRecord is used to activate the record that was just recorded in order to
use it without having to save it before.

Basic example
PrxActivRecord SSYNC1, 0;

WaitTime 0.2;

SetDO do_startstop_machine, 1;

!Work synchronized with sensor

...

SetDO do_startstop_machine, 0;

Record of sensor is activated and used for prediction of sensor movement as soon
as record is ready.

Arguments
PrxActivRecord MechUnit Delay

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Delay

Data type: num
The delay in seconds can be used to shift the record in time. It must be between
0.01 and 0.1. If given the value 0 no delay is added.

Program execution
PrxActivRecordmust be executed at least 0.2 seconds before start of conveyor
movement.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an error handler. The system variable ERRNO will be set to:

Cause of errorName

Error in the activated profileERR_ACTIV_PROF

Error in the stored profileERR_STORE_PROF

Error in the used profileERR_USE_PROF

Syntax
PrxActivRecord

[MechUnit ':='] < expression (IN) of mechunit> ','

[Delay ':='] < expression (IN) of num > ';'

Continues on next page
550 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.184 PrxActivRecord - Activate the recorded profile data
Machine Synchronization

Related information

SeeFor information about

PrxActivAndStoreRecord - Activate and store the recor-
ded profile data on page 548

Activate and store the recorded
profile data

PrxDeactRecord - Deactivate a record on page 553Deactivate a record

PrxStoreRecord - Store the recorded profile data on
page 562

Store the recorded profile data

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 551
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.184 PrxActivRecord - Activate the recorded profile data

Machine Synchronization
Continued

1.185 PrxDbgStoreRecord - Store and debug the recorded profile data

Usage
PrxDbgStoreRecord is used to store a non activated record for debug.
Can be used to compare recordings and check the repeatability.

Basic example
PrxDbgStoreRecord SSYNC1, "debug_profile.log";

Saves the recording in the file debug_profile.log.

Arguments
PrxDbgStoreRecord MechUnit Filename

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

File_name

Data type: string
Name of the file where the record is stored.

Syntax
PrxDbgStoreRecord

[MechUnit ':='] < expression (IN) of mechunit> ','

[File_name ':='] < expression (IN) of string > ';'

Related information

SeeFor information about

PrxActivAndStoreRecord - Activate and store the recor-
ded profile data on page 548

Activate and store the recorded
profile data

PrxActivRecord - Activate the recorded profile data on
page 550

Activate the recorded profile data

PrxStoreRecord - Store the recorded profile data on
page 562

Store the recorded profile data

Application manual - Controller software IRC5Machine Synchronization

552 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.185 PrxDbgStoreRecord - Store and debug the recorded profile data
Machine Synchronization

1.186 PrxDeactRecord - Deactivate a record

Usage
PrxDeactRecord is used to deactivate a record.

Basic example
PrxDeactRecord SSYNC1;

Record of sensor movement is deactivated and no longer used for prediction of
sensor movement. The record can be activated again.

Arguments
PrxDeactRecord MechUnit

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Limitations
PrxDeactRecord should not be called during synchronization.

Syntax
PrxDeactRecord

[MechUnit ':='] < expression (IN) of mechunit> ';'

Related information

SeeFor information about

PrxActivRecord - Activate the recorded profile data on
page 550

Activate the recorded profile data

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 553
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.186 PrxDeactRecord - Deactivate a record

Machine Synchronization

1.187 PrxResetPos - Reset the zero position of the sensor

Usage
PrxResetPos is used to reset the zero position of the sensor.
The sensor position is reset for synchronization functionality and recorded file but
the I/O signal value is not reset. This instruction is used for software reset of sensor
input where no sync switch is available to reset the I/O signal.

Basic example
PrxResetPos SSYNC1;

The sensor position is set to zero.

Arguments
PrxResetPos MechUnit

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Program execution
The sensor unit must be stopped (in the desired zero position) before calling
PrxResetPos.

Limitations
Not to be used with the DSQC 377A board.
This instruction is equivalent to a sync switch. Jogging window should show 0.0
as additional axis position after this instruction.

Syntax
PrxResetPos

[MechUnit ':='] < expression (IN) of mechunit> ';'

Related information

SeeFor information about

PrxSetPosOffset - Set a reference position for the sensor
on page 556

Set a reference position for the
sensor

Application manual - Controller software IRC5Machine Synchronization

554 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.187 PrxResetPos - Reset the zero position of the sensor
Machine Synchronization

1.188 PrxResetRecords - Reset and deactivate all records

Usage
PrxResetRecords is used to reset and deactivate all records.

Basic example
PrxResetRecords SSYNC1;

Record of sensor movement is deactivated and no longer used for prediction of
sensor movement and the record data is removed.

Arguments
PrxResetRecords MechUnit

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Program execution
PrxResetRecordsmust be executed at least 0.2 seconds before start of conveyor
movement.

Syntax
PrxResetRecords

[MechUnit ':='] < expression (IN) of mechunit> ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 555
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.188 PrxResetRecords - Reset and deactivate all records

Machine Synchronization

1.189 PrxSetPosOffset - Set a reference position for the sensor

Usage
PrxSetPosOffset is used to set a reference position for the sensor.
The sensor position is set to reference for synchronization functionality and
recorded file. This function is used for software set of sensor reference where no
sync switch is available to reset the I/O signal.

Basic example
PrxSetPosOffset SSYNC1, reference;

The sensor position is set to the reference value.

Arguments
PrxSetPosOffset MechUnit Reference

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Reference

Data type: num
The reference in meter (or sensor unit). It must be between -5000 and 5000.

Program execution
The sensor unit must be stopped before calling PrxSetPosOffset.

Limitations
Not to be used with the DSQC 377A board.

Syntax
PrxSetPosOffset

[MechUnit ':='] < expression (IN) of mechunit> ','

[Reference ':='] < expression (IN) of num > ';'

Related information

SeeFor information about

PrxResetPos - Reset the zero position of the sensor on
page 554

Reset the zero position of the
sensor

Application manual - Controller software IRC5Machine Synchronization

556 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.189 PrxSetPosOffset - Set a reference position for the sensor
Machine Synchronization

1.190 PrxSetRecordSampleTime - Set the sample time for recording a profile

Usage
PrxSetRecordSampleTime is used to set the sample time, in seconds, for
recording a profile.
The default sample time is taken from the system parameter Pos Update time,
belonging to type CAN interface in the topic Process. Note that Pos Update time
specifies the sample time in milliseconds, while PrxSetRecordSampleTime
specifies the sample time in seconds.
The maximum number of samples in a recorded profile is 300. If a recording is
longer than 300 * Pos Update time, the sample time must be increased.

Basic example
A 12 second recording is to be made. The sample time cannot be less than 12/300
= 0.04. The sample time is therefore set to 0.04 seconds.

PrxSetRecordSampleTime SSYNC1, 0.04;

Arguments
PrxSetRecordSampleTime MechUnit SampleTime

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

SampleTime

Data type: num
The sample time in seconds. The sample time must be between 0.01 and 0.1.

Syntax
PrxSetRecordSampleTime

[MechUnit ':='] < expression (IN) of mechunit> ','

[SampleTime ':='] < expression (IN) of num> ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 557
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.190 PrxSetRecordSampleTime - Set the sample time for recording a profile

Machine Synchronization

1.191 PrxSetSyncalarm - Set sync alarm behavior

Usage
PrxSetSyncalarm is used to set sync_alarm_signal behavior to a pulse during
specified time.
If sync alarm is triggered, the Sync_alarm_signal is pulsed during the time specified
by the instruction PrxSetSyncalarm. It can also be set to no pulse, that is, the
signal continues to be high.
The default pulse length is 1 sec.

Basic examples

Example 1
PrxSetSyncalarm SSYNC1 \time:=2;

Sets the length of the pulse on the sync_alarm_signal to 2 seconds.

Example 2
PrxSetSyncalarm SSYNC1 \NoPulse;

If the sync alarm is triggered the sync_alarm_signal is set (not pulsed).

Arguments
PrxSetSyncalarm MechUnit [\Time] | [\NoPulse]

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

[\Time]

Data type: num
The pulse length in seconds. It must be between 0.1 and 60.
If \Time is set to more than 60, no pulse is used (same effect as using \NoPulse).

[\NoPulse]

Data type: switch
No pulse is used. The signal is set until a SupSyncSensorOff instruction is
executed:

Syntax
PrxSetSyncalarm

[MechUnit ':='] < expression (IN) of mechunit>

['\' Time ':=' < expression (IN) of num >]

| ['\' NoPulse] ';'

Related information

SeeFor information about

SupSyncSensorOff - Stop synchronized sensor supervi-
sion on page 823

SupSyncSensorOff - Stop syn-
chronized sensor supervision

Application manual - Controller software IRC5Machine Synchronization

558 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.191 PrxSetSyncalarm - Set sync alarm behavior
Machine Synchronization

1.192 PrxStartRecord - Record a new profile

Usage
PrxStartRecord is used to reset all profile data and record a new profile of the
sensor movement as soon as sensor_start_signal is set.
To be able to make a recording it is important to first make a connection to a sensor
(mechanical unit whose speed affects the speed of the robot). This means that a
WaitSensor instruction has to be executed before the recording starts.

Basic example
ActUnit SSYNC1;

WaitSensor SSYNC1;

PrxStartRecord SSYNC1, 1, PRX_PROFILE_T1;

WaitTime 0.2;

SetDO do_startstop_machine 1;

Signal do_startstop_machine, in this example, starts the sensor movement. Profile
of the sensor is recorded as soon as the machine sets the signal
sensor_start_signal.

Arguments
PrxStartRecord MechUnit, Record_duration, Profile_type

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Record_duration

Data type: num
Specifies the duration of record in seconds. It must be between 0.1 and Pos Update
time * 300. If the value 0 is used, the instruction PrxStopRecordmust be used to
stop the recording.

Profile_type

Data type: num
Possible value and their explanation is listed below:

DescriptionValue

Record is started by sensor_start_signal.PRX_INDEX_PROF

A start and stop movement can be recorded.
sensor_start_signal is used to record start movement and
sensor_stop_signal is used to record stop movement.

PRX_START_ST_PR

Same as for PRX_START_ST_PR only different orders on
signals.The sensor_stop_signal is used first.

PRX_STOP_ST_PROF

The recording is started by sensor_stop_signal.PRX_STOP_M_PROF

For recording hydraulic press (where sensor position zero
corresponds to the press being open).

PRX_HPRESS_PROF

For recording IMM or other machine (where sensor position
zero corresponds to the press being closed).

PRX_PROFILE_T1

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 559
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.192 PrxStartRecord - Record a new profile

Machine Synchronization

Program execution
PrxStartRecord must be executed at least 0.2 seconds before start of sensor
movement.

Syntax
PrxStartRecord

[MechUnit ':='] < expression (IN) of mechunit> ','

[Record_duration ':='] < expression (IN) of num > ','

[Profile_type ':='] < expression (IN) of num > ';'

Related information

SeeFor information about

PrxStopRecord - Stop recording a profile on page 561Stop recording a profile

Application manual - Controller software IRC5Machine Synchronization

560 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.192 PrxStartRecord - Record a new profile
Machine Synchronization
Continued

1.193 PrxStopRecord - Stop recording a profile

Usage
PrxStopRecord is used to stop recording a profile.
Should always be used when PrxStartRecord has Record_duration set to 0.

Basic example
ActUnit SSYNC1;

WaitSensor SSYNC1;

PrxStartRecord SSYNC1, 0, PRX_PROFILE_T1;

WaitTime 0.2;

SetDo do_startstop_machine 1;

WaitTime 2;

PrxStopRecord SSYNC1;

Signal do_startstop_machine, in this example, starts the sensor movement. Profile
of sensor movement is recorded as soon as sensor_start_signal is set and after
two seconds the recording is stopped with the instruction PrxStopRecord.

Arguments
PrxStopRecord MechUnit

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Syntax
PrxStopRecord

[MechUnit ':='] < expression (IN) of mechunit> ';'

Related information

SeeFor information about

PrxStartRecord - Record a new profile on page 559Record a new profile

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 561
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.193 PrxStopRecord - Stop recording a profile

Machine Synchronization

1.194 PrxStoreRecord - Store the recorded profile data

Usage
PrxStoreRecord is used to save an activated record in a file.

Basic example
ActUnit SSYNC1;

WaitSensor SSYNC1;

PrxStartRecord SSYNC1, 0, PRX_PROFILE_T1;

WaitTime 0.2;

SetDo do_startstop_machine 1;

WaitTime 2;

PrxStopRecord SSYNC1;

PrxActivRecord SSYNC1;

SetDo do_startstop_machine 0;

PrxStoreRecord SSYNC1, 0, "profile.log";

Profile of sensor movement is recorded as soon as sensor_start_signal is set and
is stored in the file profile.log.

Arguments
PrxStoreRecord MechUnit Delay Filename

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Delay

Data type: num
The delay in seconds can be used to shift the record in time. It must be between
0.01 and 0.1. If given the value 0 no delay is added. The delay is not saved in the
profile, it is just used for the activation. If the delay should be used together with
a saved profile the delay has to be specified again in the instruction
PrxUseFileRecord.

File_name

Data type: string
Name of the file where the profile is stored.

Limitations
The record must be activated before calling PrxStoreRecord.

Syntax
PrxStoreRecord

[MechUnit ':='] < expression (IN) of mechunit> ','

[Delay ':='] < expression (IN) of num > ','

[File_name ':='] < expression (IN) of string > ';'

Continues on next page
562 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.194 PrxStoreRecord - Store the recorded profile data
Machine Synchronization

Related information

SeeFor information about

PrxActivRecord - Activate the recorded profile data on
page 550

Activate the recorded profile data

PrxDeactRecord - Deactivate a record on page 553Deactivate a record

PrxUseFileRecord - Use the recorded profile data on
page 564

Use the recorded profile data

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 563
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.194 PrxStoreRecord - Store the recorded profile data

Machine Synchronization
Continued

1.195 PrxUseFileRecord - Use the recorded profile data

Usage
PrxUseFileRecord is used to load and activate a record from a file for sensor
synchronization.

Basic example
PrxUseFileRecord SSYNC1, 0, "profile.log";

WaitTime 0.2;

SetDo do_startstop_machine 1;

!Work synchronized with sensorWork synchronized with sensor

...

SetDo do_startstop_machine 0;

Arguments
PrxUseFileRecord MechUnit Delay Filename

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Delay

Data type: num
The delay in seconds can be used to shift the record in time. It must be between
0.01 and 0.1. If given the value 0 no delay is added.

File_name

Data type: string
Name of the file where the profile is stored.

Program execution
PrxUseFileRecordmust be executed at least 0.2 seconds before start of conveyor
movement.

Syntax
PrxUseFileRecord

[MechUnit ':='] < expression (IN) of mechunit> ','

[Delay ':='] < expression (IN) of num > ','

[File_name ':='] < expression (IN) of string > ';'

Related information

SeeFor information about

PrxActivRecord - Activate the recorded profile data on
page 550

Activate the recorded profile data

PrxDeactRecord - Deactivate a record on page 553Deactivate a record

PrxStoreRecord - Store the recorded profile data on
page 562

Store the recorded profile data

Application manual - Controller software IRC5Machine Synchronization

564 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.195 PrxUseFileRecord - Use the recorded profile data
Machine Synchronization

1.196 PulseDO - Generates a pulse on a digital output signal

Usage
PulseDO is used to generate a pulse on a digital output signal.

Basic examples
The following examples illustrate the instruction PulseDO:

Example 1
PulseDO do15;

A pulse with a pulse length of 0.2 s is generated on the output signal do15.

Example 2
PulseDO \PLength:=1.0, ignition;

A pulse of length 1.0 s is generated on the signal ignition.

Example 3
! Program task MAIN

PulseDO \High, do3;

! At almost the same time in program task BCK1

PulseDO \High, do3;

Positive pulse (value 1) is generated on the signal do3 from two program tasks at
almost the same time. It will result in one positive pulse with a pulse length longer
than the default 0.2 s or two positive pulses after each other with a pulse length of
0.2 s.

Arguments
PulseDO [\High] [\PLength] Signal

[\High]

High level
Data type: switch
Specifies that the signal value should always be set to high (value 1) when the
instruction is executed independently of its current state.

[\PLength]

Pulse Length
Data type: num
The length of the pulse in seconds (0.001 - 2000 s). If the argument is omitted a
0.2 second pulse is generated.

Signal

Data type: signaldo
The name of the signal on which a pulse is to be generated.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 565
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.196 PulseDO - Generates a pulse on a digital output signal

RobotWare - OS

Program execution
The next instruction after PulseDO is executed directly after the pulse starts. The
pulse can then be set/reset without affecting the rest of the program execution.
The figure below shows examples of generation of pulses on a digital output signal.

xx0500002217

The next instruction is executed directly after the pulse starts. The pulse can then
be set/reset without affecting the rest of the program execution.

Limitations
The length of the pulse has a resolution off 0.001 seconds. Programmed values
that differ from this are rounded off.

Continues on next page
566 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.196 PulseDO - Generates a pulse on a digital output signal
RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
PulseDO

['\' High]

['\' PLength ':=' < expression (IN) of num >] ','

[Signal ':='] < variable (VAR) of signaldo > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 567
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.196 PulseDO - Generates a pulse on a digital output signal

RobotWare - OS
Continued

1.197 RAISE - Calls an error handler

Usage
RAISE is used to create an error in the program and then to call the error handler
of the routine.
RAISE can also be used in the error handler to propagate the current error to the
error handler of the calling routine.
This instruction can, for example, be used to jump back to a higher level in the
structure of the program, e.g. to the error handler in the main routine if an error
occurs at a lower level.

Basic examples
The following example illustrates the instruction RAISE:
See also More examples on page 569.

Example 1
MODULE MainModule .

VAR errnum ERR_MY_ERR := -1;

PROC main()

BookErrNo ERR_MY_ERR;

IF di1 = 0 THEN

RAISE ERR_MY_ERR;

ENDIF

ERROR

IF ERRNO = ERR_MY_ERR THEN

TPWrite "di1 equals 0";

ENDIF

ENDPROC

ENDMODULE

For this implementation di1 equals 0 is regarded as an error. RAISE will force the
execution to the error handler. In this example the user has created his own error
number to handle the specific error.

Arguments
RAISE [Error no.]

Error no.

Data type: errnum
Error number: Any number between 1 and 90 which the error handler can use to
locate the error that has occurred (the ERRNO system variable).
It is also possible to book an error number outside the range 1-90 with the
instruction BookErrNo.

Continues on next page
568 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.197 RAISE - Calls an error handler
RobotWare-OS

The error numbermust be specified outside the error handler in a RAISE instruction
to transfer execution to the error handler of that routine.
If the instruction is present in a routine’s error handler then the error is propagated
to the error handler of the calling routine. In this case the error number does not
have to be specified.

More examples
More examples of the instruction RAISE are illustrated below.

Example 1
MODULE MainModule

VAR num value1 := 10;

VAR num value2 := 0;

PROC main()

routine1;

ERROR

IF ERRNO = ERR_DIVZERO THEN

value2 := 1;

RETRY;

ENDIF

ENDPROC

PROC routine1()

value1 := 5/value2;!This will lead to an error when value2 is
equal to 0.

ERROR

RAISE;

ENDPROC

ENDMODULE

In this example the division with zero will result in an error. In the ERROR-handler
RAISEwill propagate the error to the ERROR-handler in the calling routine "main".
The same error number remains active. RETRY will re-run the whole routine
"routine1".

Program execution
Program execution continues in the routine’s error handler. After the error handler
has been executed the program execution can continue with:

• the routine that called the routine in question (RETURN).
• the error handler of the routine that called the routine in question (RAISE).

A RAISE instruction in a routine’s error handler also has another feature. It can be
used for long jump (see“ Error Recovery With Long Jump”). With a long jump it is
possible to propagate an error from an error handler from a deep nested call chain
to a higher level in one step.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 569
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.197 RAISE - Calls an error handler

RobotWare-OS
Continued

If the RAISE instruction is present in a trap routine, the error is dealt with by the
system’s error handler.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Error number in RAISE is out of range.ERR_ILLRAISE

Syntax
RAISE [<error number>] ';'

Related information

SeeFor information about

Technical referencemanual - System parametersError handling

Technical reference manual manual - RAPID
kernel

Error recovery with long jump

BookErrNo - Book a RAPID system error number
on page 45

Booking error numbers

570 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.197 RAISE - Calls an error handler
RobotWare-OS
Continued

1.198 RaiseToUser - Propagates an error to user level

Usage
RaiseToUseris used in an error handler in nostepin routines to propagate the
current error or any other defined error to the error handler at user level. User level
is in this case the first routine in a call chain above a nostepin routine.

Basic examples
The following example illustrates the instruction RaiseToUser:

Example 1
MODULE MyModule

VAR errnum ERR_MYDIVZERO:= -1;

PROC main()

BookErrNo ERR_MYDIVZERO;

...

routine1;

...

ERROR

IF ERRNO = ERR_MYDIVZERO THEN

TRYNEXT;

ELSE

RETRY;

ENDIF

ENDPROC

ENDMODULE

MODULE MySysModule (SYSMODULE, NOSTEPIN, VIEWONLY)

PROC routine1()

...

routine2;

...

UNDO

! Free allocated resources

ENDPROC

PROC routine2()

VAR num n:=0;

...

reg1:=reg2/n;

...

ERROR

IF ERRNO = ERR_DIVZERO THEN

RaiseToUser \Continue \ErrorNumber:=ERR_MYDIVZERO;

ELSE

RaiseToUser \BreakOff;

ENDIF

ENDPROC

ENDMODULE

The division by zero in routine2 will propagate up to the error handler in main
routine with the errno set to ERR_MYDIVZERO. The TRYNEXT instruction in main

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 571
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.198 RaiseToUser - Propagates an error to user level

RobotWare - OS

error handler will then cause the program execution to continue with the instruction
after the division by zero in routine2. The \Continue switch controls this behavior.
If any other errors occur in routine2 then the \BreakOff switch forces the execution
to continue from the error handler in the main routine. In this case the undo handler
in routine1 will be executed while raising it to user level. The RETRY instruction
in the error handler in the main routine will execute routine1 from the beginning
once again.
The undo handler in routine1 will also be executed in the \Continue case if a
following RAISE or RETURN is done on the user level.

Arguments
RaiseToUser[\Continue] | [\BreakOff][\ErrorNumber]

[\Continue]
Data type: switch
Continue the execution in the routine that caused the error.

[\BreakOff]

Data type:switch
Break off the call chain and continue the execution at the user level. Any undo
handler in the call chain will be executed apart from the undo handler in the routine
that raised the error.
One of the arguments \Continue or \BreakOff must be programmed to avoid
an execution error.

[\ErrorNumber]

Data type: errnum
Any number between 1 and 90 that the error handler can use to locate the error
that has occurred (the ERRNO system variable).
It is also possible to book an error number outside the range 1-90 with the
instruction BookErrNo.
If the argument \ErrorNumber is not specified then the original error number
propagates to the error handler in the routine at user level.

Program execution
RaiseToUser can only be used in an error handler in a nostepin routine.
Program execution continues in the error handler of the routine at user level. The
error number remains active if the optional parameter \ErrorNumber is not present.
The system’s error handler deals with the error if there is no error handler on user
level. The system’s error handler is called if none of the argument \Continue or
\BreakOff is specified.
There are two different behaviors after the error handler has been executed. The
program execution continues in the routine with RaiseToUser if the \Continue
switch is on. The program execution continues at the user level if the \BreakOff
switch is on.

Continues on next page
572 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.198 RaiseToUser - Propagates an error to user level
RobotWare - OS
Continued

Program execution can continue with:
• the instruction that caused the error (RETRY)
• the following instruction (TRYNEXT)
• the error handler of the routine that called the routine at user level (RAISE)
• the routine that called the routine at user level (RETURN)

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Error number in RAISE is out of range.ERR_ILLRAISE

Syntax
RaiseToUser

['\' Continue]

'|' ['\' BreakOff]

['\' ErrorNumber ':='] < expression (IN) of errnum> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewError handling

Technical reference manual - RAPID OverviewUndo handling

BookErrNo - Book a RAPID system error number
on page 45

Booking error numbers

Technical reference manual - RAPID Instructions, Functions and Data types 573
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.198 RaiseToUser - Propagates an error to user level

RobotWare - OS
Continued

1.199 ReadAnyBin - Read data from a binary channel or file

Usage
ReadAnyBin (Read Any Binary) is used to read any type of data from a binary
channel or file.

Basic examples
The following example illustrates the instruction ReadAnyBin:
See also More examples on page 575.

Example 1
VAR iodev channel1;

VAR robtarget next_target;

...

Open "com1:", channel1 \Bin;

ReadAnyBin channel1, next_target;

The next robot target to be executed, next_target, is read from the channel
referred to by channel1.

Arguments
ReadAnyBin IODevice Data [\Time]

IODevice

Data type: iodev
The name (reference) of the binary serial channel or file to be read.

Data

Data type: ANYTYPE
The VAR or PERS to which the read data will be stored.

[\Time]

Data type: num
The max. time for the reading operation (timeout) in seconds. If this argument is
not specified then the max. time is set to 60 seconds. To wait forever, use the
predefined constant WAIT_MAX.
If this time runs out before the read operation is finished then the error handler will
be called with the error code ERR_DEV_MAXTIME. If there is no error handler then
the execution will be stopped.
The timeout function is also in use during program stop and will be noticed by the
RAPID program at program start.

Program execution
As many bytes as are required for the specified data are read from the specified
binary serial channel or file.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Continues on next page
574 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.199 ReadAnyBin - Read data from a binary channel or file
RobotWare - OS

More examples
More examples of the instruction ReadAnyBin are illustrated below.

Example 1
CONST num NEW_ROBT:=12;

CONST num NEW_WOBJ:=20;

VAR iodev channel;

VAR num input;

VAR robtarget cur_robt;

VAR wobjdata cur_wobj;

Open "com1:", channel\Bin;

! Wait for the opcode character

input := ReadBin (channel \Time:= 0.1);

TEST input

CASE NEW_ROBT:

ReadAnyBin channel, cur_robt;

CASE NEW_WOBJ:

ReadAnyBin channel, cur_wobj;

ENDTEST

Close channel;

As a first step the opcode of themessage is read from the serial channel. According
to this opcode a robtarget or a wobjdata is read from the serial channel.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The path points to a non-existing directory or there are too
many directories open at the same time.

ERR_FILEACC

Timeout when executing a ReadBin, ReadNum, ReadStr,
ReadStrBinReadAnyBin, or a ReadRawBytes instruction.

ERR_DEV_MAXTIME

Check sum error detected at data transfer with instruction
ReadAnyBin.

ERR_RANYBIN_CHK

End of file is detected before all bytes are read in instruction
ReadAnyBin.

ERR_RANYBIN_EOF

Limitations
This instruction can only be used for serial channels or files that have been opened
for binary reading.
The data to be read by this instruction ReadAnyBin must be a value data type
such as num, bool, or string. Record, record component, array, or array element

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 575
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.199 ReadAnyBin - Read data from a binary channel or file

RobotWare - OS
Continued

of these value data types can also be used. Entire data or partial data with
semi-value or non-value data types cannot be used.

Note

The VAR or PERS variable, for storage of the read data, can be updated in several
steps. Therefore, always wait until the whole data structure is updated before
using read data from a TRAP or another program task.
Because WriteAnyBin-ReadAnyBin are designed to only handle internal binary
controller data with serial channel or files between or within IRC5 control systems,
no data protocol is released and the data cannot be interpreted on any PC.
Control software development can break the compatibility, and therefore it might
not be possible to use WriteAnyBin-ReadAnyBin between different software
versions of RobotWare.

Syntax
ReadAnyBin

[IODevice ':='] <variable (VAR) of iodev> ','

[Data ':='] <var or pers (INOUT) of ANYTYPE>

['\' Time ':=' <expression (IN) of num>] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening of serial channels or files

WriteAnyBin - Writes data to a binary serial chan-
nel or file on page 1071

Write data to a binary serial channel or
file

Application manual - Controller software IRC5File and serial channel handling

576 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.199 ReadAnyBin - Read data from a binary channel or file
RobotWare - OS
Continued

1.200 ReadBlock - read a block of data from device

Usage
ReadBlock is used to read a block of data from a device connected to the serial
sensor interface. The data is stored in a file.
The sensor interface communicates with two sensors over serial channels using
the RTP1 transport protocol.
This is an example of a sensor channel configuration.
COM_PHY_CHANNEL:

• Name “COM1:”
• Connector “COM1”
• Baudrate 19200

COM_TRP:
• Name “sen1:”
• Type “RTP1”
• PhyChannel “COM1”

Basic examples
The following example illustrates the instruction ReadBlock:

Example 1
CONST string SensorPar := "flp1:senpar.cfg";

CONST num ParBlock:= 1;

! Connect to the sensor device "sen1:" (defined in sio.cfg).

SenDevice "sen1:";

! Read sensor parameters from sensor datablock 1

! and store on flp1:senpar.cfg

ReadBlock "sen1:", ParBlock, SensorPar;

Arguments
ReadBlock device BlockNo FileName [\TaskName]

device

Data type: string
The I/O device name configured in sio.cfg for the sensor used.

BlockNo

Data type: num
The argument BlockNo is used to select the data block in the sensor to be read.

FileName

Data type: string
The argument FileName is used to define a file to which data is written from the
data block in the sensor selected by the BlockNo argument.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 577
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.200 ReadBlock - read a block of data from device

Sensor Interface

[\TaskName]

Data type: string
The argument TaskNamemakes it possible to access devices in other RAPID tasks.

Error handling

DescriptionError constant (ERRNO value)

Measurement failureSEN_NO_MEAS

Sensor unable to handle commandSEN_NOREADY

General sensor errorSEN_GENERRO

Sensor busySEN_BUSY

Unknown sensorSEN_UNKNOWN

External sensor errorSEN_EXALARM

Internal sensor errorSEN_CAALARM

Sensor temperature errorSEN_TEMP

Illegal communication valueSEN_VALUE

Sensor check failureSEN_CAMCHECK

Communication errorSEN_TIMEOUT

Syntax
ReadBlock

[device ':='] < expression(IN) of string> ','

[BlockNo ':='] < expression (IN) of num > ','

[FileName ':='] < expression (IN) of string > ','

['\' TaskName ':=' < expression (IN) of string >] ';'

Related information

SeeFor information about

SenDevice - connect to a sensor device on page 680Connect to a sensor device

WriteVar - Write variable on page 1086Write a sensor variable

ReadVar - Read variable from a device on page 1408Read a sensor variable

WriteBlock - Write block of data to device on page 1076Write a sensor data block

Technical reference manual - System parametersConfiguration of sensor com-
munication

578 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.200 ReadBlock - read a block of data from device
Sensor Interface
Continued

1.201 ReadCfgData - Reads attribute of a system parameter

Usage
ReadCfgData is used to read one attribute of a system parameter (configuration
data).
Besides to reading named parameters it is also possible to search for unnamed
parameters.

Basic examples
The following example illustrates the instruction ReadCfgData. Both of these
examples show how to read named parameters.

Example 1
VAR num offset1;

...

ReadCfgData "/MOC/MOTOR_CALIB/rob1_1","cal_offset",offset1;

Reads the value of the calibration offset for axis 1 for rob_1 into the num variable
offset1.

Example 2
VAR string io_device;

...

ReadCfgData "/EIO/EIO_SIGNAL/process_error","Device",io_device;

Reads the name of the I/O device where the signal process_error is defined into
the string variable io_device.

Arguments
ReadCfgData InstancePath Attribute CfgData [\ListNo]

InstancePath

Data type: string
Specifies a path to the parameter to be accessed.
For named parameters the format of this string is /DOMAIN/TYPE/ParameterName.
For unnamed parameters the format of this string is
/DOMAIN/TYPE/Attribute/AttributeValue.

Attribute

Data type: string
The name of the attribute of the parameter to be read.

CfgData

Data type: any type
The variable where the attribute value will be stored. Depending on the attribute
type the valid types are bool, num, dnum, or string.

[\ListNo]

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 579
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.201 ReadCfgData - Reads attribute of a system parameter

RobotWare - OS

Variable holding the instance number of the Attribute + AttributeValue to
be found.
First occurrence of the Attribute + AttributeValue has an instance number
0. If more instances are searched for then the returned value in \ListNo will be
incremented with 1. Otherwise, if there are no more instances then the returned
value will be -1. The predefined constant END_OF_LIST can be used to check if
more instances are to be search for.

Program execution
The value of the attribute specified by the Attribute argument is stored in the
variable specified by the CfgData argument.
If using format /DOMAIN/TYPE/ParameterName in InstancePath, only named
parameters can be accessed, i.e. parameters where the first attribute is name,
Name, or NAME.
For unnamed parameters use the optional parameter \ListNo to selects from
which instance to read the attribute value. It is updated after each successful read
to the next available instance.

More examples
More examples of the instruction ReadCfgdata are illustrated below. Both these
examples show how to read unnamed parameters.

Example 1
VAR num list_index;

VAR string read_str;

...

list_index:=0;

ReadCfgData "/EIO/EIO_CROSS/Act1/do_13", "Res", read_str,
\ListNo:=list_index;

IF read_str <> "" THEN

TPWrite "Resultant signal for signal do_13 is: " + read_str;

ENDIF

Reads the resultant signal for the unnamed digital actor signal di_13 and places
the name in the string variable read_str.
In this example domain EIO has the following cfg code:
EIO_CROSS:
-Name "Cross_di_1_do_2" -Res "di_1" -Act1 "do_2"
-Name "Cross_di_2_do_2" -Res "di_2" -Act1 "do_2"
-Name "Cross_di_13_do_13" -Res "di_13" -Act1 "do_13"

Example 2
VAR num list_index;

VAR string read_str;

...

list_index:=0;

WHILE list_index <> END_OF_LIST DO

read_str:="";

Continues on next page
580 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.201 ReadCfgData - Reads attribute of a system parameter
RobotWare - OS
Continued

ReadCfgData "/EIO/EIO_SIGNAL/Device/USERIO", "Name", read_str,
\ListNo:=list_index;

IF read_str <> "" THEN

TPWrite "Signal: " + read_str;

ENDIF

ENDWHILE

..

ERROR

TRYNEXT;

Read the names of all signals defined for the I/O device USERIO.
In this example domain EIO has the following cfg code:

EIO_SIGNAL:

-Name "USERDO1" -SignalType "DO" -Device "USERIO" -DeviceMap "0"

-Name "USERDO2" -SignalType "DO" -Device "USERIO" -DeviceMap "1"

-Name "USERDO3" -SignalType "DO" -Device "USERIO" -DeviceMap "2"

Example 3
VAR num list_index;

VAR string read_str;

...

list_index:=0;

WHILE list_index <> END_OF_LIST DO

read_str:="";

ReadCfgData "/EIO/DEVICENET_DEVICE/Network/DeviceNet", "Name",
read_str, \ListNo:=list_index;

IF read_str <> "" THEN

TPWrite read_str;

ENDIF

ENDWHILE

..

ERROR

TRYNEXT;

Read the names of all DeviceNet devices.
In this example domain EIO has the following cfg code:

DEVICENET_DEVICE:

-Name PANEL -Network "DeviceNet" -Simulated

-Name DRV_1 -Network "DeviceNet" -Simulated

-Name DEVICE1 -Network "DeviceNet" -Simulated

-Name DEVICE2 -Network "DeviceNet" -Simulated

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

It is not possible to find the data specified with
“InstancePath + Attribute” in the configuration data-
base.

ERR_CFG_NOTFND

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 581
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.201 ReadCfgData - Reads attribute of a system parameter

RobotWare - OS
Continued

Cause of errorName

The data type for parameter CfgData is not equal to the
real data type for the found data specified
with“InstancePath + Attribute” in the configuration
database.

ERR_CFG_ILLTYPE

Not allowed to read internal parameterERR_CFG_INTERNAL

The variable in argument \ListNo has a value outside
range of available instances (0 ... n) when executing the
instruction.

ERR_CFG_OUTOFBOUNDS

Limitations
The conversion from system parameter units (m, radian, second, and so on.) to
RAPID program units (mm, degree, second, and so on.) for CfgData of data type
num and dnum must be done by the user in the RAPID program.
If using format /DOMAIN/TYPE/ParameterName in InstancePath then only
named parameters can be accessed, i.e. parameters where the first attribute is
name, Name, or NAME.
RAPID strings are limited to 80 characters. In some cases this can be in theory too
small for the definition InstancePath, Attribute or CfgData.

Predefined data
The predefined constant END_OF_LIST with value -1 can be used to stop reading
when no more instances can be found.

Syntax
ReadCfgData

[InstancePath ':='] < expression (IN) of string > ','

[Attribute ':='] < expression (IN) of string > ','

[CfgData ':='] < variable (VAR) of anytype >

['\' ListNo ':=' < variable (VAR) of num >] ';'

Related information

SeeFor information about

string - Strings on page 1728Definition of string

WriteCfgData -Writes attribute of a system paramet-
er on page 1078

Write attribute of a system parameter

RobName - Get the TCP robot name on page 1415Get robot name in current task

Technical reference manual - System parametersConfiguration

Application manual - Controller software IRC5Advanced RAPID

582 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.201 ReadCfgData - Reads attribute of a system parameter
RobotWare - OS
Continued

1.202 ReadErrData - Gets information about an error

Usage
ReadErrData is to be used in a trap routine, to get information (domain, type,
number and intermixed strings %s) about an error, a state change, or a warning
that caused the trap routine to be executed.

Basic examples
The following example illustrates the instruction ReadErrData:
See chapter More examples on page 584.

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

VAR string titlestr;

VAR string string1;

VAR string string2;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number,

err_type \Title:=titlestr \Str1:=string1 \Str2:=string2;

ENDTRAP

When an error is trapped to the trap routine trap_err the error domain, the error
number, the error type, and the two first intermixed strings in the error message
are saved into appropriate variables.

Arguments
ReadErrData TrapEvent ErrorDomain ErrorId ErrorType [\Title] [\Str1]

[\Str2] [\Str3] [\Str4] [\Str5]

TrapEvent

Data type: trapdata
Variable containing the information about what caused the trap to be executed.

ErrorDomain

Data type: errdomain
Variable to store the error domain to which the error, state change, or warning that
occurred belongs. Ref. to predefined data of type errdomain.

ErrorId

Data type: num
Variable to store the number of the error that occurred. The error number is returned
without the first digit (error domain) and without the initial zeros of the complete
error number.
E.g. 10008 Program restarted is returned as 8.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 583
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.202 ReadErrData - Gets information about an error

RobotWare - OS

ErrorType

Data type: errtype
Variable to store the type of event such as error, state change, or warning that
occurred. Ref. to predefined data of type errtype.

[\Title]

Data type: string
Variable to store the title in the error message. The title is in UTF8 format and all
characters will not be displayed correctly for all languages on the FlexPendant.

[\Str1] ... [\Str5]

Data type: string
Update the specified string variable with argument that is intermixed in the error
message. There could be up to five arguments in a message of type %s, %f, %d
or %ld, which always will be converted to a string at execution of this instruction.
Str1 will hold the first argument, Str2 will hold the second argument, and so on.
Information about how many arguments there are in a message is found in
Operating manual - Trouble shooting. The intermixed arguments is marked as arg
in that document.

Program execution
The ErrorDomain, ErrorId, ErrorType, Title and Str1 ... Str5 variables
are updated according to the contents of TrapEvent.
If different events are connected to the same trap routine then the program must
ensure that the event is related to error monitoring. This can be done by testing
that INTNO matches the interrupt number used in the instruction IError;

More examples
More examples of the instruction ReadErrData are illustrated below.

Example 1
VAR intnum err_interrupt;

VAR trapdata err_data;

VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

...

PROC main()

CONNECT err_interrupt WITH trap_err;

IError COMMON_ERR, TYPE_ERR, err_interrupt;

...

IDelete err_interrupt;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

! Set domain no 1 ... 11

SetGO go_err1, err_domain;

! Set error no 1 ...9999

Continues on next page
584 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.202 ReadErrData - Gets information about an error
RobotWare - OS
Continued

SetGO go_err2, err_number;

ENDTRAP

When an error occurs (only errors, not warning or state change) the error number
is retrieved in the trap routine and its value is used to set 2 groups of digital output
signals.

Limitation
It is not possible obtain information about internal errors.

Syntax
ReadErrData

[TrapEvent ':='] <variable (VAR) of trapdata>','

[ErrorDomain' :='] <variable (VAR) of errdomain>','

[ErrorId':='] <variable (VAR) of num>','

[ErrorType' :='] <variable (VAR) of errtype>

['\'Title ':='<variable (VAR) of string>]

['\'Str1 ':='<variable (VAR) of string>]

['\'Str2 ':='<variable (VAR) of string>]

['\'Str3 ':='<variable (VAR) of string>]

['\'Str4 ':='<variable (VAR) of string>]

['\'Str5 ':='<variable (VAR) of string>]';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewSummary of interrupts

Technical reference manual - RAPID OverviewMore information on interruptmanage-
ment

errdomain - Error domain on page 1619Error domains, predefined constants

errtype - Error type on page 1630Error types, predefined constants

IError - Orders an interrupt on errors on page 278Orders an interrupt on errors

GetTrapData - Get interrupt data for current TRAP
on page 262

Get interrupt data for current TRAP

Application manual - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 585
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.202 ReadErrData - Gets information about an error

RobotWare - OS
Continued

1.203 ReadRawBytes - Read rawbytes data

Usage
ReadRawBytes is used to read data of type rawbytes from a device opened with
Open\Bin.

Basic examples
The following example illustrates the instruction ReadRawBytes:

Example 1
VAR iodev io_device;

VAR rawbytes raw_data_out;

VAR rawbytes raw_data_in;

VAR num float := 0.2;

VAR string answer;

ClearRawBytes raw_data_out;

PackDNHeader "10", "20 1D 24 01 30 64", raw_data_out;

PackRawBytes float, raw_data_out, (RawBytesLen(raw_data_out)+1)
\Float4;

Open "/FC1:/dsqc328_1", io_device \Bin;

WriteRawBytes io_device, raw_data_out;

ReadRawBytes io_device, raw_data_in \Time:=1;

Close io_device;

UnpackRawBytes raw_data_in, 1, answer \ASCII:=10;

In this example raw_data_out is cleared and then packed with DeviceNet header
and a float with value 0.2.
A device, "/FC1:/dsqc328_1", is opened and the current valid data in
raw_data_out is written to the device. Then the program waits for at most 1
second to read from the device, which is stored in the raw_data_in.
After having closed the device "/FC1:/dsqc328_1", the read data is unpacked
as a string of characters and stored in answer.

Arguments
ReadRawBytes IODevice RawData [\Time]

IODevice

Data type: iodev
IODevice is the identifier of the device from which data shall be read.

RawData

Data type: rawbytes
RawData is the data container that stores read data from IODevice starting at
index 1.

[\Time]

Data type: num

Continues on next page
586 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.203 ReadRawBytes - Read rawbytes data
RobotWare - OS

The max. time for the reading operation (timeout) in seconds (resolution 0,001s).
If this argument is not specified then the max. time is set to 60 seconds. To wait
forever, use the predefined constant WAIT_MAX.
If this time runs out before the reading operation is finished then the error handler
will be called with the error code ERR_DEV_MAXTIME. If there is no error handler
then the execution will be stopped.
The timeout function is also in use during program stop and will be noticed by the
RAPID program at program start.

Program execution
During program execution the data is read from the device indicated by IODevice.
If using WriteRawBytes for field bus commands such as DeviceNet then the field
bus always sends an answer. The answer must be handled in RAPID with the
ReadRawBytes instruction.
The current length of valid bytes in the RawData variable is set to the read number
of bytes. The data starts at index 1 in RawData.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

A file is accessed incorrectlyERR_FILEACC

Time-out when executing the instruction.ERR_DEV_MAXTIME

End of file is detected before all bytes are read in instruction
ReadRawBytes.

ERR_RANYBIN_EOF

Syntax
ReadRawBytes

[IODevice ':='] < variable (VAR) of iodev>' ,'

[RawData ':='] < variable (VAR) of rawbytes> ','

['\' Time ':=' < expression (IN) of num>] ';'

Related information

SeeFor information about

rawbytes - Raw data on page 1689rawbytes data

RawBytesLen - Get the length of rawbytes data
on page 1390

Get the length of rawbytes data

ClearRawBytes - Clear the contents of raw-
bytes data on page 133

Clear the contents of rawbytes data

CopyRawBytes - Copy the contents of raw-
bytes data on page 157

Copy the contents of rawbytes data

PackDNHeader - Pack DeviceNet Header into
rawbytes data on page 503

Pack DeviceNet header into rawbytes data

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 587
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.203 ReadRawBytes - Read rawbytes data

RobotWare - OS
Continued

SeeFor information about

PackRawBytes - Pack data into rawbytes data
on page 506

Pack data into rawbytes data

WriteRawBytes - Write rawbytes data on
page 1082

Write rawbytes data

UnpackRawBytes - Unpack data from rawbytes
data on page 995

Unpack data from rawbytes data

Application manual - Controller software IRC5File and serial channel handling

588 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.203 ReadRawBytes - Read rawbytes data
RobotWare - OS
Continued

1.204 ReadVarArr - Read multiple variables from a sensor device

Usage
ReadVarArr is used to read up to six variables at the same time from a sensor
device. The result is from the same sample.
The sensor must be configured and communicating via the RobotWare option
Sensor Interface.

Basic examples
The following example illustrates the instruction ReadVarArr.

Example 1
CONST num xcoord := 8;

CONST num ycoord := 9;

CONST num zcoord := 10;

VAR pos sensorpos;

VAR sensorvardata readdata{4};

! Connect to the sensor device “sen1:” (defined in sio.cfg).

SenDevice "sen1:";

! Read a cartesian position from the sensor.

readdata{1} := [xcoord, 2, false, 1, 0];

readdata{2} := [ycoord, 2, false, 1, 0];

readdata{3} := [zcoord, 2, false, 1, 0];

! A varNumber of -1 will be ignored

readdata{4} := [-1, 2, false, 1, 0];

ReadVarArr “sen1”, readdata;

sensorpos.x := DnumToNum(readdata{1}.value);

sensorpos.y := DnumToNum(readdata{2}.value);

sensorpos.z := DnumToNum(readdata{3}.value);

The example shows a reading of three variables at the same time. The reading is
done at the same time and is from the same sample from the sensor.

Arguments
ReadVarArr Device, Data, [\TaskName]

Device

Data type: string
The I/O device name configured in sio.cfg for the sensor used.

Data

Data type: sensorvardata
An array variable that refers to a data definition of the variables to be read. The
result value of the reading is also returned within this definition.

[\TaskName]

Data type: string

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 589
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.204 ReadVarArr - Read multiple variables from a sensor device

Sensor Interface

The argument TaskNamemakes it possible to access devices in other RAPID tasks.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Measurement failureSEN_NO_MEAS

Sensor unable to handle commandSEN_NOREADY

General sensor errorSEN_GENERRO

Sensor busySEN_BUSY

Unknown sensorSEN_UNKNOWN

External sensor errorSEN_EXALARM

Internal sensor errorSEN_CAALARM

Sensor temperature errorSEN_TEMP

Illegal communication valueSEN_VALUE

Sensor check failureSEN_CAMCHECK

Communication errorSEN_TIMEOUT

Syntax
ReadVarArr

[Device ':='] <expression(IN) of string> ','

[Data ':='] < array variable {*} (INOUT) of sensorvardata > ','

['\' TaskName ':=' <expression (IN) of string>] ';'

Related information

SeeFor information about

SenDevice - connect to a sensor device on
page 680

Connect to a sensor device

WriteVarArr - Write multiple variables to a
sensor device on page 1089

Write multiple variables to a device

WriteVar - Write variable on page 1086Write a sensor variable

ReadVar - Read variable from a device on
page 1408

Read a sensor variable

WriteBlock - Write block of data to device on
page 1076

Write a sensor data block

ReadBlock - read a block of data from device
on page 577

Read a sensor data block

sensorvardata - Multiple variable setup data for
sensor interface on page 1708

Multiple variable setup data for sensor in-
terface

Technical reference manual - RAPID OverviewConfiguration of sensor communication

590 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.204 ReadVarArr - Read multiple variables from a sensor device
Sensor Interface
Continued

1.205 RemoveAllCyclicBool - Remove all Cyclic bool conditions

Usage
RemoveAllCyclicBool is used to remove the cyclic evaluation of all Cyclic bool
conditions in the task executing the instruction.

Basic examples
The following example illustrates the instruction RemoveAllCyclicBool.

Example 1
PERS bool cyclicflag1;

TASK PERS bool cyclicflag2;

PERS bool mypersbool:=FALSE;

PROC main()

SetupCyclicBool cyclicflag1, di1=1 AND do2=1;

SetupCyclicBool cyclicflag2, di3 AND di4 AND mypersbool=FALSE;

...

RemoveAllCyclicBool;

...

First two cyclic evaluations are setup, then later on both are removed.

Example 2
PERS bool cyclicflag1;

PROC main()

SetupCyclicBool cyclicflag1, di1=1 AND do2=1;

...

RemoveAllCyclicBool;

UNDO

RemoveAllCyclicBool;

ENDPROC

All cyclic evaluations are removed when the program pointer is set to main.
The same behavior can be configured in the system parameters without using an
UNDO handler, see Technical reference manual - System parameters.

Arguments
RemoveAllCyclicBool [\AllTasks]

[\AllTasks]

Data type: switch
This argument is used to remove the cyclic evaluation for all tasks.

Program execution
The behavior of the Cyclic bool functionality can be configured. Formore information
see Application manual - Controller software IRC5 and Technical reference
manual - System parameters.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 591
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.205 RemoveAllCyclicBool - Remove all Cyclic bool conditions

RobotWare - OS

Syntax
RemoveAllCyclicBool

['\'AllTasks] ';'

Related information

SeeFor information about

SetupCyclicBool - Setup a Cyclic bool condition
on page 706

Setup a Cyclic bool condition

RemoveCyclicBool - Remove a Cyclic bool con-
dition on page 593

Remove a Cyclic bool condition

Application manual - Controller software IRC5Cyclically evaluated logical conditions,
Cyclic bool.

Technical referencemanual - System parametersConfiguring Cyclic bool.

592 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.205 RemoveAllCyclicBool - Remove all Cyclic bool conditions
RobotWare - OS
Continued

1.206 RemoveCyclicBool - Remove a Cyclic bool condition

Usage
RemoveCyclicBool is used to remove the cyclic evaluation of a Cyclic bool
condition.

Basic examples
The following examples illustrates the instruction RemoveCyclicBool.

Example 1
PERS bool cyclicflag1;

PROC main()

SetupCyclicBool cyclicflag1, di1=1 AND do2=1;

...

RemoveCyclicBool cyclicflag1;

...

First a cyclic evaluation is setup, then later on it is removed.

Example 2
PERS bool cyclicflag1;

PROC main()

SetupCyclicBool cyclicflag1, di1=1 AND do2=1;

...

RemoveCyclicBool "cyclicflag1";

...

First a cyclic evaluation is setup, then later on it is removed by using the name of
the persistent boolean variable.

Arguments
RemoveCyclicBool Flag | Name

Flag

Data type: bool
The persistent boolean variable that stores the value of the logical condition.

Name

Data type: string
The name of the persistent boolean variable that stores the value of the logical
condition.

Program execution
The behavior of the Cyclic bool functionality can be configured. Formore information
see Application manual - Controller software IRC5 and Technical reference
manual - System parameters.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 593
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.206 RemoveCyclicBool - Remove a Cyclic bool condition

RobotWare - OS

Syntax
RemoveCyclicBool

[Flag ':='] <persistent (PERS) of bool>

| [Name ':='] <expression (IN) of string> ';'

Related information

SeeFor information about

IsCyclicBool - Checks if a persistent variable is
a Cyclic bool on page 1311

Check if a persistent variable is a Cyclic
bool

SetupCyclicBool - Setup a Cyclic bool condition
on page 706

Setup a Cyclic bool condition

RemoveAllCyclicBool - Remove all Cyclic bool
conditions on page 591

Remove all Cyclic bool conditions

Application manual - Controller software IRC5Cyclically evaluated logical conditions,
Cyclic bool.

Technical referencemanual - System parametersConfiguring Cyclic bool.

594 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.206 RemoveCyclicBool - Remove a Cyclic bool condition
RobotWare - OS
Continued

1.207 RemoveDir - Delete a directory

Usage
RemoveDir is used to remove a directory.
The user must have write and execute permission for the directory and the directory
must be empty.

Basic examples
The following example illustrates the instruction RemoveDir:

Example 1
RemoveDir "HOME:/mydir";

In this example the mydir directory under HOME: is deleted.

Arguments
RemoveDir Path

Path

Data type: string
The name of the directory to be removed, specified with full or relative path.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The directory does not exist, or the directory is not empty,
or the user does not have write and execute permission to
the library.

ERR_FILEACC

Syntax
RemoveDir

[Path':='] < expression (IN) of string>';'

Related information

SeeFor information about

dir - File directory structure on page 1610Directory

OpenDir - Open a directory on page 501Open a directory

ReadDir - Read next entry in a directory on
page 1394

Read a directory

CloseDir - Close a directory on page 140Close a directory

MakeDir - Create a new directory on page372Make a directory

RenameFile - Rename a file on page 600Rename a file

RemoveFile - Delete a file on page 597Remove a file

CopyFile - Copy a file on page 155Copy a file

IsFile - Check the type of a file on page 1314Check file type

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 595
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.207 RemoveDir - Delete a directory

RobotWare - OS

SeeFor information about

FileSize - Retrieve the size of a file on
page 1251

Check file size

FSSize - Retrieve the size of a file system on
page 1257

Check file system size

Applicationmanual - Controller software IRC5File and serial channel handling

596 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.207 RemoveDir - Delete a directory
RobotWare - OS
Continued

1.208 RemoveFile - Delete a file

Usage
RemoveFile is used to remove a file. The user must have write and execute
permission for the directory where the file resides and the user must have write
permission for the file itself.

Basic examples
The following example illustrates the instruction RemoveFile:

Example 1
RemoveFile "HOME:/mydir/myfile.log";

In this example the file myfile.log in directory mydir on disk HOME: is deleted.

Arguments
RemoveFile Path

Path

Data type: string
The name of the file to be deleted, specified with full or relative path.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

A file is accessed incorrectly.ERR_FILEACC

Syntax
RemoveFile

[Path':='] < expression (IN) of string>';'

Related information

SeeFor information about

MakeDir - Create a new directory on page372Make a directory

RemoveDir - Delete a directory on page 595Remove a directory

RenameFile - Rename a file on page 600Rename a file

CopyFile - Copy a file on page 155Copy a file

IsFile - Check the type of a file on page 1314Check file type

FileSize - Retrieve the size of a file on
page 1251

Check file size

FSSize - Retrieve the size of a file system on
page 1257

Check file system size

Applicationmanual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 597
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.208 RemoveFile - Delete a file

RobotWare - OS

1.209 RemoveSuperv - Remove condition for one signal

Usage
RemoveSuperv is used to remove conditions added by SetupSuperv from
supervision.

Basic example
PROC main()

InitSuperv;

SetupSuperv diWR_EST, ACT, SUPERV_MAIN \ErrIndSig:= do_WR_Sup;

SetupSuperv diGA_EST, ACT, SUPERV_MAIN;

CapL p2, v100, cdata1, weavestart, weave,fine, tWeldGun;

RemoveSuperv di_Arc_Sup, ACT, SUPERV_START;

ENDPROC

Removes the signal di_Arc_Sup from the START list.

Arguments
RemoveSuperv Signal Condition Listtype

Signal
Data type: signaldi
Digital signal to remove from supervision list.

Condition
Data type: num
The name representing one of the following available conditions:

Used for status supervision. Expected signal status during supervi-
sion: active. If the signal becomes passive, supervision triggers.

ACT:

Used for status supervision. Expected signal status during supervi-
sion: passive. If the signal becomes active, supervision triggers.

PAS:

Used for handshake supervision. Expected signal status at the end
of supervision: active. If the signal does not become active within
the chosen timeout, supervision triggers.

POS_EDGE:

Used for handshake supervision. Expected signal status at the end
of supervision: passive. If the signal does not become passive
within the chosen timeout, supervision triggers.

NEG_EDGE:

Listtype
Data type: num
The name representing the number of the different lists (for example, phases in
the process):

• SUPERV_PRE
• SUPERV_PRE_START
• SUPERV_END_PRE
• SUPERV_START
• SUPERV_MAIN
• SUPERV_END_MAIN

Continues on next page
598 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.209 RemoveSuperv - Remove condition for one signal
Continuous Application Platform (CAP)

• SUPERV_START_POST1
• SUPERV_POST1
• SUPERV_END_POST1
• SUPERV_START_POST2
• SUPERV_POST2
• SUPERV_END_POST2

Syntax
RemoveSuperv

[Signal ':='] < variable (VAR) of signaldi > ','

[Condition ':='] < variable (IN) of num > ','

[Listtype ':='] < variable (IN) of num >';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

InitSuperv - Reset all supervision for CAP on
page 305

InitSuperv instruction

SetupSuperv - Setup conditions for signal
supervision in CAP on page 709

SetupSuperv instruction

Technical reference manual - RAPID Instructions, Functions and Data types 599
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.209 RemoveSuperv - Remove condition for one signal

Continuous Application Platform (CAP)
Continued

1.210 RenameFile - Rename a file

Usage
RenameFile is used to give a new name to an existing file. It can also be used to
move a file from one place to another in the directory structure.

Basic examples
The following example illustrates the instruction RenameFile:

Example 1
RenameFile "HOME:/myfile", "HOME:/yourfile";

The file myfile is given the name yourfile.
RenameFile "HOME:/myfile", "HOME:/mydir/yourfile";

The file myfile is given the name yourfile and is moved to the directory mydir.

Arguments
RenameFile OldPath NewPath

OldPath

Data type:string
The complete path of the file to be renamed.

NewPath

Data type:string
The complete path of the renamed file.

Program execution
The file specified in OldPath will be given the name specified in NewPath. If the
path in NewPath is different from the path in OldPath then the file will also be
moved to the new location.

Error Handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The file specified in OldPath does not exist.ERR_FILEACC

The file specified in NewPath already exists.ERR_FILEEXIST

Syntax
RenameFile

[OldPath' :='] < expression (IN) of string > ','

[NewPath' :='] < expression (IN) of string >';'

Related information

SeeFor information about

MakeDir - Create a new directory on page372Make a directory

Continues on next page
600 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.210 RenameFile - Rename a file
RobotWare - OS

SeeFor information about

RemoveDir - Delete a directory on page 595Remove a directory

RemoveFile - Delete a file on page 597Remove a file

CopyFile - Copy a file on page 155Copy a file

IsFile - Check the type of a file on page 1314Check file type

FileSize - Retrieve the size of a file on
page 1251

Check file size

FSSize - Retrieve the size of a file system on
page 1257

Check file system size

Applicationmanual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 601
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.210 RenameFile - Rename a file

RobotWare - OS
Continued

1.211 Reset - Resets a digital output signal

Usage
Reset is used to reset the value of a digital output signal to zero.

Basic examples
The following examples illustrate the instruction Reset:

Example 1
Reset do15;

The signal do15 is set to 0.

Example 2
Reset weld;

The signal weld is set to 0.

Arguments
Reset Signal

Signal

Data type: signaldo
The name of the signal to be reset to zero.

Program execution
The true value depends on the configuration of the signal. If the signal is inverted
in the system parameters then this instruction causes the physical channel to be
set to 1.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
Reset

[Signal ':='] < variable (VAR) of signaldo > ';'

Related information

SeeFor information about

Set - Sets a digital output signal on page 682Setting a digital output signal

Continues on next page
602 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.211 Reset - Resets a digital output signal
RobotWare - OS

SeeFor information about

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical reference manual - System paramet-
ers

Configuration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 603
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.211 Reset - Resets a digital output signal

RobotWare - OS
Continued

1.212 ResetAxisDistance - Reset the traversed distance information for the axis

Usage
ResetAxisDistance is used to reset the traversed distance information for the
axis.

Basic examples
The following examples illustrate the instruction ResetAxisDistance.

Example 1
ResetAxisDistance Track,1;

The traversed distance information for axis 1 on mechanical unit Track will be
reset.

Example 2
PERS dnum distanceLimit := 1000;

PROC main()

IF GetAxisDistance(Track,1) > distanceLimit THEN

ErrWrite \I, ”Distance counter limit reached”, ”Distance counter
limit for Track has been reached.”;

DoMaintenance();

ENDIF

ENDPROC

PROC DoMaintenance()

...

ResetAxisDistance Track, 1;

ErrWrite \I, ”Distance counter reset”, ”Distance counter for
Track has been reset.”;

ENDPROC

The example describes how ResetAxisDistance can be used together with
GetAxisDistance to check if it is time for maintenance of an axis.

Arguments
ResetAxisDistance MechUnit AxisNo

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

AxisNo

Data type: num
The number of the axis for which the traversed distance is to be reset.

Program execution
Resets the traversed distance information for the selected axis.

Continues on next page
604 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.212 ResetAxisDistance - Reset the traversed distance information for the axis
RobotWare - OS

Syntax
ResetAxisDistance

[MechUnit ':='] < variable (VAR) of mecunit > ','

[AxisNo ':='] < variable (VAR) of num > ';'

Related information

SeeFor information about

ResetAxisMoveTime - Reset the move time
counter of the axis on page 606

ResetAxisMoveTime

GetAxisDistance - Get the traversed distance
counter of the axis on page 1260

GetAxisDistance

GetAxisMoveTime - Get the move time counter
of the axis on page 1262

GetAxisMoveTime

Technical reference manual - RAPID Instructions, Functions and Data types 605
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.212 ResetAxisDistance - Reset the traversed distance information for the axis

RobotWare - OS
Continued

1.213 ResetAxisMoveTime - Reset the move time counter of the axis

Usage
ResetAxisMoveTime is used to reset the move time information for the axis.

Basic examples
The following examples illustrate the instruction ResetAxisMoveTime.

Example 1
ResetAxisMoveTime Track,1;

The move time information for axis 1 on mechanical unit Track will be reset.

Example 2
PERS dnum timeLimit := 1000;

PROC main()

IF GetAxisMoveTime(Track,1) > timeLimit THEN

ErrWrite \I, ”Time counter limit reached”, ”Time counter limit
for Track has been reached.”;

DoMaintenance();

ENDIF

ENDPROC

PROC DoMaintenance()

...

ResetAxisMoveTime Track, 1;

ErrWrite \I, ”Time counter reset”, ”Time counter for Track has
been reset.”;

ENDPROC

The example describes how ResetAxisMoveTime can be used together with
GetAxisMoveTime to check if it is time for maintenance of an axis.

Arguments
ResetAxisMoveTime MechUnit AxisNo

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

AxisNo

Data type: num
The number of the axis for which the move time is to be reset.

Program execution
Resets the move time information for the selected axis.

Continues on next page
606 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.213 ResetAxisMoveTime - Reset the move time counter of the axis

Syntax
ResetAxisMoveTime

[MechUnit ':='] < variable (VAR) of mecunit > ','

[AxisNo ':='] < variable (VAR) of num > ';'

Related information

SeeFor information about

ResetAxisDistance - Reset the traversed distance
information for the axis on page 604

ResetAxisDistance

GetAxisDistance - Get the traversed distance
counter of the axis on page 1260

GetAxisDistance

GetAxisMoveTime - Get the move time counter
of the axis on page 1262

GetAxisMoveTime

Technical reference manual - RAPID Instructions, Functions and Data types 607
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.213 ResetAxisMoveTime - Reset the move time counter of the axis

Continued

1.214 ResetPPMoved - Reset state for the program pointer moved in manual mode

Usage
ResetPPMoved reset state for the program pointer moved in manual mode.
PPMovedInManMode returns TRUE if the user has moved the program pointer
while the controller is in manual mode - that is, the operator key is at Man Reduced
Speed or Man Full Speed. The program pointer moved state is reset when the key
is switched from Auto to Man, or when using the instruction ResetPPMoved.

Basic examples
The following example illustrates the instruction ResetPPMoved:

Example 1
IF PPMovedInManMode() THEN

WarnUserOfPPMovement;

! DO THIS ONLY ONCE

ResetPPMoved;

DoJob;

ELSE

DoJob;

ENDIF

Program execution
Resets state for the program pointer moved in manual mode for current program
task.

Syntax
ResetPPMoved';'

Related information

SeeFor information about

PPMovedInManMode - Test whether the
program pointer is moved in manual mode
on page 1385

Test whether program pointer has been
moved in manual mode

608 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.214 ResetPPMoved - Reset state for the program pointer moved in manual mode
RobotWare - OS

1.215 ResetRetryCount - Reset the number of retries

Usage
ResetRetryCount is used to reset the number of retries that has been done from
an error handler. The maximum number of retries that can be done is defined in
the configuration.

Basic examples
The following example illustrates the instruction ResetRetryCount:

Example 1
VAR num myretries := 0;

...

ERROR

IF myretries > 2 THEN

ResetRetryCount;

myretries := 0;

TRYNEXT;

ENDIF

myretries:= myretries + 1;

RETRY;

...

This programwill retry the faulty instruction 3 times and then try the next instruction.
The internal system retry counter is reset before trying the next instruction (even
if this is done by the system at TRYNEXT).

Program execution
For every RETRYmade from an error handler an internal system counter will check
that the maximum number of retries, specified in the configuration, isn’t exceeded.
Executing the instruction ResetRetryCount will reset the counter and make it
possible to redo a maximum number of retries again.

Syntax
ResetRetryCount ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewError handlers

RETRY - Resume execution after an error on page612Resume execution after an error

Technical reference manual - System parametersConfigure maximum number of re-
tries

RemainingRetries - Remaining retries left to do on
page 1412

Number of remaining retries

Technical reference manual - RAPID Instructions, Functions and Data types 609
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.215 ResetRetryCount - Reset the number of retries

RobotWare - OS

1.216 RestoPath - Restores the path after an interrupt

Usage
RestoPath is used to restore a path that was stored at a previous stage using the
instruction StorePath.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction RestoPath:
See also More examples below.

Example 1
RestoPath;

Restores the path that was stored earlier using StorePath.

Program execution
The current movement path of the robot and the external axes are deleted and the
path stored earlier using StorePath is restored. Note that nothing moves until
the instruction StartMove is executed or a return is made using RETRY from an
error handler.

More examples
More examples of how to use the instruction RestoPath are illustrated below.

Example 1
ArcL p100, v100, seam1, weld5 \Weave:=weave1, z10, gun1;

...

ERROR

IF ERRNO=AW_WELD_ERR THEN

gun_cleaning;

StartMoveRetry;

ENDIF

...

PROC gun_cleaning()

VAR robtarget p1;

StorePath;

p1 := CRobT();

MoveL pclean, v100, fine, gun1;

...

MoveL p1, v100, fine, gun1;

RestoPath;

ENDPROC

In the event of a welding error the program execution continues in the error handler
of the routine which in turn calls gun_cleaning. The movement path being
executed at the time is then stored and the robot moves to the position pclean
where the error is rectified. When this has been done, the robot returns to the
position where the error occurred, p1, and stores the original movement once

Continues on next page
610 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.216 RestoPath - Restores the path after an interrupt
RobotWare - OS

again. The weld then automatically restarts, meaning that the robot is first reversed
along the path before welding starts and ordinary program execution can continue.

Limitations
Only the movement path data is stored with the instruction StorePath. If the user
wants to order movements on the new path level then the actual stop positionmust
be stored directly after StorePath and before RestoPath make a movement to
the stored stop position on the path.
If this instruction is preceded by a move instruction then that move instruction
must be programmedwith a stop point (zonedata fine), not a fly-by point, otherwise
restart after power failure will not be possible.
RestoPath cannot be executed in a RAPID routine connected to any of following
special system events: PowerOn, Stop, QStop, Restart or Step.

Syntax
RestoPath';'

Related information

SeeFor information about

StorePath - Stores the path when an interrupt occurs on
page 816

Storing paths

StorePath - Stores the path when an interrupt occurs on
page 816

More examples

PathRecStart - Start the path recorder on page 523
SyncMoveSuspend - Set independent-semicoordinated
movements on page 840

Technical reference manual - RAPID Instructions, Functions and Data types 611
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.216 RestoPath - Restores the path after an interrupt

RobotWare - OS
Continued

1.217 RETRY - Resume execution after an error

Usage
The RETRY instruction is used to resume program execution after an error starting
with (re-executing) the instruction that caused the error.

Basic examples
The following example illustrates the instruction RETRY:

Example 1
reg2 := reg3/reg4;

...

ERROR

IF ERRNO = ERR_DIVZERO THEN

reg4 :=1;

RETRY;

ENDIF

An attempt is made to divide reg3 by reg4. If reg4 is equal to 0 (division by zero)
then a jump is made to the error handler, which initializes reg4. The RETRY
instruction is then used to jump from the error handler and another attempt is made
to complete the division.

Program execution
Program execution continues with (re-executes) the instruction that caused the
error.

Error handling
If themaximumnumber of retries (4 retries) is exceeded then the program execution
stops with an error message. The maximum number of retries can be configured
in System Parameters (type General RAPID).

Limitations
The instruction can only exist in a routine’s error handler. If the error was created
using a RAISE instruction then program execution cannot be restarted with a RETRY
instruction. Then the instruction TRYNEXT should be used.

Syntax
RETRY ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewError handlers

Technical reference manual - System paramet-
ers

Configure maximum number of retries

TRYNEXT - Jumps over an instruction which
has caused an error on page 965

Continue with the next instruction

612 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.217 RETRY - Resume execution after an error
RobotWare - OS

1.218 RETURN - Finishes execution of a routine

Usage
RETURN is used to finish the execution of a routine. If the routine is a function then
the function value is also returned.

Basic examples
The following examples illustrate the instruction RETURN:

Example 1
errormessage;

Set do1;

...

PROC errormessage()

IF di1=1 THEN

RETURN;

ENDIF

TPWrite "Error";

ENDPROC

The errormessage procedure is called. If the procedure arrives at the RETURN
instruction then program execution returns to the instruction following the procedure
call, Set do 1.

Example 2
FUNC num abs_value(num value)

IF value<0 THEN

RETURN -value;

ELSE

RETURN value;

ENDIF

ENDFUNC

The function returns the absolute value of a number.

Arguments
RETURN [Return value]

Return value

Data type: According to the function declaration.
The return value of a function.
The return value must be specified in a RETURN instruction present in a function.
If the instruction is present in a procedure or trap routine then a return value shall
not be specified.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 613
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.218 RETURN - Finishes execution of a routine

RobotWare - OS

Program execution
The result of the RETURN instruction may vary depending on the type of routine it
is used in:

• Main routine: If a program has runmode single cycle then the program stops.
Otherwise, program execution continues with the first instruction of the main
routine.

• Procedure: Program execution continues with the instruction following the
procedure call.

• Function: Returns the value of the function.
• Trap routine: Program execution continues fromwhere the interrupt occurred.
• Error handler in a procedure: Program execution continues with the routine

that called the routine with the error handler (with the instruction following
the procedure call).

• Error handler in a function: The function value is returned.

Syntax
RETURN [<expression>]';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewFunctions and Procedures

Technical reference manual - RAPID OverviewTrap routines

Technical reference manual - RAPID OverviewError handlers

614 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.218 RETURN - Finishes execution of a routine
RobotWare - OS
Continued

1.219 Rewind - Rewind file position

Usage
Rewind sets the file position to the beginning of the file.

Basic examples
The following example illustrates the instruction Rewind:

Example 1
Rewind iodev1;

The file referred to by iodev1 will have the file position set to the beginning of the
file.

Arguments
Rewind IODevice

IODevice

Data type: iodev
Name (reference) of the file to be rewound.

Program execution
The specified file is rewound to the beginning.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Limitations
If the used file has been opened with a \Bin or \Bin \Append switch, a Rewind
before any type of a Write instruction will be ineffective. The writing will be done
at the end of the file.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

A file is accessed incorrectly.ERR_FILEACC

Syntax
Rewind [IODevice ':='] <variable (VAR) of iodev>';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening, etc. of files

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 615
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.219 Rewind - Rewind file position

RobotWare - OS

1.220 RMQEmptyQueue - Empty RAPID Message Queue

Usage
RMQEmptyQueue empties the RAPID Message Queue (RMQ) in the task that is
executing the instruction.

Basic examples
The following example illustrates the instruction RMQEmptyQueue:

Example
RMQEmptyQueue;

The RMQEmptyQueue instruction removes all messages fromRMQ in the executing
task.

Program execution
TheRAPIDMessageQueue owned by the executing task is emptied. The instruction
can be used on all execution levels.

Limitations
RMQEmptyQueue only empties the RAPID Message Queue in the task that is
executing the instruction. All other RAPID Message Queues are left as is.

Syntax
RMQEmptyQueue ';'

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

rmqmessage - RAPID Message Queue mes-
sage on page 1699.

rmqmessage data type

RMQSendMessage - Send an RMQ data
message on page 632.

Send data to the queue of a RAPID task

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636.

Send data to the queue of a RAPID task and
wait for an answer from the client

RMQFindSlot - Find a slot identity from the
slot name on page 618.

Find the identity number of a RAPIDMessage
Queue task

RMQGetMsgHeader - Get header information
from an RMQ message on page 626.

Extract the header data from an rmqmessage

RMQGetMsgData - Get the data part from an
RMQ message on page 623.

Extract the data from an rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322.

Order and enable interrupts for a specific
data type

RMQGetSlotName - Get the name of an RMQ
client on page 1413.

Get the slot name from a specified slot iden-
tity

Continues on next page
616 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.220 RMQEmptyQueue - Empty RAPID Message Queue
RobotWare - OS

SeeFor information about

RMQReadWait - Returnsmessage fromRMQ
on page 629.

Receive message from RMQ

RMQGetMessage - Get an RMQmessage on
page 620.

Get the first message from a RAPIDMessage
Queue

Technical reference manual - RAPID Instructions, Functions and Data types 617
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.220 RMQEmptyQueue - Empty RAPID Message Queue

RobotWare - OS
Continued

1.221 RMQFindSlot - Find a slot identity from the slot name

Usage
RMQFindSlot (RAPID Message Queue Find Slot) is used to find the slot identity
to an RMQ configured for a RAPID task, or the slot identity to a Robot Application
Builder client.

Basic examples
The following example illustrates the instruction RMQFindSlot:

Example 1
VAR rmqslot myrmqslot;

RMQFindSlot myrmqslot, "RMQ_T_ROB2";

Get the identity number for the RMQ"RMQ_T_ROB2" configured for the RAPID task
"T_ROB2".

Arguments
RMQFindSlot Slot Name

Slot

Data type: rmqslot
The variable in which the numeric identifier is returned.

Name

Data type: string
The name of the client to find the identity number for. The name must be right
regarding small and big letters. If the RAPID task is named T_ROB1, and using
the name RMQ_t_rob1 for the RMQ, this will end up in a error (see error handling
chapter below.)

Program execution
The RMQFindSlot instruction is used to find the slot identity for a named RMQ or
Robot Application Builder client.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The given slot name is not valid or not found.ERR_RMQ_NAME

Syntax
RMQFindSlot

[Slot ':='] < variable (VAR) of rmqslot > ','

[Name ':='] < expression (IN) of string > ';'

Continues on next page
618 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.221 RMQFindSlot - Find a slot identity from the slot name
FlexPendant Interface, PC Interface, or Multitasking

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

RMQSendMessage - Send an RMQ data
message on page 632

Send data to the queue of a RAPID task

RMQGetMessage - Get an RMQmessage on
page 620

Get the first message from a RAPIDMessage
Queue.

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636

Send data to the queue of a RAPID task and
wait for an answer from the client

RMQGetMsgHeader - Get header information
from an RMQ message on page 626

Extract the header data from a rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322

Order and enable interrupts for a specific
data type

RMQGetMsgData - Get the data part from an
RMQ message on page 623

Extract the data from a rmqmessage

RMQGetSlotName - Get the name of an RMQ
client on page 1413

Get the slot name from a specified slot iden-
tity

rmqslot - Identity number of an RMQ client
on page 1700

RMQ Slot

Technical reference manual - RAPID Instructions, Functions and Data types 619
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.221 RMQFindSlot - Find a slot identity from the slot name

FlexPendant Interface, PC Interface, or Multitasking
Continued

1.222 RMQGetMessage - Get an RMQ message

Usage
RMQGetMessage (RAPID Message Queue Get Message) is used to fetch the first
RMQ message from the queue for the actual program task.

Basic examples
The following example illustrates the instruction RMQGetMessage:
See also More examples on page 620.

Example 1
TRAP msghandler

VAR rmqmessage myrmqmsg;

RMQGetMessage myrmqmsg;

...

ENDTRAP

In the TRAP routine msghandler the rmqmessage is fetched from the RMQ and
copied to the variable myrmqmsg.

Arguments
RMQGetMessage Message

Message

Data type: rmqmessage
Variable for storage of the RMQ message.
Themaximum size of the data that can be received in a rmqmessage is about 3000
bytes.

Program execution
The instruction RMQGetMessage is used to get the first message from the queue
of the task executing the instruction.If there is a message, it will be copied to the
Message variable, and then removed from the queue to make room for new
messages. The instruction is only supported on the TRAP level.

More examples
More examples of how to use the instruction RMQGetMessage are illustrated below.

Example 1
RECORD mydatatype

int x;

int y;

ENDRECORD

VAR intnum msgreceive;

VAR mydatatype mydata;

PROC main()

! Setup interrupt

CONNECT msgreceive WITH msghandler;

Continues on next page
620 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.222 RMQGetMessage - Get an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

! Order cyclic interrupt to occur for data type mydatatype

IRMQMessage mydata, msgreceive;

WHILE TRUE DO

! Performing cycle

...

ENDWHILE

ENDPROC

TRAP msghandler

VAR rmqmessage message;

VAR rmqheader header;

! Get the RMQ message

RMQGetMessage message;

! Copy RMQ header information

RMQGetMsgHeader message \Header:=header;

IF header.datatype = "mydatatype" AND header.ndim = 0 THEN

! Copy the data from the message

RMQGetMsgData message, mydata;

ELSE

TPWrite "Received a type not handled or with wrong dimension";

ENDIF

ENDTRAP

When a new message is received, the TRAP routine msghandler is executed and
the newmessage is copied to the variable message (instruction RMQGetMessage).
Then the RMQ header data is copied (instruction RMQGetMsgHeader). If the
message is of the expected data type and has the right dimension, the data is
copied to the variable mydata (instruction RMQGetMsgData).

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

No message for the moment in the queue. If executing
RMQGetMessage twice in a TRAP routine, this can happen.
The error can also be generated if there is a power failure
between the TRAP being ordered and the instruction
RMQGetMessage being executed. The messages in the RMQ
will be lost at power fail.

ERR_RMQ_NOMSG

Invalid message, likely sent from other client than a RAPID
task. This may for instance happen if a PC application sends
a corrupt message.

ERR_RMQ_INVMSG

Limitations
RMQGetMessage is not supported on the user execution level (i.e. in service
routines) or normal execution level.
The maximum size of the data that can be received in a rmqmessage is about 3000
bytes.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 621
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.222 RMQGetMessage - Get an RMQ message

FlexPendant Interface, PC Interface, or Multitasking
Continued

A recommendation is to reuse a variable of the data type rmqmessage as much
as possible to save RAPID memory.

Syntax
RMQGetMessage

[Message ':='] < variable (VAR) of rmqmessage > ';'

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

RMQFindSlot - Find a slot identity from the
slot name on page 618

Find the identity number of a RAPIDMessage
Queue task

RMQSendMessage - Send an RMQ data
message on page 632

Send data to the queue of a RAPID task

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636

Send data to the queue of a RAPID task and
wait for an answer from the client

RMQGetMsgHeader - Get header information
from an RMQ message on page 626

Extract the header data from an rmqmessage

RMQGetMsgData - Get the data part from an
RMQ message on page 623

Extract the data from an rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322

Order and enable interrupts for a specific
data type

RMQGetSlotName - Get the name of an RMQ
client on page 1413

Get the slot name from a specified slot iden-
tity

rmqmessage - RAPID Message Queue mes-
sage on page 1699

RMQ Message

622 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.222 RMQGetMessage - Get an RMQ message
FlexPendant Interface, PC Interface, or Multitasking
Continued

1.223 RMQGetMsgData - Get the data part from an RMQ message

Usage
RMQGetMsgData (RAPID Message Queue Get Message Data) is used to get the
actual data within the RMQ message.

Basic examples
The following example illustrates the instruction RMQGetMsgData:
See alsoRMQGetMsgData - Get the data part from an RMQmessage on page623.

Example 1
VAR rmqmessage myrmqmsg;

VAR num data;

...

RMQGetMsgData myrmqmsg, data;

! Handle data

Data of the data type num is fetched from the variable myrmqmsg and stored in the
variable data.

Arguments
RMQGetMsgData Message Data

Message

Data type: rmqmessage
Varible containing the received RMQ message.

Data

Data type: anytype
Variable of the expected data type, used for storage of the received data.

Program execution
The instruction RMQGetMsgData is used to get the actual data within the RMQ
message, convert it from ASCII character format to binary data, compile the data
to see if it is possible to store it in the variable specified in the instruction, and then
copy it to the variable.

More examples
More examples of how to use the instruction RMQGetMsgData are illustrated below.

Example 1
RECORD mydatatype

int x;

int y;

ENDRECORD

VAR intnum msgreceive;

VAR mydatatype mydata;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 623
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.223 RMQGetMsgData - Get the data part from an RMQ message

FlexPendant Interface, PC Interface, or Multitasking

PROC main()

! Setup interrupt

CONNECT msgreceive WITH msghandler;

! Order cyclic interrupt to occur for data type mydatatype

IRMQMessage mydata, msgreceive;

WHILE TRUE DO

! Performing cycle

...

ENDWHILE

ENDPROC

TRAP msghandler

VAR rmqmessage message;

VAR rmqheader header;

! Get the RMQ message

RMQGetMessage message;

! Copy RMQ header information

RMQGetMsgHeader message \Header:=header;

IF header.datatype = "mydatatype" AND header.ndim = 0 THEN

! Copy the data from the message

RMQGetMsgData message, mydata;

ELSE

TPWrite "Received a type not handled or with wrong dimension";

ENDIF

ENDTRAP

When a new message is received, the TRAP routine msghandler is executed and
the newmessage is copied to the variable message (instruction RMQGetMessage).
Then the RMQ header data is copied (instruction RMQGetMsgHeader). If the
message is of the expected data type and has the right dimension, the data is
copied to the variable mydata (instruction RMQGetMsgData).

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The received message and the data type used in argument
Data does not have the same data type.

ERR_RMQ_VALUE

The data types are equal, but the dimensions differ between
the data in the message and the variable used in argument
Data.

ERR_RMQ_DIM

The size of the received data is bigger than the maximum
configured size for the RMQ for the receiving task.

ERR_RMQ_MSGSIZE

This error will be thrown if the message is invalid. This may for
instance happen if a PC application sends a corrupt message.

ERR_RMQ_INVMSG

Continues on next page
624 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.223 RMQGetMsgData - Get the data part from an RMQ message
FlexPendant Interface, PC Interface, or Multitasking
Continued

Syntax
RMQGetMsgData

[Message ':='] < variable (VAR) of rmqmessage > ','

[Data ':='] < reference (VAR) of anytype > ';'

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

RMQFindSlot - Find a slot identity from the
slot name on page 618

Find the identity number of a RAPIDMessage
Queue task

RMQSendMessage - Send an RMQ data
message on page 632

Send data to the queue of a RAPID task

RMQGetMessage - Get an RMQmessage on
page 620

Get the first message from a RAPIDMessage
Queue.

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636

Send data to the queue of a RAPID task and
wait for an answer from the client

RMQGetMsgHeader - Get header information
from an RMQ message on page 626

Extract the header data from an rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322

Order and enable interrupts for a specific
data type

RMQGetSlotName - Get the name of an RMQ
client on page 1413

Get the slot name from a specified slot iden-
tity

rmqmessage - RAPID Message Queue mes-
sage on page 1699

RMQ Message

Technical reference manual - RAPID Instructions, Functions and Data types 625
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.223 RMQGetMsgData - Get the data part from an RMQ message

FlexPendant Interface, PC Interface, or Multitasking
Continued

1.224 RMQGetMsgHeader - Get header information from an RMQ message

Usage
RMQGetMsgHeader (RAPIDMessage Queue Get Message Header) get the header
information within the received RMQ message and store it in variables of type
rmqheader, rmqslot or num.

Basic examples
The following examples illustrate the instruction RMQGetMsgHeader:
See also More examples on page 627.

Example 1
VAR rmqmessage myrmqmsg;

VAR rmqheader myrmqheader;

...

RMQGetMsgHeader myrmqmsg, \Header:=myrmqheader;

In this example the variable myrmqheader is filled with data copied from the
rmqheader part of the variable myrmqmsg.

Example 2
VAR rmqmessage rmqmessage1;

VAR rmqheader rmqheader1;

VAR rmqslot rmqslot1;

VAR num userdef := 0;

...

RRMQGetMsgHeader rmqmessage1 \Header:=rmqheader1 \SenderId:=rmqslot1
\UserDef:=userdef;

In this example the variables rmqheader1, rmqslot1 and userdef are filled with
data copied from the variable rmqmessage1.

Arguments
RMQGetMsgHeader Message [\Header] [\SenderId] [\UserDef]

Message

Data type: rmqmessage
Variable containing the received RMQ message from which the information about
the message should be copied.

[\Header]
Data type: rmqheader
Variable for storage of the RMQ header information that is copied from the variable
specified as the parameter Message.

[\SenderId]

Data type: rmqslot
Variable for storage of the sender identity information that is copied from the
variable specified as the parameter Message.

Continues on next page
626 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.224 RMQGetMsgHeader - Get header information from an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

[\UserDef]
User Defined data
Data type: num
Variable for storage of user-defined data that is copied from the variable specified
as the parameter Message. To get any valid data in this variable, the sender needs
to specify that this should be included when sending an RMQ message. If it is not
used, the value will be set to -1.

Program execution
The instruction RMQGetMsgHeader gets the header information within the received
RMQ message and copies it to to variables of type rmqheader, rmqslot or num
depending on what arguments are used.

More examples
More examples of how to use the instruction RMQGetMsgHeader are illustrated
below.

Example 1
RECORD mydatatype

int x;

int y;

ENDRECORD

VAR intnum msgreceive;

VAR mydatatype mydata;

PROC main()

! Setup interrupt

CONNECT msgreceive WITH msghandler;

! Order cyclic interrupt to occur for data type mydatatype

IRMQMessage mydata, msgreceive;

WHILE TRUE DO

! Performing cycle

...

ENDWHILE

ENDPROC

TRAP msghandler

VAR rmqmessage message;

VAR rmqheader header;

! Get the RMQ message

RMQGetMessage message;

! Copy RMQ header information

RMQGetMsgHeader message \Header:=header;

IF header.datatype = "mydatatype" AND header.ndim = 0 THEN

! Copy the data from the message

RMQGetMsgData message, mydata;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 627
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.224 RMQGetMsgHeader - Get header information from an RMQ message

FlexPendant Interface, PC Interface, or Multitasking
Continued

ELSE

TPWrite "Received a type not handled or with wrong dimension";

ENDIF

ENDTRAP

When a new message is received, the TRAP routine msghandler is executed and
the newmessage is copied to the variable message (instruction RMQGetMessage).
Then the RMQ header data is copied (instruction RMQGetMsgHeader). If the
message is of the expected data type and has the right dimension, the data is
copied to the variable mydata (instruction RMQGetMsgData).

Syntax
RMQGetMsgHeader

[Message ':='] < variable (VAR) of rmqmessage > ','

['\' Header ':=' < variable (VAR) of rmqheader >

['\' SenderId ':=' < variable (VAR) of rmqslot >

['\' UserDef ':=' < variable (VAR) of num > ';'

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

RMQFindSlot - Find a slot identity from the
slot name on page 618

Find the identity number of a RAPIDMessage
Queue task

RMQSendMessage - Send an RMQ data
message on page 632

Send data to the queue of a RAPID task

RMQGetMessage - Get an RMQmessage on
page 620

Get the first message from a RAPIDMessage
Queue.

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636

Send data to the queue of a RAPID task and
wait for an answer from the client

RMQGetMsgData - Get the data part from an
RMQ message on page 623

Extract the data from an rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322

Order and enable interrupts for a specific
data type

RMQGetSlotName - Get the name of an RMQ
client on page 1413

Get the slot name from a specified slot iden-
tity

rmqslot - Identity number of an RMQ client
on page 1700

RMQ Slot

rmqmessage - RAPID Message Queue mes-
sage on page 1699

RMQ Header

rmqheader - RAPID Message Queue Mes-
sage header on page 1697

RMQ Message

628 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.224 RMQGetMsgHeader - Get header information from an RMQ message
FlexPendant Interface, PC Interface, or Multitasking
Continued

1.225 RMQReadWait - Returns message from RMQ

Usage
RMQReadWait is used in synchronous mode to receive any type of message.

Basic examples
The following example illustrates the instruction RMQReadWait:
See also More examples on page 629.

Example
VAR rmqmessage myrmqmsg;

RMQReadWait myrmqmsg;

The first message in the queue is received in the variable myrmqmsg.

Arguments
RMQReadWait Message [\TimeOut]

Message

Data type: rmqmessage
The variable in which the received message is placed.

[\Timeout]

Data type: num
The maximum amount of time [s] that program execution waits for a message. If
this time runs out before the condition is met, the error handler will be called, if
there is one, with the error code ERR_RMQ_TIMEOUT. If there is no error handler,
the execution will be stopped. It is possible to set the timeout to 0 (zero) seconds,
so that there is no wait at all.
If the parameter \Timeout is not used, the waiting time is 60 sec. To wait forever,
use the predefined constant WAIT_MAX.

Program execution
All incoming messages are queued and RMQReadWait handles the messages in
FIFO order, one message at a time. It is the users responsibility to avoid a full
queue and to be prepared to handle any type of message supported by RAPID
Message Queue.

More examples
More examples of how to use the instruction RMQReadWait are illustrated below.

Example 1
VAR rmqmessage myrmqmsg;

RMQReadWait myrmqmsg \TimeOut:=30;

The first message in the queue is received in the variable myrmqmsg. If no message
is received within 30 seconds the program execution is stopped.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 629
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.225 RMQReadWait - Returns message from RMQ

RobotWare - OS

Example 2
PROC main()

VAR rmqmessage myrmqmsg;

FOR i FROM 1 TO 25 DO

RMQReadWait myrmqmsg \TimeOut:=30;

...

ENDFOR

ERROR

IF ERRNO = ERR_RMQ_TIMEOUT THEN

TPWrite "ERR_RMQ_TIMEOUT error reported";

...

ENDIF

ENDPROC

Messages are received from the queue and stored in the variable myrmqmsg. If
receiving a message takes longer than 30 seconds, the error handler is called.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

No answer has been received within the time-out timeERR_RMQ_TIMEOUT

This error will be thrown if the message is invalid. This can for
example happen if a PC application sends a corrupt message

ERR_RMQ_INVMSG

Limitations
RMQReadWait is only supported in synchronous mode. Executing this instruction
in interrupt based mode will cause a fatal runtime error.
RMQReadWait is not supported in trap execution level or user execution level.
Executing this instruction in either of these levels will cause a fatal runtime error.

Syntax
RMQReadWait

[Message ':='] < variable (VAR) of rmqmessage>

['\' TimeOut':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

Technical reference manual - System para-
meters

Description of task execution modes

rmqmessage - RAPID Message Queue mes-
sage on page 1699.

rmqmessage data type

RMQSendMessage - Send an RMQ data
message on page 632.

Send data to the queue of a RAPID task

Continues on next page
630 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.225 RMQReadWait - Returns message from RMQ
RobotWare - OS
Continued

SeeFor information about

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636.

Send data to the queue of a RAPID task and
wait for an answer from the client

RMQFindSlot - Find a slot identity from the
slot name on page 618.

Find the identity number of a RAPIDMessage
Queue task

RMQGetMsgHeader - Get header information
from an RMQ message on page 626.

Extract the header data from an rmqmessage

RMQGetMsgData - Get the data part from an
RMQ message on page 623.

Extract the data from an rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322.

Order and enable interrupts for a specific
data type

RMQGetSlotName - Get the name of an RMQ
client on page 1413.

Get the slot name from a specified slot iden-
tity

RMQEmptyQueue - Empty RAPID Message
Queue on page 616.

Empty RAPID Message Queue

RMQGetMessage - Get an RMQmessage on
page 620.

Get the first message from a RAPIDMessage
Queue

Technical reference manual - RAPID Instructions, Functions and Data types 631
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.225 RMQReadWait - Returns message from RMQ

RobotWare - OS
Continued

1.226 RMQSendMessage - Send an RMQ data message

Usage
RMQSendMessage (RAPID Message Queue Send Message) is used to send data
to an RMQ configured for a RAPID task, or to a Robot Application Builder client.

Basic examples
The following examples illustrate the instruction RMQSendMessage:
See also More examples on page 633.

Example 1
VAR rmqslot destination_slot;

VAR string data:="Hello world";

..

RMQFindSlot destination_slot,"RMQ_Task2";

RMQSendMessage destination_slot,data;

The example shows how to send the value in the variable data to the RAPID task
"Task2" with the configured RMQ "RMQ_Task2".

Example 2
VAR rmqslot destination_slot;

CONST robtarget p5:=[[600, 500, 225.3], [1, 0, 0, 0], [1, 1, 0,
0], [11, 12.3, 9E9, 9E9, 9E9, 9E9]];

VAR num my_id:=1;

..

RMQFindSlot destination_slot,"RMQ_Task2";

RMQSendMessage destination_slot, p5 \UserDef:=my_id;

my_id:=my_id + 1;

The example shows how to send the value in the constant p5 to the RAPID task
"Task2" with the configured RMQ "RMQ_Task2". A user-defined number is also
sent. This number can be used by the receiver as an identifier.

Arguments
RMQSendMessage Slot SendData [\UserDef]

Slot

Data type: rmqslot
The identity slot number of the client that should receive the message.

SendData

Data type: anytype
Reference to a variable, persistent or constant containing the data to be sent to
the client with identity as in argument Slot.

[\UserDef]
User Defined data
Data type: num

Continues on next page
632 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.226 RMQSendMessage - Send an RMQ data message
FlexPendant Interface, PC Interface, or Multitasking

Data specifying user-defined information to the receiver of the SendData, i.e the
client with identity number as in variable Slot. The value must be an integer
between 0 and 32767.

Program execution
The instruction RMQSendMessage is used to send data to a specified client. The
instruction packs the indata in a storage container and sends it.
If the receiving client is not interested in receiving messages, i.e has not setup any
interrupt to occur for the data type specified in the RMQSendMessage instruction
or is not waiting in an RMQSendWait instruction, the message will be discarded,
and a warning will be generated.
Not all data types can be sent with the instruction (see limitations).

More examples
More examples of how to use the instruction RMQSendMessage are illustrated
below.

Example 1
MODULE SenderMod

RECORD msgrec

num x;

num y;

ENDRECORD

PROC main()

VAR rmqslot destinationSlot;

VAR msgrec msg :=[0, 0, 0];

! Connect to a Robot Application Builder client

RMQFindSlot destinationSlot ”My_RAB_client”;

! Perform cycle

WHILE TRUE DO

! Update msg with valid data

...

! Send message

RMQSendMessage destinationSlot, msg;

...

ENDWHILE

ERROR

IF ERRNO = ERR_RMQ_INVALID THEN

! Handle destination client lost

WaitTime 1;

! Reconnect to Robot Application Builder client

RMQFindSlot destinationSlot ”My_RAB_client”;

! Avoid execution stop due to retry count exceed

ResetRetryCount;

RETRY;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 633
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.226 RMQSendMessage - Send an RMQ data message

FlexPendant Interface, PC Interface, or Multitasking
Continued

ELSIF ERRNO = ERR_RMQ_FULL THEN

! Handle destination queue full

WaitTime 1;

! Avoid execution stop due to retry count exceed

ResetRetryCount;

RETRY;

ENDIF

ENDPROC

ENDMODULE

The example shows how to use instruction RMQSendMessage with errorhandling
of occuring run-time errors. The program sends user-defined data of the type
msgrec to a Robot Application Builder client called "My_RAB_client".

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The size of message is too big. Either the data exceeds the
maximum allowed message size, or the receiving client is not
configured to receive the size of the data that is sent.

ERR_RMQ_MSGSIZE

The destination message queue is full.ERR_RMQ_FULL

The destination slot has not been connected or the destination
slot is no longer available. If not connected, a call to
RMQFindSlotmust be done. If not available, the reason is that
a remote client has disconnected from the controller.

ERR_RMQ_INVALID

Limitations
It is not possible to set up interrupts, or send or receive data instances of data
types that are of non-value, semi-value types or data type motsetdata.
The maximum size of data that can be sent to a Robot Application Builder client
is about 5000 bytes. The maximum size of data that can be received by a RMQ
and stored in a rmqmessage data type is about 3000 bytes. The size of the data
that can be received by an RMQ can be configured (default size 400, max size
3000).

Syntax
RMQSendMessage

[Slot ':='] < variable (VAR) of rmqslot > ','

[SendData ':='] < reference (REF) of anytype >

['\' UserDef ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

RMQFindSlot - Find a slot identity from the
slot name on page 618

Find the identity number of a RAPIDMessage
Queue task

Continues on next page
634 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.226 RMQSendMessage - Send an RMQ data message
FlexPendant Interface, PC Interface, or Multitasking
Continued

SeeFor information about

RMQGetMessage - Get an RMQmessage on
page 620

Get the first message from a RAPIDMessage
Queue.

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636

Send data to the queue of a RAPID task and
wait for an answer from the client

RMQGetMsgHeader - Get header information
from an RMQ message on page 626

Extract the header data from an rmqmessage

RMQGetMsgData - Get the data part from an
RMQ message on page 623

Extract the data from an rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322

Order and enable interrupts for a specific
data type

RMQGetSlotName - Get the name of an RMQ
client on page 1413

Get the slot name from a specified slot iden-
tity

rmqslot - Identity number of an RMQ client
on page 1700

RMQ Slot

Technical reference manual - RAPID Instructions, Functions and Data types 635
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.226 RMQSendMessage - Send an RMQ data message

FlexPendant Interface, PC Interface, or Multitasking
Continued

1.227 RMQSendWait - Send an RMQ data message and wait for a response

Usage
With the RMQSendWait (RAPIDMessageQueue SendWait) instruction it is possible
to send data to an RMQ or to a Robot Application Builder client, and wait for an
answer from the specified client. If using this instruction, the user needs to know
what kind of data type will be sent in the answer from the client.

Basic examples
The following examples illustrate the instruction RMQSendWait:
See also More examples on page 638.

Example 1
VAR rmqslot destination_slot;

VAR string sendstr:="This string is from T_ROB1";

VAR rmqmessage receivemsg;

VAR num mynum;

..

RMQFindSlot destination_slot, "RMQ_T_ROB2";

RMQSendWait destination_slot, sendstr, receivemsg, mynum;

RMQGetMsgData receivemsg, mynum;

The example shows how to send the data in the variable sendstr to the RAPID
task "T_ROB2" with the configured RMQ "RMQ_T_ROB2". Now the instruction
RMQSendWait waits for a reply from the task "T_ROB2". The instruction in
"T_ROB2" needs to send data that is stored in a num data type to terminate the
waiting instruction RMQSendWait. When the message has been received, the data
is copied to the variable mynum from the variable receivemsg with the instruction
RMQGetMsgData.

Example 2
VAR rmqslot rmqslot1;

VAR string mysendstr;

VAR rmqmessage rmqmessage1;

VAR string receivestr;

VAR num mysendid:=1;

..

mysendstr:="Message from Task1";

RMQFindSlot rmqslot1, "RMQ_Task2";

RMQSendWait rmqslot1, mysendstr \UserDef:=mysendid, rmqmessage1,
receivestr \TimeOut:=20;

RMQGetMsgData rmqmessage1, receivestr;

mysendid:=mysendid + 1;

The example shows how to send the data in the variable mysendstr to the RAPID
task "Task2" with the configured RMQ"RMQ_Task2". A user-defined number is
also sent. This number can be used by the receiver as an identifier and must be
bounced back to the sender to terminate the waiting RMQSendWait instruction.
Another demand to terminate the waiting instruction is that the right data type is
sent from the client. That data type is specified by the variable receivestr in the

Continues on next page
636 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.227 RMQSendWait - Send an RMQ data message and wait for a response
FlexPendant Interface, PC Interface, or Multitasking

RMQSendWait instruction. After the message has been received, the actual data
is copied to the variable receivestr with the instruction RMQGetMsgData.

Arguments
RMQSendWait Slot SendData [\UserDef] Message ReceiveDataType

[\TimeOut]

Slot

Data type: rmqslot
The identity number of the client that should receive the message.

SendData

Data type: anytype
Reference to a variable, persistent or constant containing the data to be sent to
the client with identity number as in the variable Slot.

[\UserDef]
User Defined data
Data type: num
Data specifying user-defined information to the receiver of the SendData, that is,
the client with the identity number as in the variable Slot. If using this optional
argument, the RMQSendWait instructionwill only terminate if the ReceiveDataType
and the specified UserDef is as specified in the message answer. The value must
be an integer between 0 and 32767.

Message

Data type: rmqmessage
The variable in which the received message is placed.

ReceiveDataType

Data type: anytype
A reference to a persistent, variable or constant of the data type that the instruction
is waiting for. The actual data is not copied to this variable when the RMQSendWait
is executed. This argument is only used to specify the actual data type the
RMQSendWait instruction is waiting for.

[\Timeout]

Data type: num
The maximum amount of time [s] that program execution waits for an answer. If
this time runs out before the condition is met, the error handler will be called, if
there is one, with the error code ERR_RMQ_TIMEOUT. If there is no error handler,
the execution will be stopped.
If the parameter \Timeout is not used, the waiting time is 60 s. To wait forever,
use the predefined constant WAIT_MAX.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 637
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.227 RMQSendWait - Send an RMQ data message and wait for a response

FlexPendant Interface, PC Interface, or Multitasking
Continued

Program execution
The instruction RMQSendWait sends data and waits for an answer from the client
with the specified slot identity. The answermust be an rmqmessage from the client
that got themessage and the answermust be of the same data type that is specified
in the argument ReceiveDataType. The message will be sent in the same way
as when using RMQSendMessage, i.e.the receiver will get a normal RAPIDMessage
Queue message. It is the responsibility of the sender that the receiver knows that
a reply is needed. If the optional argument UserDef is used in the RMQSendWait,
the demand is that the receiving client uses the same UserDef in the answer.
If the receiving client is not interested in receiving messages, that is, has not set
up any interrupt to occur for the data type specified in the RMQSendWait instruction,
the message will be discarded, and a warning will be generated. The instruction
returns an error after the time used in the argument TimeOut, or the default time-out
time 60 s. This error can be dealt with in an error handler.
The RMQSendWait instruction has the highest priority if a message is received and
it fits the description for both the expected answer and a message connected to a
TRAP routine (see instruction IRMQMessage).
If a power failure occurs when waiting for an answer from the client, the variable
used in the argument Slot is set to 0 and the instruction is executed again. The
instruction will then fail because of an invalid slot identity and the error handler
will be called, if there is one, with the error code ERR_RMQ_INVALID. The slot
identity can be reinitialized there.
Not all data types can be sent with the instruction (see limitations).

More examples
More examples of how to use the instruction RMQSendWait are illustrated below.

Example 1
MODULE RMQ_Task1_mod

PROC main()

VAR rmqslot destination_slot;

VAR string mysendstr:="String sent from RMQ_Task1_mod";

VAR string myrecstr;

VAR rmqmessage recmsg;

VAR rmqheader header;

!Get slot identity to client called RMQ_Task2

RMQFindSlot destination_slot, "RMQ_Task2";

WHILE TRUE DO

! Do something

...

!Send data in mysendstr, wait for an answer of type string

RMQSendWait destination_slot, mysendstr, recmsg, myrecstr;

!Get information about the received message

RMQGetMsgHeader recmsg \Header:=header;

IF header.datatype = "string" AND header.ndim = 0 THEN

! Copy the data in recmsg

Continues on next page
638 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.227 RMQSendWait - Send an RMQ data message and wait for a response
FlexPendant Interface, PC Interface, or Multitasking
Continued

RMQGetMsgData recmsg, myrecstr;

TPWrite "Received string: " + myrecstr;

ELSE

TPWrite "Not a string that was received";

ENDIF

ENDWHILE

ENDPROC

ENDMODULE

The data in the variable mysendstr is sent to the RAPID task "Task2" with the
configuredRAPIDMessageQueue "RMQ_Task2" with the instructionRMQSendWait.
The answer from the RAPID task "Task2" should be a string (specified of the data
type of the variable myrecstr). The RMQ message received as an answer is
received in the variable recmsg. The use of the variable myrecstr in the call to
RMQSendWait is just specification of the data type the sender is expecting as an
answer. No valid data is placed in the variable in the RMQSendWait call.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The size of message is too big. Either the data exceeds the
maximum allowed message size, or the receiving client is not
configured to receive the size of the data that is sent.

ERR_RMQ_MSGSIZE

The destination message queue is full.ERR_RMQ_FULL

The rmqslot has not been initialized, or the destination slot
is no longer available. This can happen if the destination slot
is a remote client and the remote client has disconnected from
the controller. RMQSendWaitwas interrupted by a power failure,
and at restart the rmqslot is set to 0.

ERR_RMQ_INVALID

No answer has been received within the time-out time.ERR_RMQ_TIMEOUT

This error will be thrown if the message is invalid. This may for
instance happen if a PC application sends a corrupt message.

ERR_RMQ_INVMSG

Limitations
It is not allowed to execute RMQSendWait in synchronous mode. That will cause
a fatal runtime error.
It is not possible to set up interrupts, or send or receive data instances of data
types that are of non-value, semi-value types or data type motsetdata.
The maximum size of data that can be sent to a Robot Application Builder client
is about 5000 bytes. The maximum size of data that can be received by an RMQ
and stored in an rmqmessage data type is about 3000 bytes. The size of the data
that can be received by an RMQ can be configured (default size 400, max size
3000).

Syntax
RMQSendWait

[Slot ':='] < variable (VAR) of rmqslot > ','

[SendData ':='] < reference (REF) of anytype >

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 639
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.227 RMQSendWait - Send an RMQ data message and wait for a response

FlexPendant Interface, PC Interface, or Multitasking
Continued

['\' UserDef ':=' < expression (IN) of num >] ','

[Message' :='] < variable (VAR) of rmqmessage > ','

[ReceiveDataType ':='] < reference (REF) of anytype > ','

['\' Timeout ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

RMQFindSlot - Find a slot identity from the
slot name on page 618

Find the identity number of a RAPIDMessage
Queue task

RMQSendMessage - Send an RMQ data
message on page 632

Send data to the queue of a RAPID task

RMQGetMessage - Get an RMQmessage on
page 620

Get the first message from a RAPIDMessage
Queue.

RMQGetMsgHeader - Get header information
from an RMQ message on page 626

Extract the header data from an rmqmessage

RMQGetMsgData - Get the data part from an
RMQ message on page 623

Extract the data from an rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322

Order and enable interrupts for a specific
data type

RMQGetSlotName - Get the name of an RMQ
client on page 1413

Get the slot name from a specified slot iden-
tity

rmqslot - Identity number of an RMQ client
on page 1700

RMQ Slot

rmqmessage - RAPID Message Queue mes-
sage on page 1699

RMQ Message

640 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.227 RMQSendWait - Send an RMQ data message and wait for a response
FlexPendant Interface, PC Interface, or Multitasking
Continued

1.228 SafetyControllerSyncRequest - Initiation of hardware synchronization
procedure

Usage
SafetyControllerSyncRequest is used to initiate the hardware synchronization
procedure.

Basic examples
The following example illustrates the instructionSafetyControllerSyncRequest.

Example 1
SafetyControllerSyncRequest;

Initiate the hardware synchronization procedure.

Program execution
This instruction must be called prior to the synchronization signal activation.

Syntax
SafetyControllerSyncRequest ';'

Related information

SeeFor information about

SafetyControllerGetChecksum - Get the check-
sum for the user configuration file on page 1424

SafetyControllerGetChecksum

SafetyControllerGetSWVersion - Get the safety
controller firmware version on page 1426

SafetyControllerGetSWVersion

SafetyControllerGetUserChecksum - Get the
checksum for protected parameters on page1427

SafetyControllerGetUserChecksum

Application manual - Functional safety and
SafeMove2

SafeMove safety configuration

Technical reference manual - RAPID Instructions, Functions and Data types 641
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.228 SafetyControllerSyncRequest - Initiation of hardware synchronization procedure

SafeMove Basic, SafeMove Pro, PROFIsafe

1.229 Save - Save a program module

Usage
Save is used to save a program module.
The specified program module in the program memory will be saved with the
original (specified in Load or StartLoad) or specified file path.
It is also possible to save a system module at the specified file path.

Basic examples
The following example illustrates the instruction Save:
See also More examples on page 643.

Example 1
Load "HOME:/PART_B.MOD";

...

Save "PART_B";

Load the program module with the file name PART_B.MOD from HOME: into the
program memory.
Save the program module PART_B with the original file path HOME: and with the
original file name PART_B.MOD.

Arguments
Save [\TaskRef]|[\TaskName] ModuleName [\FilePath] [\File]

[\TaskRef]

Task Reference
Data type: taskid
The program task identity in which the program module should be saved.
For all program tasks in the system the predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1
task the variable identity will be T_ROB1Id.

[\TaskName]

Data type: string
The program task name in which the program module should be saved.
If none of the arguments \TaskRef or \TaskName is specified then the specified
program module in the current (executing) program task will be saved.

ModuleName

Data type: string
The program module to save.

[\FilePath]

Data type: string
The file path and the file name to the place where the program module is to be
saved. The file name shall be excluded when the argument \File is used.

Continues on next page
642 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.229 Save - Save a program module
RobotWare - OS

[\File]

Data type: string
When the file name is excluded in the argument \FilePath it must be specified
with this argument.
The argument \FilePath\File can only be omitted for programmodules loaded
with Load or StartLoad-WaitLoad and the program module will be stored at
the same destination as specified in these instructions. To store the program
module at another destination it is also possible to use the argument \FilePath
\File.
The argument \FilePath \File must be used to be able to save a program
module that previously was loaded from the FlexPendant, external computer, or
system configuration.

Program execution
Program execution waits for the programmodule to finish saving before proceeding
with the next instruction.

More examples
More examples of how to use the instruction Save are illustrated below.

Example 1
Save "PART_A" \FilePath:="HOME:/DOORDIR/PART_A.MOD";

Save the program module PART_A to HOME: in the file PART_A.MOD and in the
directory DOORDIR.

Example 2
Save "PART_A" \FilePath:="HOME:" \File:="DOORDIR/PART_A.MOD";

Same as in the above example 1 but another syntax.

Example 3
Save \TaskRef:=TSK1Id, "PART_A"

\FilePath:="HOME:/DOORDIR/PART_A.MOD";

Save programmodule PART_A in program task TSK1 to the specified destination.
This is an example where the instruction Save is executing in one program task
and the saving is done in another program task.

Example 4
Save \TaskName:="TSK1", "PART_A"

\FilePath:="HOME:/DOORDIR/PART_A.MOD";

Save program module PART_A in program task TSK1 to the specified destination.
This is another example of where the instruction Save is executing in one program
task and the saving is done in another program task.

Limitations
TRAP routines, system I/O events, and other program tasks cannot execute during
the saving operation. Therefore, any such operations will be delayed.
The save operation can interrupt update of PERS data done step by step from
other program tasks. This will result in inconsistent whole PERS data.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 643
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.229 Save - Save a program module

RobotWare - OS
Continued

A program stop during execution of the Save instruction can result in a guard stop
with motors off. The error message "20025 Stop order timeout" will be displayed
on the FlexPendant.
Avoid ongoing robot movements during the saving.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The save file cannot be opened because of denied permis-
sion, no such directory, or no space left on device.

ERR_IOERROR

The program module cannot be saved because there is no
module name, unknown module name, or ambiguous
module name.

ERR_MODULE

The argument \FilePath is not specified for program
modules loaded from the FlexPendant, SystemParameters,
or an external computer.

ERR_PATH

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

Syntax
Save

[['\' TaskRef ':=' <variable (VAR) of taskid>]

|['\' TaskName' :=' <expression (IN) of string>] ',']

[ModuleName' :='] <expression (IN) of string>

['\' FilePath' :='<expression (IN) of string>]

['\' File' :=' <expression (IN) of string>] ';'

Related information

SeeFor information about

taskid - Task identification on page 1738Program tasks

644 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.229 Save - Save a program module
RobotWare - OS
Continued

1.230 SaveCfgData - Save system parameters to file

Usage
SaveCfgData is used to save system parameters to file. This can be useful after
updating the system parameters with instruction WriteCfgData.

Basic examples
The following examples illustrates the instruction SaveCfgData.

Example 1
SaveCfgData "SYSPAR" \File:="MYEIO.cfg", EIO_DOMAIN;

Saving I/O configuration domain to the file MYEIO.cfg in directory SYSPAR.

Example 2
SaveCfgData "SYSPAR", ALL_DOMAINS;

Saving all existing configuration domains to directory SYSPAR. The files will get
the names EIO.cfg, MMC.cfg, PROC.cfg, SIO.cfg, SYS.cfg and MOC.cfg.

Arguments
SaveCfgData FilePath [\File] Domain

FilePath

Data type: string
The file path and the file name to where the file should be saved. The file name
shall be excluded when the argument \File is used.

[\File]

Data type: string
When the file name is excluded in the argument \FilePath it must be specified
with this argument.

Domain

Data type: cfgdomain
The system parameter domain to save.

Program execution
Saves system parameters to file.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The cfgdomain used is invalid or not in use.ERR_CFG_ILL_DOMAIN

The directory does not exist, or the FilePath and File used
is a directory, or some other problem regarding saving the
file.

ERR_CFG_WRITEFILE

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 645
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.230 SaveCfgData - Save system parameters to file

Syntax
SaveCfgData

[FilePath ':='] <expression (IN) of string>

['\' File ':=' <expression (IN) of string>]

[Domain ':='] <expression (IN) of cfgdomain> ';'

Related information

SeeFor information about

cfgdomain - Configuration domain on page 1597cfgdomain data

Technical referencemanual - System parametersSystem parameters

646 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.230 SaveCfgData - Save system parameters to file
Continued

1.231 SCWrite - Send variable data to a client application

Usage
SCWrite (Superior Computer Write) is used to send the name, type, dimension,
and value of a persistent variable to a client application. It is possible to send both
single variables and arrays of variables.

Basic examples
The following examples illustrate the instruction SCWrite:

Example 1
PERS num cycle_done;

PERS num numarr{2}:=[1,2];

SCWrite cycle_done;

The name, type, and value of the persistent variable cycle_done is sent to all
client applications.

Example 2
SCWrite \ToNode := "138.221.228.4", cycle_done;

The name, type, and value of the persistent variable cycle_done is sent to all
client applications. The argument \ToNode will be ignored.

Example 3
SCWrite numarr;

The name, type, dim, and value of the persistent variable numarr is sent to all
client applications.

Example 4
SCWrite \ToNode := "138.221.228.4", numarr;

The name, type, dim, and value of the persistent variable numarr is sent to all
client applications. The argument \ToNode will be ignored.

Arguments
SCWrite [\ToNode] Variable

[\ToNode]

Data type: datatype
The argument will be ignored.

Variable

Data type: anytype
The name of a persistent variable.

Program execution
The name, type, dim, and value of the persistent variable is sent to all client
applications. ‘dim’ is the dimension of the variable and is only sent if the variable
is an array.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 647
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.231 SCWrite - Send variable data to a client application

PC interface/backup

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Error when sending to external computer.ERR_SC_WRITE

The SCWrite instruction will return an error in the following cases:
The variable could not be sent to the client. This can have the following cause:

• The SCWrite messages comes so close so that they cannot be sent to the
client. Solution: Put in a WaitTime instruction between the SCWrite
instructions.

• The variable value is too large decreasing the size of the ARRAY or RECORD.
• The error message will be: 41473 System access error, Failed to

send variable arg1, where arg1 is the name of the variable.
The SCWrite instruction will not return an error if the client application may, for
example, be closed down or the communication is down. The programwill continue
executing.

SCWrite error recovery
To avoid stopping the program when a error occurs in a SCWrite instruction it has
to be handled by an error handler. The error will only be reported to the log, and
the program will continue running.
Remember that the error handling will make it more difficult to find errors in the
client communication since the error is never reported to the display on the
FlexPendant (but it can be found in the log).

Continues on next page
648 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.231 SCWrite - Send variable data to a client application
PC interface/backup
Continued

The RAPID program looks as follows:

xx0500002339

Technical reference manual - RAPID Instructions, Functions and Data types 649
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.231 SCWrite - Send variable data to a client application

PC interface/backup
Continued

1.232 SearchC - Searches circularly using the robot

Usage
SearchC (Search Circular) is used to search for a position when moving the tool
center point (TCP) circularly.
During the movement the robot supervises a digital input signal or a persistent
variable. When the value of the signal or persistent variable changes to the
requested one the robot immediately reads the current position.
This instruction can typically be used when the tool held by the robot is a probe
for surface detection. The outline coordinates of a work object can be obtained
using the SearchC instruction.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.
When using search instructions it is important to configure the I/O system to have
a very short time from setting the physical signal to the system to get information
about the setting (use I/O device with interrupt control, not poll control). How to do
this can differ between fieldbuses. If using DeviceNet then the ABB units DSQC
651 (AD Combi I/O) and DSQC 652 (Digital I/O) will give short times since they are
using connection type Change of State. If using other fieldbuses ensure to configure
the network in a proper way to get the right conditions.

Basic examples
The following examples illustrate the instruction SearchC:
See also More examples on page 656.

Example 1
SearchC di1, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10 at a speed of
v100. When the value of the signal di1 changes to active the position is stored
in sp.

Example 2
SearchC \Stop, di2, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10. When the
value of the signal di2 changes to active the position is stored in sp and the robot
stops immediately.

Example 3
PERS bool mypers:=FALSE;

...

SearchC \Stop, mypers, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10. When the
value of the persistent variable mypers changes to TRUE the position is stored in
sp and the robot stops immediately.

Continues on next page
650 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot
RobotWare - OS

Arguments
SearchC [\Stop] | [\PStop] | [\SStop] | [\Sup] Signal | PersBool

[\Flanks] | [\PosFlank] | [\NegFlank] | [\HighLevel] |
[\LowLevel] SearchPoint CirPoint ToPoint [\ID] Speed [\V] |
[\T] Tool [\WObj] [\Corr] [\TLoad]

[\Stop]

Stiff Stop
Data type: switch
The robot movement is stopped as quickly as possible without keeping the TCP
on the path (hard stop) when the value of the search signal changes to active or
the persistent variable value changes to TRUE. The robot is moved a small distance
before it stops and is not moved back to the searched position, i.e. to the position
where the signal or persistent value changed.

WARNING

To stop the searching with stiff stop (switch \Stop) is only allowed if the
TCP-speed is lower than 100 mm/s. At a stiff stop with higher speeds some axes
can move in unpredictable direction.

[\PStop]

Path Stop
Data type: switch
The robot movement is stopped as quickly as possible while keeping the TCP on
the path (soft stop) when the value of the search signal changes to active or the
persistent variable value changes to TRUE. The robot is moved a distance before
it stops and is not moved back to the searched position, i.e. to the position where
the signal or persistent value changed.

[\SStop]

Soft Stop
Data type: switch
The robot movement is stopped as quickly as possible while keeping the TCP close
to or on the path (soft stop) when the value of the search signal changes to active
or the persistent variable value changes to TRUE. The robot is moved only a small
distance before it stops and is not moved back to the searched position, i.e. to the
position where the signal changed. SStop is faster than PStop. But when the robot
is running faster than 100 mm/s it stops in the direction of the tangent of the
movement which causes it to marginally slide of the path.

[\Sup]

Supervision
Data type: switch
The search instruction is sensitive to signal activation or persistent variable value
change during the complete movement (flying search), i.e. even after the first signal
change or persistent variable change has been reported. If more than one match

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 651
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot

RobotWare - OS
Continued

occurs during a search then a recoverable error is generated with the robot in the
ToPoint.
If the arguments \Stop, \PStop, \SStop, and \Sup are omitted (no switch used
at all):

• the movement continues (flying search) to the position specified in the
ToPoint argument (same as with argument \Sup)

• error is reported for none search hit but is not reported for more than one
search hit (first search hit is returned as the SearchPoint)

Signal

Data type: signaldi
The name of the signal to supervise.

PersBool

Data type: bool
The persistent variable to supervise.

[\Flanks]

Data type: switch
The positive and the negative edge of the signal is valid for a search hit. If using
argument PersBool it is the value change of the variable that is valid for a search
hit.
For signal: If the argument \Flanks is omitted, only the positive edge of the signal
is valid for a search hit and a signal supervision will be activated at the beginning
of a search process. This means that if the signal has the positive value already
at the beginning of a search process, or the communication with the signal is lost
then the robot movement is stopped as quickly as possible, while keeping the TCP
on the path (soft stop). A user recovery error ERR_SIGSUPSEARCHwill be generated
and can be handled in the error handler.
For persistent variable: If the argument \Flanks is omitted, it is only when the
value change to TRUE that is a valid search hit and a variable supervision will be
activated at the beginning of a search process. This means that if persistent variable
has the positive value already at the beginning of a search process then the robot
movement is stopped as quickly as possible, while keeping the TCP on the path
(soft stop). A user recovery error ERR_PERSSUPSEARCH will be generated and can
be handled in the error handler.

[\PosFlank]

Data type: switch
The positive edge of the signal is valid for a search hit, or the change of the value
to TRUE if using a persistent variable.

[\NegFlank]

Data type: switch
The negative edge of the signal is valid for a search hit, or the change of the value
to FALSE if using a persistent variable.

Continues on next page
652 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot
RobotWare - OS
Continued

[\HighLevel]

Data type: switch
The same functionality as if not using \Flanks switch.
For signal: The positive edge of the signal is valid for a search hit, and a signal
supervision will be activated at the beginning of a search process. This means that
if the signal has the positive value already at the beginning of a search process or
the communication with the signal is lost then the robot movement is stopped as
quickly as possible, while keeping the TCP on the path (soft stop). A user recovery
error ERR_SIGSUPSEARCHwill be generated and can be handled in the error handler.
For persistent variable: Only the value change to TRUE is a valid search hit and a
variable supervision will be activated at the beginning of a search process. This
means that if persistent variable has the positive value already at the beginning of
a search process then the robot movement is stopped as quickly as possible, while
keeping the TCP on the path (soft stop). A user recovery error ERR_PERSSUPSEARCH
will be generated and can be handled in the error handler.

[\LowLevel]

Data type: switch
For signal: The negative edge of the signal is valid for a search hit, and a signal
supervision will be activated at the beginning of a search process. This means that
if the signal has value 0 already at the beginning of a search process or the
communication with the signal is lost then the robot movement is stopped as quickly
as possible, while keeping the TCP on the path (soft stop). A user recovery error
ERR_SIGSUPSEARCH will be generated and can be handled in the error handler.
For persistent variable: Only the value change to FALSE is a valid search hit and
a variable supervision will be activated at the beginning of a search process. This
means that if persistent variable has the value FALSE already at the beginning of
a search process then the robot movement is stopped as quickly as possible, while
keeping the TCP on the path (soft stop). A user recovery error ERR_PERSSUPSEARCH
will be generated and can be handled in the error handler.

SearchPoint

Data type: robtarget
The position of the TCP and external axes when the search signal has been
triggered. The position is specified in the outermost coordinate system taking the
specified tool, work object, and active ProgDisp/ExtOffs coordinate system into
consideration.

CirPoint

Data type: robtarget
The circle point of the robot. See the instruction MoveC for a more detailed
description of circular movement. The circle point is defined as a named position
or stored directly in the instruction (marked with an * in the instruction).

ToPoint

Data type: robtarget

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 653
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot

RobotWare - OS
Continued

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).
SearchC always uses a stop point as zone data for the destination.

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the external axes and the tool reorientation.

[\V]

Velocity
Data type: num
This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot positions in the instruction
are related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified for a linear movement relative
to the work object to be performed.

[\Corr]

Correction

Continues on next page
654 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot
RobotWare - OS
Continued

Data type: switch
When this argument is present the correction data written to a corrections entry
by the instruction CorrWrite will be added to the path and destination position.
The RobotWare option Path Offset is required when using this argument.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveC for information about circular movement.
The movement is always ended with a stop point, i.e. the robot stops at the
destination point.
When a flying search is used, i.e. the \Sup argument is specified or none switch
at all is specified, the robot movement always continues to the programmed
destination point. When a search is made using the switch \Stop, \PStop, or
\SStop the robot movement stops when the first search hit is detected.
The SearchC instruction returns the position of the TCP when the value of the
digital signal or persistent variable changes to the requested one, as illustrated in
figure below.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 655
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot

RobotWare - OS
Continued

The figure shows how flank-triggered signal detection is used (the position is stored
when the signal is changed the first time only).

xx0500002237

More examples
More examples of how to use the instruction SearchC are illustrated below.

Example 1
SearchC \Sup, di1\Flanks, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10. When the
value of the signal di1 changes to active or passive the position is stored in sp.
If the value of the signal changes twice then program generates an error.

Limitations
General limitations according to instruction MoveC.
Zone data for the positioning instruction that precedes SearchC must be used
carefully. The recommendation is to use z0, or a small zone that still gives a smooth
movement. The start of the search, i.e. when the I/O signal is ready to react, is not,
in this case, the programmed destination point of the previous positioning instruction
but a point along the real robot path. The figure below illustrates an example of
something that may go wrong when zone data other than fine is used.
The instruction SearchC should never be restarted after the circle point has been
passed. Otherwise the robot will not take the programmed path (positioning around
the circular path in another direction compared to that which is programmed).
The figure shows how a match is made on the wrong side of the object because
the wrong zone data was used.

xx0500002238

Continues on next page
656 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot
RobotWare - OS
Continued

WARNING

Limitations for searching if coordinated synchronized movements:
• If using SearchL, SearchC or SearchExtJ for one program task and some

other move instruction in other program task, it is only possible to use flying
search with switch \Sup. Besides that, only possible to do error recovery
with TRYNEXT.

• It’s possible to use all searching functionality, if using some of the
instructions SearchL, SearchC or SearchExtJ in all involved program
tasks with coordinated synchronized movements and generate search hit
from same digital input signal. This will generate search hit synchronously
in all search instructions. Any error recovery must also be the same in all
involved program tasks.

While searching is active, it isn’t possible to store current path with instruction
StorePath.
Repetition accuracy for search hit position with TCP speed 20 - 1000 mm/s 0.1
- 0.3 mm.
Typical stop distance using a search velocity of 50 mm/s:
• without TCP on path (switch \Stop) 1-3 mm
• with TCP on path (switch \PStop) 15-25 mm
• with TCP near path (switch \SStop) 4-8 mm

Limitations for searching on a conveyor:
• a search will stop the robot when hit or if the search fails, so make the search

in the same direction as the conveyor moves and continue after the
search-stop with a move to a safe position. Use error handling to move to
a safe position when search fails.

• the repetition accuracy for the search hit position will be poorer when
searching on a conveyor and depends on the speed of the conveyor and
how stabil the speed is.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

• No signal detection occurred.
• More than one signal detection occurred – this oc-

curs only if the \Sup argument is used.

ERR_WHLSEARCH

The signal has already a positive value at the beginning of
the search process or the communication with the signal
is lost.

ERR_SIGSUPSEARCH

This occurs only if the \Flanks argument is omitted.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 657
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot

RobotWare - OS
Continued

Cause of errorName

The persistent variable is already TRUE at the beginning
of the search process.

ERR_PERSSUPSEARCH

This occurs only if the \Flanks argument is omitted.

Errors can be handled in different ways depending on the selected running mode:
• Continuous forward / Instruction forward / ERR_WHLSEARCH: No position

is returned and the movement always continues to the programmed
destination point. The system variable ERRNO is set to ERR_WHLSEARCH and
the error can be handled in the error handler of the routine.

• Continuous forward / Instruction forward / ERR_SIGSUPSEARCH and
ERR_PERSSUPSEARCH: No position is returned and the movement always
stops as quickly as possible at the beginning of the search path. The system
variable ERRNO is set to ERR_SIGSUPSEARCH or ERR_PERSSUPSEARCH
depending on used argument (signal or persistent variable), and the error
can be handled in the error handler of the routine.

• Instruction backward: During backward execution the instruction carries
out the movement without any supervision.

Syntax
SearchC

['\' Stop ','] | ['\' PStop ','] | ['\' SStop ','] | ['\'
Sup ',']

[Signal':='] < variable (VAR) of signaldi > |

[PersBool ':='] < persistent (PERS) of bool >

['\' Flanks] |

['\' PosFlank] |

['\' NegFlank] |

['\' HighLevel] |

['\' LowLevel] ','

[SearchPoint':='] < var or pers (INOUT) of robtarget > ','

[CirPoint':='] < expression (IN) of robtarget > ','

[ToPoint':='] < expression (IN) of robtarget > ','

['\' ID ':=' < expression (IN) of identno >]','

[Speed':='] < expression (IN) of speeddata >

['\' V ':=' < expression (IN) of num >]|

['\' T ':=' < expression (IN) of num >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj':=' < persistent (PERS) of wobjdata >]

['\' Corr]

['\' TLoad' :=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

SearchL - Searches linearly using the robot on
page 668

Linear searches

CorrWrite - Writes to a correction generator on
page 168

Writes to a corrections entry

Continues on next page
658 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot
RobotWare - OS
Continued

SeeFor information about

MoveC - Moves the robot circularly on page 402Moves the robot circularly

Technical reference manual - RAPID OverviewCircular movement

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

Technical reference manual - RAPID OverviewUsing error handlers

Technical reference manual - RAPID OverviewMotion in general

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on
page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID, Action values,ModalPayLoad-
Mode)

Application manual - Controller software IRC5Path Offset

Technical reference manual - RAPID Instructions, Functions and Data types 659
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.232 SearchC - Searches circularly using the robot

RobotWare - OS
Continued

1.233 SearchExtJ - Search with one or several mechanical units without TCP

Usage
SearchExtJ (Search External Joints) is used to search for an external axes position
when moving only linear or rotating external axes. The external axes can belong
to one or several mechanical units without TCP.
During the movement the robot supervises a digital input signal or a persistent
variable. When the value of the signal or persistent variable changes to the
requested one the robot immediately reads the current position.
This instruction can only be used if:

• The actual program task is defined as a Motion Task
• The task controls one or several mechanical units without TCP

When using search instructions it is important to configure the I/O system to have
a very short time delay from setting the physical signal until the system gets the
information about the setting (use I/O device with interrupt control, not poll control).
How to do this can differ between fieldbuses. If using DeviceNet, the ABB units
DSQC 651 (AD Combi I/O) and DSQC 652 (Digital I/O) will give a short time delay
since they are using the connection type Change of State. If using other fieldbuses,
ensure that the network is properly configured to get the correct conditions.

Basic examples
The following examples illustrate the instruction SearchExtJ:
See also More examples on page 664.

Example 1
SearchExtJ di1, searchp, jpos10, vrot20;

Themec. unit with rotational axes is moved towards the position jpos10 at a speed
of vrot20. When the value of the signal di1 changes to active, the position is
stored in searchp.

Example 2
SearchExJ \Stop, di2, posx, jpos20, vlin50;

The mec. unit with linear axis is moved towards the position jpos20. When the
value of the signal di2 changes to active, the position is stored in posx and the
ongoing movement is stopped immediately.

Example 3
PERS bool mypers:=FALSE;

...

SearchExJ \Stop, di2, posx, jpos20, vlin50;

The mec. unit with linear axis is moved towards the position jpos20. When the
value of the persistent variable mypers changes to TRUE, the position is stored
in posx and the ongoing movement is stopped immediately.

Arguments
SearchExtJ [\Stop] | [\PStop] | [\SStop] | [\Sup] Signal | PersBool

[\Flanks] | [\PosFlank] | [\NegFlank] | [\HighLevel] |

Continues on next page
660 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.233 SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS

[\LowLevel] SearchJointPos ToJointPos [\ID] [\UseEOffs] Speed
[\T]

[\Stop]

Stiff Stop
Data type: switch
The movement is stopped as quickly as possible with hard stop when the value of
the search signal changes to active or when the persistent variable value changes
to TRUE. The external axes are moved a small distance before they stop and are
not moved back to the searched position, i.e. to the position where the signal
changed.

[\PStop]

Path Stop
Data type: switch
The movement is stopped with path stop (Program Stop) when the value of the
search signal changes to active or the persistent variable value changes to TRUE.
The external axes are moved a rather long distance before they stop and are not
moved back to the searched position, i.e. to the position where the signal changed.

[\SStop]

Soft Stop
Data type: switch
The movement is stopped as quickly as possible with fast soft stop when the value
of the search signal changes to active or the persistent variable value changes to
TRUE. The external axes are moved only a small distance before they stop and
are not moved back to the searched position, i.e. to the position where the signal
changed.
Stop is faster compare to SStop. SStop is faster compare to PStop.

[\Sup]

Supervision
Data type: switch
The search instruction is sensitive to signal activation or persistent variable value
change during the complete movement (flying search), i.e. even after the first signal
change or persistent variable change has been reported. If more than one match
occurs during a search then a recoverable error is generated with the robot in the
ToPoint.
If the arguments \Stop, \PStop, \SStop, and \Sup are omitted (no switch used
at all):

• The movement continues (flying search) to the position specified in the
ToJointPos argument (same as with argument \Sup)

• An error is reported for one search hit but is not reported for more than one
search hit (the first search hit is returned as the SearchJointPos)

Signal

Data type: signaldi

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 661
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.233 SearchExtJ - Search with one or several mechanical units without TCP

RobotWare - OS
Continued

The name of the signal to supervise.

PersBool

Data type: bool
The persistent variable to supervise.

[\Flanks]

Data type: switch
The positive and the negative edge of the signal is valid for a search hit. If using
argument PersBool it is the value change of the variable that is valid for a search
hit.
For signal: If the argument \Flanks is omitted, only the positive edge of the signal
is valid for a search hit and a signal supervision will be activated at the beginning
of a search process. This means that if the signal has the positive value already
at the beginning of a search process, or the communication with the signal is lost
then the movement is stopped as quickly as possible. A user recovery error
ERR_SIGSUPSEARCH will be generated and can be handled in the error handler.
For persistent variable: If the argument \Flanks is omitted, it is only when the
value change to TRUE that is a valid search hit and a variable supervision will be
activated at the beginning of a search process. This means that if persistent variable
has the positive value already at the beginning of a search process then the
movement is stopped as quickly as possible. A user recovery error
ERR_PERSSUPSEARCH will be generated and can be handled in the error handler.

[\PosFlank]

Data type: switch
The positive edge of the signal is valid for a search hit, or the change of the value
to TRUE if using a persistent variable.

[\NegFlank]

Data type: switch
The negative edge of the signal is valid for a search hit, or the change of the value
to FALSE if using a persistent variable.

[\HighLevel]

Data type: switch
The same functionality as if not using \Flanks switch.
For signal: The positive edge of the signal is valid for a search hit, and a signal
supervision will be activated at the beginning of a search process. This means that
if the signal has the positive value already at the beginning of a search process or
the communication with the signal is lost then the movement is stopped as quickly
as possible. A user recovery error ERR_SIGSUPSEARCH will be generated and can
be handled in the error handler.
For persistent variable: Only the value change to TRUE is a valid search hit and a
variable supervision will be activated at the beginning of a search process. This
means that if persistent variable has the positive value already at the beginning of
a search process then the movement is stopped as quickly as possible. A user

Continues on next page
662 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.233 SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS
Continued

recovery error ERR_PERSSUPSEARCH will be generated and can be handled in the
error handler.

[\LowLevel]

Data type: switch
For signal: The negative edge of the signal is valid for a search hit, and a signal
supervision will be activated at the beginning of a search process. This means that
if the signal has value 0 already at the beginning of a search process or the
communication with the signal is lost then the movement is stopped as quickly as
possible. A user recovery error ERR_SIGSUPSEARCH will be generated and can be
handled in the error handler.
For persistent variable: Only the value change to FALSE is a valid search hit and
a variable supervision will be activated at the beginning of a search process. This
means that if persistent variable has the value FALSE already at the beginning of
a search process then the movement is stopped as quickly as possible. A user
recovery error ERR_PERSSUPSEARCH will be generated and can be handled in the
error handler.

SearchJointPos

Data type: jointtarget
The position of the external axes when the search signal has been triggered. The
position takes any active ExtOffs into consideration.

ToJointPos

Data type: jointtarget
The destination point for the external axes. It is defined as a named position or
stored directly in the instruction (marked with an * in the instruction). SearchExtJ
always uses a stop point as zone data for the destination.

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

[\UseEOffs]

Use External Offset
Data type: switch
The offset for external axes, setup by instruction EOffsSet, is activated for
SearchExtJ instruction when the argument UseEOffs is used. See instruction
EOffsSet for more information about external offset.

Speed

Data type: speeddata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 663
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.233 SearchExtJ - Search with one or several mechanical units without TCP

RobotWare - OS
Continued

The speed data that applies to movements. Speed data defines the velocity of the
linear or rotating external axis.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the mec.
units move. It is then substituted for the corresponding speed data.

Program execution
See the instruction MoveExtJ for information about movement of mechanical units
without TCP.
The movement always ends with a stop point, i.e. the external axes stop at the
destination point. If a flying search is used, that is, the \Sup argument is specified
or no switch is specified the movement always continues to the programmed
destination point. If a search is made using the switch \Stop, \PStop or \SStop,
the movement stops when the first search hit is detected.
The SearchExtJ instruction stores the position of the external axes when the
value of the digital signal or persistent variable changes to the requested one, as
illustrated in figure below.
The figure shows how flank-triggered signal detection is used (the position is only
stored when the signal is changed the first time).

xx0500002243

More examples
More examples of how to use the instruction SearchExtJ are illustrated below.

Example 1
SearchExtJ \Sup, di1\Flanks, searchp,jpos10, vrot20;

The mec. unit is moved towards the position jpos10. When the value of the signal
di1 changes to active or passive, the position is stored in searchp. If the value
of the signal changes twice, the program generates an error after the search process
is finished.

Example 2
SearchExtJ \Stop, di1, sp, jpos20, vlin50;

MoveExtJ sp, vlin50, fine \Inpos := inpos50;

Continues on next page
664 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.233 SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS
Continued

A check on the signal dil will be made at the beginning of the search process and
if the signal already has a positive value or the communication with the signal is
lost, the movement stops. Otherwise the mec. unit is moved towards the position
jpos20. When the value of the signal di1 changes to active, the position is stored
in sp. The mec. unit is moved back to this point using an accurately defined stop
point.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

• No signal detection occurred.
• More than one signal detection occurred – this oc-

curs only if the \Sup argument is used.

ERR_WHLSEARCH

The signal has already a positive value at the beginning of
the search process or the communication with the signal
is lost.

ERR_SIGSUPSEARCH

This occurs only if the \Flanks argument is omitted.

The persistent variable is already TRUE at the beginning
of the search process.

ERR_PERSSUPSEARCH

This occurs only if the \Flanks argument is omitted.

Errors can be handled in different ways depending on the selected running mode:
• Continuous forward / Instruction forward / ERR_WHLSEARCH: No position

is returned and the movement always continues to the programmed
destination point. The system variable ERRNO is set to ERR_WHLSEARCH and
the error can be handled in the error handler of the routine.

• Continuous forward / Instruction forward / ERR_SIGSUPSEARCH and
ERR_PERSSUPSEARCH: No position is returned and the movement always
stops as quickly as possible at the beginning of the search path. The system
variable ERRNO is set to ERR_SIGSUPSEARCH or ERR_PERSSUPSEARCH
depending on used argument (signal or persistent variable), and the error
can be handled in the error handler of the routine.

• Instruction backward: During backward execution the instruction carries
out the movement without any supervision.

Example
VAR num fk;

...

MoveExtJ jpos10, vrot100, fine;

SearchExtJ \Stop, di1, sp, jpos20, vrot5;

...

ERROR

IF ERRNO=ERR_WHLSEARCH THEN

StorePath;

MoveExtJ jpos10, vrot50, fine;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 665
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.233 SearchExtJ - Search with one or several mechanical units without TCP

RobotWare - OS
Continued

RestoPath;

ClearPath;

StartMove;

RETRY;

ELSEIF ERRNO=ERR_SIGSUPSEARCH THEN

TPWrite "The signal of the SearchExtJ instruction is already
high!";

TPReadFK fk,"Try again after manual reset of signal ?","YES",
stEmpty, stEmpty, stEmpty, "NO";

IF fk = 1 THEN

StorePath;

MoveExtJ jpos10, vrot50, fine;

RestoPath;

ClearPath;

StartMove;

RETRY;

ELSE

Stop;

ENDIF

ENDIF

If the signal is already active at the beginning of the search process or the
communication with the signal is lost, a user dialog will be activated (TPReadFK
...;). Reset the signal and push YES on the user dialog and the mec. unit moves
back to jpos10 and tries once more. Otherwise program execution will stop.
If the signal is passive at the beginning of the search process, the mec. unit
searches from position jpos10 to jpos20. If no signal detection occurs, the robot
moves back to jpos10 and tries once more.

Limitations
Limitations for searching if coordinated synchronized movements:

• If using SearchL, SearchC or SearchExtJ for one program task and some
other move instruction in another program task, it is only possible to use
flying search with switch \Sup. Besides that, it is only possible to do error
recovery with TRYNEXT.

• It is possible to use all searching functions if using some of the instructions
SearchL, SearchC or SearchExtJ in all involved program tasks with
coordinated synchronized movements and generate search hits from the
same digital input signal. This will generate search hits synchronously in all
search instructions. Any error recovery must also be the same in all involved
program tasks.

• While searching is active, it isn’t possible to store current path with instruction
StorePath.

Syntax
SearchExtJ

['\' Stop ','] | ['\' PStop ','] | ['\' SStop ','] | ['\'
Sup ',']

[Signal ':='] < variable (VAR) of signaldi > |

Continues on next page
666 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.233 SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS
Continued

[PersBool ':='] < persistent (PERS) of bool >

['\' Flanks] |

['\' PosFlank] |

['\' NegFlank] |

['\' HighLevel] |

['\' LowLevel] ','

[SearchJointPos' :='] < var or pers (INOUT) of jointtarget >
','

[ToJointPos' :='] < expression (IN) of jointtarget >

['\' ID ':=' < expression (IN) of identno >]','

['\' UseEOffs' ,']

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

MoveExtJ - Move one or several mechanical units
without TCP on page 430

Move mec. units without TCP

jointtarget - Joint position data on page 1647Definition of jointtarget

speeddata - Speed data on page 1718Definition of velocity

Technical reference manual - RAPID OverviewUsing error handlers

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID Instructions, Functions and Data types 667
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.233 SearchExtJ - Search with one or several mechanical units without TCP

RobotWare - OS
Continued

1.234 SearchL - Searches linearly using the robot

Usage
SearchL (Search Linear) is used to search for a position when moving the tool
center point (TCP) linearly.
During the movement the robot supervises a digital input signal or a persistent
variable. When the value of the signal or persistent variable changes to the
requested one the robot immediately reads the current position.
This instruction can typically be used when the tool held by the robot is a probe
for surface detection. Using the SearchL instruction the outline coordinates of a
work object can be obtained.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.
When using search instructions it is important to configure the I/O system to have
a very short time from setting the physical signal to the system to getting the
information regarding the setting (use I/O device with interrupt control, not poll
control). How to do this can differ between fieldbuses. If using DeviceNet the ABB
units DSQC 651 (AD Combi I/O) and DSQC 652 (Digital I/O) will give short times
since they are using connection type Change of State. If using other fieldbuses
ensure that you configure the network in a proper way to get right conditions.

Basic examples
The following examples illustrate the instruction SearchL:
See also More examples on page 674.

Example 1
SearchL di1, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10 at a speed of
v100. When the value of the signal di1 changes to active the position is stored in
sp.

Example 2
SearchL \Stop, di2, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10. When the value
of the signal di2 changes to active the position is stored in sp and the robot stops
immediately.

Example 3
PERS bool mypers:=FALSE;

...

SearchL mypers, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10 at a speed of
v100. When the value of the persistent variable mypers changes to TRUE the
position is stored in sp.

Continues on next page
668 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot
RobotWare - OS

Arguments
SearchL [\Stop] | [\PStop] | [\SStop] | [\Sup] Signal | PersBool

[\Flanks] | [\PosFlank] | [\NegFlank] | [\HighLevel] |
[\LowLevel] SearchPoint ToPoint [\ID] Speed [\V] | [\T] Tool
[\WObj] [\Corr] [\TLoad]

[\Stop]

Stiff Stop
Data type: switch
The robot movement is stopped as quickly as possible without keeping the TCP
on the path (hard stop) when the value of the search signal changes to active or
the persistent variable value changes to TRUE. The robot is moved a small distance
before it stops and is not moved back to the searched position, i.e. to the position
where the signal or persistent value changed.

WARNING

To stop the searching with stiff stop (switch \Stop) is only allowed if the
TCP-speed is lower than 100 mm/s. At a stiff stop with higher speeds some axes
can move in unpredictable directions.

Note

The maximum speed for searching with stiff stop for a IRB 14000 robot is 1000
mm/s.
It is recommended to first test with a slow speed, <100 mm/s, and then gradually
increase the speed to the desired value.

[\PStop]

Path Stop
Data type: switch
The robot movement is stopped as quickly as possible while keeping the TCP on
the path (soft stop) when the value of the search signal changes to active or the
persistent variable value changes to TRUE. The robot is moved a distance before
it stops and is not moved back to the searched position, i.e. to the position where
the signal or persistent value changed.

[\SStop]

Soft Stop
Data type: switch
The robot movement is stopped as quickly as possible while keeping the TCP close
to or on the path (soft stop) when the value of the search signal changes to active
or the persistent variable value changes to TRUE. The robot is only moved a small
distance before it stops and is not moved back to the searched position, that is,
to the position where the signal or persistent variable changed. SStop is faster
than PStop. But when the robot is running faster than 100 mm/s it stops in the
direction of the tangent of the movement which causes it to marginally slide off
the path.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 669
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot

RobotWare - OS
Continued

[\Sup]

Supervision
Data type: switch
The search instruction is sensitive to signal activation or persistent variable value
change during the complete movement (flying search), i.e. even after the first signal
change or persistent variable change has been reported. If more than one match
occurs during a search then a recoverable error is generated with the robot in the
ToPoint.
If the arguments \Stop, \PStop, \SStop, and \Sup are omitted (no switch used
at all):

• the movement continues (flying search) to the position specified in the
ToPoint argument (same as with argument \Sup)

• error is reported for none search hit but is not reported for more than one
search hit (first search hit is returned as the SearchPoint)

Signal

Data type: signaldi
The name of the signal to supervise.

PersBool

Data type: bool
The persistent variable to supervise.

[\Flanks]

Data type: switch
The positive and the negative edge of the signal is valid for a search hit. If using
argument PersBool it is the value change of the variable that is valid for a search
hit.
For signal: If the argument \Flanks is omitted, only the positive edge of the signal
is valid for a search hit and a signal supervision will be activated at the beginning
of a search process. This means that if the signal has the positive value already
at the beginning of a search process, or the communication with the signal is lost
then the robot movement is stopped as quickly as possible, while keeping the TCP
on the path (soft stop). A user recovery error ERR_SIGSUPSEARCHwill be generated
and can be handled in the error handler.
For persistent variable: If the argument \Flanks is omitted, it is only when the
value change to TRUE that is a valid search hit and a variable supervision will be
activated at the beginning of a search process. This means that if persistent variable
has the positive value already at the beginning of a search process then the robot
movement is stopped as quickly as possible, while keeping the TCP on the path
(soft stop). A user recovery error ERR_PERSSUPSEARCH will be generated and can
be handled in the error handler.

[\PosFlank]

Data type: switch

Continues on next page
670 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot
RobotWare - OS
Continued

The positive edge of the signal is valid for a search hit, or the change of the value
to TRUE if using a persistent variable.

[\NegFlank]

Data type: switch
The negative edge of the signal is valid for a search hit, or the change of the value
to FALSE if using a persistent variable.

[\HighLevel]

Data type: switch
The same functionality as if not using \Flanks switch.
For signal: The positive edge of the signal is valid for a search hit, and a signal
supervision will be activated at the beginning of a search process. This means that
if the signal has the positive value already at the beginning of a search process or
the communication with the signal is lost then the robot movement is stopped as
quickly as possible, while keeping the TCP on the path (soft stop). A user recovery
error ERR_SIGSUPSEARCHwill be generated and can be handled in the error handler.
For persistent variable: Only the value change to TRUE is a valid search hit and a
variable supervision will be activated at the beginning of a search process. This
means that if persistent variable has the positive value already at the beginning of
a search process then the robot movement is stopped as quickly as possible, while
keeping the TCP on the path (soft stop). A user recovery error ERR_PERSSUPSEARCH
will be generated and can be handled in the error handler.

[\LowLevel]

Data type: switch
For signal: The negative edge of the signal is valid for a search hit, and a signal
supervision will be activated at the beginning of a search process. This means that
if the signal has value 0 already at the beginning of a search process or the
communication with the signal is lost then the robot movement is stopped as quickly
as possible, while keeping the TCP on the path (soft stop). A user recovery error
ERR_SIGSUPSEARCH will be generated and can be handled in the error handler.
For persistent variable: Only the value change to FALSE is a valid search hit and
a variable supervision will be activated at the beginning of a search process. This
means that if persistent variable has the value FALSE already at the beginning of
a search process then the robot movement is stopped as quickly as possible, while
keeping the TCP on the path (soft stop). A user recovery error ERR_PERSSUPSEARCH
will be generated and can be handled in the error handler.

SearchPoint

Data type: robtarget
The position of the TCP and external axes when the search signal has been
triggered. The position is specified in the outermost coordinate system taking the
specified tool, work object, and active ProgDisp/ExtOffs coordinate system into
consideration.

ToPoint

Data type: robtarget

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 671
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot

RobotWare - OS
Continued

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).
SearchL always uses a stop point as zone data for the destination.

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the external axes, and the tool reorientation.

[\V]

Velocity
Data type: num
This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified for a linear movement relative
to the work object to be performed.

[\Corr]

Correction

Continues on next page
672 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot
RobotWare - OS
Continued

Data type: switch
Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position if this argument is present.
The RobotWare option Path Offset is required when using this argument.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveL for information about linear movement.
Themovement always ends with a stop point, i.e. the robot stops at the destination
point. If a flying search is used, i.e. the \Sup argument is specified or none switch
at all is specified then the robot movement always continues to the programmed
destination point. If a search is made using the switch \Stop, \PStop, or \SStop
the robot movement stops when the first search hit is detected.
The SearchL instruction stores the position of the TCPwhen the value of the digital
signal or persistent variable changes to the requested one, as illustrated in figure
below.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 673
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot

RobotWare - OS
Continued

The figure shows how flank-triggered signal detection is used (the position is stored
when the signal is changed the first time only).

xx0500002243

More examples
More examples of how to use the instruction SearchL are illustrated below.

Example 1
SearchL \Sup, di1 \Flanks, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10. When the value
of the signal di1 changes to active or passive the position is stored in sp. If the
value of the signal changes twice then the program generates an error after the
search process is finished.

Example 2
SearchL \Stop, di1, sp, p10, v100, tool1;

MoveL sp, v100, fine \Inpos := inpos50, tool1;

PDispOn *, tool1;

MoveL p100, v100, z10, tool1;

MoveL p110, v100, z10, tool1;

MoveL p120, v100, z10, tool1;

PDispOff;

At the beginning of the search process, a check on the signal di1 will be done and
if the signal already has a positive value or the communication with the signal is
lost, the robot stops. Otherwise the TCP of tool1 is moved linearly towards the
position p10. When the value of the signal di1 changes to active, the position is
stored in sp. The robot is moved back to this point using an accurately defined
stop point. Using program displacement, the robot then moves relative to the
searched position, sp.

Example 3
PERS bool MyTrigger:=FALSE;

...

SearchL \Stop, MyTrigger, sp, p10, v100, tool1;

MoveL sp, v100, fine \Inpos := inpos50, tool1;

PDispOn *, tool1;

MoveL p100, v100, z10, tool1;

MoveL p110, v100, z10, tool1;

MoveL p120, v100, z10, tool1;

PDispOff;

Continues on next page
674 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot
RobotWare - OS
Continued

At the beginning of the search process, a check on the persistent variable
MyTrigger will be done and if the variable already is TRUE, the robot stops.
Otherwise the TCP of tool1 is moved linearly towards the position p10. When the
value of the persistent variable MyTrigger changes to TRUE, the position is
stored in sp. The robot is moved back to this point using an accurately defined
stop point. Using program displacement, the robot then moves relative to the
searched position, sp.

Limitations
Zone data for the positioning instruction that precedes SearchL must be used
carefully. The start of the search, i.e. when the I/O signal is ready to react, is not,
in this case, the programmed destination point of the previous positioning instruction
but a point along the real robot path. The figures below illustrate examples of things
that may go wrong when zone data other than fine is used.
The following figure shows that a match is made on the wrong side of the object
because the wrong zone data was used.

xx0500002244

The following figure shows that no match was detected because the wrong zone
data was used.

xx0500002245

The following figure shows that no match was detected because the wrong zone
data was used.

xx0500002246

Limitations for searching if coordinated synchronized movements:
• If using SearchL, SearchC or SearchExtJ for one program task and some

other move instruction in other program task, it is only possible to use flying

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 675
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot

RobotWare - OS
Continued

search with switch \Sup. Besides that, only possible to do error recovery
with TRYNEXT.

• It’s possible to use all searching functionality, if using some of the instructions
SearchL, SearchC or SearchExtJ in all involved program tasks with
coordinated synchronized movements and generate search hit from same
digital input signal. This will generate search hit synchronously in all search
instructions. Any error recoverymust also be the same in all involved program
tasks.

While searching is active, it isn’t allowed to store current path with instruction
StorePath.
Repetition accuracy for search hit position with TCP speed 20 - 1000 mm/s 0.1 -
0.3 mm.
Typical stop distance using a search velocity of 50 mm/s:

• without TCP on path (switch \Stop) 1-3 mm
• with TCP on path (switch \PStop) 15-25 mm
• with TCP near path (switch \SStop) 4-8 mm

Limitations for searching on a conveyor:
• a search will stop the robot when hit or if the search fails, so make the search

in the same direction as the conveyor moves and continue after the
search-stop with a move to a safe position. Use error handling to move to a
safe position when search fails.

• the repetition accuracy for the search hit position will be poorer when
searching on a conveyor and depends on the speed of the conveyor and
how stabil the speed is.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

• No signal detection occurred.
• More than one signal detection occurred – this oc-

curs only if the \Sup argument is used.

ERR_WHLSEARCH

The signal has already a positive value at the beginning of
the search process or the communication with the signal
is lost.

ERR_SIGSUPSEARCH

This occurs only if the \Flanks argument is omitted.

The persistent variable is already TRUE at the beginning
of the search process.

ERR_PERSSUPSEARCH

This occurs only if the \Flanks argument is omitted.

Errors can be handled in different ways depending on the selected running mode:
• Continuous forward / Instruction forward / ERR_WHLSEARCH: No position

is returned and the movement always continues to the programmed

Continues on next page
676 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot
RobotWare - OS
Continued

destination point. The system variable ERRNO is set to ERR_WHLSEARCH and
the error can be handled in the error handler of the routine.

• Continuous forward / Instruction forward / ERR_SIGSUPSEARCH and
ERR_PERSSUPSEARCH: No position is returned and the movement always
stops as quickly as possible at the beginning of the search path. The system
variable ERRNO is set to ERR_SIGSUPSEARCH or ERR_PERSSUPSEARCH
depending on used argument (signal or persistent variable), and the error
can be handled in the error handler of the routine.

• Instruction backward: During backward execution the instruction carries
out the movement without any supervision.

Example
VAR num fk;

...

MoveL p10, v100, fine, tool1;

SearchL \Stop, di1, sp, p20, v100, tool1;

...

ERROR

IF ERRNO=ERR_WHLSEARCH THEN

StorePath;

MoveL p10, v100, fine, tool1;

RestoPath;

ClearPath;

StartMove;

RETRY;

ELSEIF ERRNO=ERR_SIGSUPSEARCH THEN

TPWrite "The signal of the SearchL instruction is already
high!";

TPReadFK fk,"Try again after manual reset of signal ?","YES",
stEmpty, stEmpty, stEmpty, "NO";

IF fk = 1 THEN

StorePath;

MoveL p10, v100, fine, tool1;

RestoPath;

ClearPath;

StartMove;

RETRY;

ELSE

Stop;

ENDIF

ENDIF

If the signal is already active at the beginning of the search process or the
communication with the signal is lost then a user dialog will be activated (TPReadFK
...;). Reset the signal and push YES on the user dialog, and the robot moves
back to p10 and tries once more. Otherwise program execution will stop.
If the signal is passive at the beginning of the search process then the robot
searches from position p10 to p20. If no signal detection occurs then the robot
moves back to p10 and tries once more.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 677
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot

RobotWare - OS
Continued

Syntax
SearchL

['\' Stop ','] | ['\' PStop ','] | ['\' SStop ','] | ['\'
Sup ',']

[Signal ':='] < variable (VAR) of signaldi > |

[PersBool ':='] < persistent (PERS) of bool >

['\' Flanks] |

['\' PosFlank] |

['\' NegFlank] |

['\' HighLevel] |

['\' LowLevel] ','

[SearchPoint ':='] < var or pers (INOUT) of robtarget > ','

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

['\' V ':=' < expression (IN) of num >] |

['\' T ':=' < expression (IN) of num >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

['\' Corr]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

SearchC - Searches circularly using the robot on
page 650

Circular searches

CorrWrite - Writes to a correction generator on page168Writes to a corrections entry

MoveL - Moves the robot linearly on page 457Moves the robot linearly

Technical reference manual - RAPID OverviewLinear movement

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

Technical reference manual - RAPID OverviewUsing error handlers

Technical reference manual - RAPID OverviewMotion in general

MoveL - Moves the robot linearly on page 457Example of how to use TLoad,
Total Load.

GripLoad - Defines the payload for a robot on page 266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification
service routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated
mode without payload.
(Topic I/O, Type System Input,
Action values, SimMode)

Continues on next page
678 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System parametersSystemparameterModalPayLoad-
Mode for activating and deactivat-
ing payload.
(Topic Controller, Type General
RAPID, Action values, ModalPay-
LoadMode)

Application manual - Controller software IRC5Path Offset

Technical reference manual - RAPID Instructions, Functions and Data types 679
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.234 SearchL - Searches linearly using the robot

RobotWare - OS
Continued

1.235 SenDevice - connect to a sensor device

Usage
SenDevice is used to connect to a sensor device connected to the serial sensor
interface.
The sensor interface communicates with sensors over serial channels using the
RTP1 transport protocol.
This is an example of a sensor channel configuration.
COM_PHY_CHANNEL:

• Name “COM1:”
• Connector “COM1”
• Baudrate 19200

COM_TRP:
• Name “sen1:”
• Type “RTP1”
• PhyChannel “COM1”

Basic examples
The following example illustrates the instruction SenDevice:

Example 1
! Define variable numbers

CONST num SensorOn := 6;

CONST num XCoord := 8;

CONST num YCoord := 9;

CONST num ZCoord := 10;

VAR pos SensorPos;

! Connect to the sensor device“ sen1:” (defined in sio.cfg).

SenDevice "sen1:";

! Request start of sensor meassurements

WriteVar "sen1:", SensorOn, 1;

! Read a cartesian position from the sensor.

SensorPos.x := ReadVar "sen1:", XCoord;

SensorPos.y := ReadVar "sen1:", YCoord;

SensorPos.z := ReadVar "sen1:", ZCoord;

! Stop sensor

WriteVar "sen1:", SensorOn, 0;

Arguments
SenDevice device

device

Data type: string
The I/O device name configured in sio.cfg for the sensor used.

Continues on next page
680 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.235 SenDevice - connect to a sensor device
Sensor Interface

Syntax
ReadBlock

[device' :='] < expression(IN) of string>','

[BlockNo' :='] < expression (IN) of num > ','

[FileName' :='] < expression (IN) of string > ';'

Related information

SeeFor information about

WriteVar - Write variable on page 1086Write a sensor variable

ReadVar - Read variable from a device on page 1408Read a sensor variable

WriteBlock - Write block of data to device on page 1076Write a sensor data block

Technical reference manual - System parametersConfiguration of sensor commu-
nication

Technical reference manual - RAPID Instructions, Functions and Data types 681
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.235 SenDevice - connect to a sensor device

Sensor Interface
Continued

1.236 Set - Sets a digital output signal

Usage
Set is used to set the value of a digital output signal to one.

Basic examples
The following examples illustrate the instruction Set:

Example 1
Set do15;

The signal do15 is set to 1.

Example 2
Set weldon;

The signal weldon is set to 1.

Arguments
Set Signal

Signal

Data type: signaldo
The name of the signal to be set to one.

Program execution
There is a short delay before the signal physically gets its new value. If you do not
want the program execution to continue until the signal has got its new value then
you can use the instruction SetDO with the optional parameter \Sync.
The true value depends on the configuration of the signal. If the signal is inverted
in the system parameters then this instruction causes the physical channel to be
set to zero.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
Set

[Signal ':='] < variable (VAR) of signaldo > ';'

Continues on next page
682 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.236 Set - Sets a digital output signal
RobotWare - OS

Related information

SeeFor information about

Reset - Resets a digital output signal on page602Setting a digital output signal to zero

SetDO - Changes the value of a digital output
signal on page 695

Change the value of a digital output signal

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical referencemanual - SystemparametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 683
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.236 Set - Sets a digital output signal

RobotWare - OS
Continued

1.237 SetAllDataVal - Set a value to all data objects in a defined set

Usage
SetAllDataVal(Set All Data Value) makes it possible to set a new value to all
data objects of a certain type that match the given grammar.

Basic examples
The following example illustrates the instruction SetAllDataVal:

VAR mydata mydata0:=0;

...

SetAllDataVal "mydata"\TypeMod:="mytypes"\Hidden,mydata0;

This will set all data objects of data type mydata in the system to the same value
that the variable mydata0 has (in the example to 0). The user defined data type
mydata is defined in the module mytypes.

Arguments
SetAllDataVal Type [\TypeMod] [\Object] [\Hidden] Value

Type

Data type: string
The type name of the data objects to be set.

[\TypeMod]

Type Module
Data type: string
The module name where the data type is defined if using user defined data types.

[\Object]

Data type: string
The default behavior is to set all data object of the data type above but this option
makes it possible to name one or several objects with a regular expression. (see
also instruction SetDataSearch)

[\Hidden]

Data type: switch
This also matches data objects that are in routines (routine data or parameters)
hidden by some routine in the call chain.

Value

Data type: anytype
Variable which holds the new value to be set. The data type must be the same as
the data type for the object to be set.

Program execution
The instruction will fail if the specification for Type or TypeMod is wrong.
If the matching data object is an array then all elements of the array will be set to
the specified value.

Continues on next page
684 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.237 SetAllDataVal - Set a value to all data objects in a defined set
RobotWare - OS

If the matching data object is read-only data then the value will not be changed.
If the system doesn’t have any matching data objects then the instruction will
accept it and return successfully.

Limitations
For a semivalue data type it is not possible to search for the associated value data
type. E.g. if searching for dionum then there are no search hits for signal signaldi
and if searching for num then there are no search hits for signals signalgi or
signalai.
It is not possible to set a value to a variable declared as LOCAL in a built in RAPID
module.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The data object and the variable used in argument Value
is of different types. If using ALIAS datatypes, you will also
get this ERROR, eventhough the typesmight have the same
base data type.

ERR_SYMBOL_TYPE

Syntax
SetAllDataVal

[Type ':='] < expression (IN) of string >

['\'TypeMod' :='<expression (IN) of string>]

['\'Object' :='<expression (IN) of string>]

['\'Hidden] ','

[Value ':='] <variable (VAR) of anytype>';'

Related information

SeeFor information about

SetDataSearch - Define the symbol set in a search se-
quence on page 688

Define a symbol set in a search
session

GetNextSym - Get next matching symbol on page1275Get next matching symbol

GetDataVal - Get the value of a data object on page254Get the value of a data object

SetDataVal - Set the value of a data object on page692Set the value of a data object

datapos - Enclosing block for a data object on page1608The related data type datapos

Application manual - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 685
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.237 SetAllDataVal - Set a value to all data objects in a defined set

RobotWare - OS
Continued

1.238 SetAO - Changes the value of an analog output signal

Usage
SetAO is used to change the value of an analog output signal.

Basic examples
The following example illustrates the instruction SetAO:
See also More examples on page 687.

Example 1
SetAO ao2, 5.5;

The signal ao2 is set to 5.5.

Arguments
SetAO Signal Value

Signal

Data type: signalao
The name of the analog output signal to be changed.

Value

Data type: num
The desired value of the signal.

Program execution
The programmed value is scaled (in accordance with the system parameters)
before it is sent on the physical channel. A diagram of how analog signal values
are scaled is shown in the figure below.

xx0500002408

Continues on next page
686 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.238 SetAO - Changes the value of an analog output signal
RobotWare - OS

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed Value argument for the specified analog
output signal Signal is outside limits.

ERR_AO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

More examples
More examples of the instruction SetAO are illustrated below.

Example 1
SetAO weldcurr, curr_outp;

The signal weldcurr is set to the same value as the current value of the variable
curr_outp.

Syntax
SetAO

[Signal ':='] < variable (VAR) of signalao > ','

[Value ':='] < expression (IN) of num > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 687
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.238 SetAO - Changes the value of an analog output signal

RobotWare - OS
Continued

1.239 SetDataSearch - Define the symbol set in a search sequence

Usage
SetDataSearch is used together with function GetNextSym to retrieve data objects
from the system.

Basic examples
The following example illustrates the instruction SetDataSearch:

Example 1
VAR datapos block;

VAR string name;

...

SetDataSearch "robtarget"\InTask;

WHILE GetNextSym(name,block \Recursive) DO

...

This session will find all robtarget’s object in the task.

Arguments
SetDataSearch Type [\TypeMod] [\Object] [\PersSym]

[\VarSym][\ConstSym] [\InTask] | [\InMod]
[\InRout][\GlobalSym] | [\LocalSym]

Type

Data type: string
The data type name of the data objects to be retrieved.

[\TypeMod]
Type Module
Data type: string
The module name where the data type is defined, if using user defined data types.

[\Object]

Data type: string
The default behavior is to set all data objects of the data type above, but this option
makes it possible to name one or several data objects with a regular expression.
A regular expression is a powerful mechanism to specify a grammar to match the
data object names. The string could consist of either ordinary characters andmeta
characters. A meta character is a special operator used to represent one or more
ordinary characters in the string with the purpose to extend the search. It is possible
to see if a string matches a specified pattern as a whole or search within a string
for a substring matching a specified pattern.
Within a regular expression all alphanumeric characters match themselves. That
is to say that the pattern "abc" will only match a data object named "abc". Tomatch
all data object names containing the character sequence "abc" it is necessary to
add some meta characters. The regular expression for this is ".*abc.*".

Continues on next page
688 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.239 SetDataSearch - Define the symbol set in a search sequence
RobotWare - OS

The available meta character set is shown below.

MeaningExpression

Any single character..

Any single character in the non-empty set s, where s is a se-
quence of characters. Ranges may be specified as c-c.

[s]

Any single character not in the set s.[^s]

Zero or more occurrences of the regular expression r.r*

One or more occurrences of the regular expression rr+

Zero or one occurrence of the regular expression r.r?

The regular expression r. Used for separate that regular ex-
pression from another.

(r)

The regular expressions r or r’.r | r’

Any character sequence (zero, one, or several characters)..*

The default behavior is to accept any symbols but if one or several of following
PersSym, VarSym, or ConstSym is specified then only symbols that match the
specification are accepted:

[\PersSym]

Persistent Symbols
Data type: switch
Accept persistent variable (PERS) symbols.

[\VarSym]

Variable Symbols
Data type: switch
Accept variable (VAR) symbols.

[\ConstSym]

Constant Symbols
Data type: switch
Accept constant (CONST) symbols.
If not one of the flags \InTask or \InMod are specified then the search is started
at system level. The system level is the root to all other symbol definitions in the
symbol tree. At the system level all build- in symbols are located plus the handle
to the task level. At the task level all loaded global symbols are located plus the
handle to the modules level.
If the \Recursive flag is set in GetNextSym then the search session will enter all
loaded modules and routines below the system level.

[\InTask]

In Task
Data type: switch
Start the search at the task level. At the task level all loaded global symbols are
located plus the handle to the modules level.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 689
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.239 SetDataSearch - Define the symbol set in a search sequence

RobotWare - OS
Continued

If the \Recursive flag is set in GetNextSym then the search session will enter all
loaded modules and routines below the task level.

[\InMod]

In Module
Data type: string
Start the search at the specified module level. At the module level all loaded global
and local symbols declared in the specified module are located plus the handle to
the routines level.
If the \Recursive flag is set in GetNextSym then the search session will enter all
loaded routines below the specifiedmodule level (declared in the specifiedmodule).

[\InRout]

In Routine
Data type: string
Search only at the specified routine level.
The module name for the routine must be specified in the argument \InMod.
The default behavior is to match both local and global module symbols, but if one
of following \GlobalSym or \LocalSym is specified then only symbols that match
the specification are accepted:

[\GlobalSym]

Global Symbols
Data type: switch
Skip local module symbols.

[\LocalSym]

Local Symbols
Data type: switch
Skip global module symbols.

Program execution
The instruction will fail if the specification for one of Type, TypeMod, InMod, or
InRout is wrong.
If the system doesn’t have any matching objects the instruction will accept it and
return successfully but the first GetNextSym will return FALSE.

Limitations
Array data objects cannot be defined in the symbol search set and cannot be found
in a search sequence.
For a semivalue data type it is not possible to search for the associated value data
type. E.g. if searching for dionum then there are no search hits for signal signaldi
and if searching for num then there are no search hits for signals signalgi or
signalai.
Installed built-in symbols declared as LOCAL will never be found, irrespective of
use of argument \GlobalSym, \LocalSym or none of these.

Continues on next page
690 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.239 SetDataSearch - Define the symbol set in a search sequence
RobotWare - OS
Continued

Installed built-in symbols declared as global or as TASK will always be found,
irrespective of use of argument \GlobalSym, \LocalSym or none of these.
It is not possible to use SetDataSearch for searching for data of some ALIAS
data type defined with RAPID code. No limitation for predefined ALIAS data type.

Syntax
SetDataSearch

[Type ':='] < expression (IN) of string >

['\'TypeMod ':='<expression (IN) of string>]

['\'Object ':='<expression (IN) of string>]

['\'PersSym]

['\'VarSym]

['\'ConstSym]

['\'InTask]

| ['\'InMod' :='<expression (IN) of string>]

['\'InRout ':='<expression (IN) of string>]

['\'GlobalSym]

| ['\'LocalSym]' ;'

Related information

SeeFor information about

GetNextSym - Get next matching symbol on page1275Get next matching symbol

GetDataVal - Get the value of a data object on page254Get the value of a data object

SetAllDataVal - Set a value to all data objects in a
defined set on page 684

Set the value of many data objects

datapos - Enclosing block for a data object on page1608The related data type datapos

Application manual - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 691
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.239 SetDataSearch - Define the symbol set in a search sequence

RobotWare - OS
Continued

1.240 SetDataVal - Set the value of a data object

Usage
SetDataVal (Set Data Value) makes it possible to set a value for a data object
that is specified with a string variable.

Basic examples
The following examples illustrate the instruction SetDataVal:

Example 1
VAR num value:=3;

...

SetDataVal "reg"+ValToStr(ReadNum(mycom)),value;

This will set the value 3 to a register with a number that is received from the serial
channel mycom.

Example 2
VAR datapos block;

VAR bool truevar:=TRUE;

...

SetDataSearch "bool" \Object:="my.*" \InMod:="mymod"\LocalSym;

WHILE GetNextSym(name,block) DO

SetDataVal name\Block:=block,truevar;

ENDWHILE

This session will set all local bool that begin with my in the module mymod to TRUE.

Example 3
VAR string StringArrVar_copy{2};

...

StringArrVar_copy{1} := "test1";

StringArrVar_copy{2} := "test2";

SetDataVal "StringArrVar", StringArrVar_copy;

This session will set the array StringArrVar to contain the two strings test1
and test2.

Arguments
SetDataVal Object [\Block]|[\TaskRef]|[\TaskName] Value

Object

Data type: string
The name of the data object.

[\Block]
Data type: datapos
The enclosed block to the data object. This can only be fetched with the
GetNextSym function.
If this argument is omitted then the value of the visible data object in the current
program execution scope will be set.

Continues on next page
692 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.240 SetDataVal - Set the value of a data object
RobotWare - OS

[\TaskRef]

Task Reference
Data type: taskid
The program task identity in which to search for the data object specified. When
using this argument, you may search for PERS or TASKPERS declarations in other
tasks, any other declarations will result in an error.
For all program tasks in the system the predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1
task the variable identity will be T_ROB1Id.

[\TaskName]

Data type: string
The program task name in which to search for the data object specified. When
using this argument, you may search for PERS or TASKPERS declarations in other
tasks, any other declarations will result in an error.

Value

Data type: anytype
Variable which holds the new value to be set. The data type must be the same as
the data type for the data object to be set. The set value must be fetched from a
variable but can be stored in a variable or persistent.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName
• The data object is non-existent.
• The data object is read-only data.
• The data object is routine data or routine parameter

and not located in the current active routine.
• Searching in other tasks for other declarations than

PERS or TASKPERS. i

ERR_SYM_ACCESS

The data object and the variable used in argument Value
have different dimensions

ERR_INVDIM

The data object and the variable used in argument Value
is of different types. If using ALIAS datatypes, you will also
get this ERROR, even though the types might have the
same base data type.

ERR_SYMBOL_TYPE

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

i When using the arguments TaskRef or TaskName you may search for PERS or TASKPERS
declarations in other tasks, any other declarations will result in an error.
Searching for a PERS declared as LOCAL in other tasks will also result in an error.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 693
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.240 SetDataVal - Set the value of a data object

RobotWare - OS
Continued

Limitations
For a semivalue data type it is not possible to search for the associated value data
type. E.g. if searching for dionum then no search hit for signal signaldi will be
obtained and if searching for num then no search hit for signals signalgi or
signalai will be obtained.
It is not possible to set a value to a variable declared as LOCAL in a built-in RAPID
module.

Syntax
SetDataVal

[Object ':='] < expression (IN) of string >

['\'Block' :='<variable (VAR) of datapos>]

|['\'TaskRef' :=' <variable (VAR) of taskid>]

|['\'TaskName' :=' <expression (IN) of string>] ',']

[Value ':='] <variable (VAR) of anytype>]';'

Related information

SeeFor information about

SetDataSearch - Define the symbol set in a search
sequence on page 688

Define a symbol set in a search session

GetNextSym - Get next matching symbol on
page 1275

Get next matching symbol

GetDataVal - Get the value of a data object on
page 254

Get the value of a data object

SetAllDataVal - Set a value to all data objects in
a defined set on page 684

Set the value of many data objects

datapos - Enclosing block for a data object on
page 1608

The related data type datapos

Application manual - Controller software IRC5Advanced RAPID

694 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.240 SetDataVal - Set the value of a data object
RobotWare - OS
Continued

1.241 SetDO - Changes the value of a digital output signal

Usage
SetDO is used to change the value of a digital output signal, with or without a time
delay or synchronization.

Basic examples
The following examples illustrate the instruction SetDO:

Example 1
SetDO do15, 1;

The signal do15 is set to 1.

Example 2
SetDO weld, off;

The signal weld is set to off.

Example 3
SetDO \SDelay := 0.2, weld, high;

The signal weld is set to high with a delay of 0.2 s. The program execution
continues with the next instruction.

Example 4
SetDO \Sync ,do1, 0;

The signal do1 is set to 0. Program execution waits until the signal is physically
set to the specified value.

Arguments
SetDO [\SDelay]|[\Sync] Signal Value

[\SDelay]

Signal Delay
Data type: num
Delays the change for the amount of time given in seconds (max. 2000s). Program
execution continues directly with the next instruction. After the given time delay
the signal is changed without the rest of the program execution being affected.

[\Sync]

Synchronization
Data type: switch
If this argument is used then the program execution will wait until the signal is
physically set to the specified value.

Signal

Data type: signaldo
The name of the signal to be changed.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 695
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.241 SetDO - Changes the value of a digital output signal

RobotWare - OS

Value

Data type: dionum
The desired value of the signal 0 or 1.

Set digital output toSpecified Value

00

1Any value except 0

Program execution
The true value depends on the configuration of the signal. If the signal is inverted
in the system parameters then the value of the physical channel is the opposite.
If neither of the arguments \SDelay or \Sync are used then the signal will be set
as fast as possible, and the next instruction will be executed at once without waiting
for the signal to be physically set.

Limitations
If a SetDO with a \SDelay argument is followed by a new SetDO on the same
signal, with or without \SDelay argument, then the first SetDO will be cancelled
if the second SetDO is executed before the delay time of the first SetDO have
expired.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The value for the SDelay argument exceeds the maximum
value allowed (2000 s).

ERR_ARGVALERR

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
SetDO

['\' SDelay ':=' < expression (IN) of num > ',']

|['\'Sync',']

[Signal ':='] < variable (VAR) of signaldo > ','

[Value ':='] < expression (IN) of dionum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Continues on next page
696 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.241 SetDO - Changes the value of a digital output signal
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 697
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.241 SetDO - Changes the value of a digital output signal

RobotWare - OS
Continued

1.242 SetGO - Changes the value of a group of digital output signals

Usage
SetGO is used to change the value of a group of digital output signals with or
without a time delay.

Basic examples
The following examples illustrate the instruction SetGO:

Example 1
SetGO go2, 12;

The signal go2 is set to 12. If go2 comprises 4 signals, e.g. outputs 6-9, then
outputs 6 and 7 are set to zero while outputs 8 and 9 are set to one.

Example 2
SetGO \SDelay := 0.4, go2, 10;

The signal go2 is set to 10. If go2 comprises 4 signals, e.g. outputs 6-9, then
outputs 6 and 8 are set to zero while outputs 7 and 9 are set to one with a delay
of 0.4 s. The program execution continues with the next instruction.

Example 3
SetGO go32, 4294967295;
The signal go32 is set to 4294967295. go32 comprises 32 signals, which are all
set to one.

Arguments
SetGO [\SDelay] Signal Value | Dvalue

[\SDelay]

Signal Delay
Data type: num
Delays the change for the period of time stated in seconds (max. 2000s). Program
execution continues directly with the next instruction. After the specified time delay
the value of the signals is changed without the rest of the program execution being
affected.
If the argument is omitted then the signal values are changed directly.

Signal

Data type: signalgo
The name of the signal group to be changed.

Value

Data type: num
The desired value of the signal group (a positive integer) is shown in the table
below.
The permitted value is dependent on the number of signals in the group. A num

datatype can hold the value for a group of 23 signals or less.

Continues on next page
698 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.242 SetGO - Changes the value of a group of digital output signals
RobotWare - OS

Dvalue

Data type: dnum
The desired value of the signal group (a positive integer) is shown in the table
below.
The permitted value is dependent on the number of signals in the group. A dnum
datatype can hold the value for a group of 32 signals or less.

Permitted DvaluePermitted ValueNo. of signals

0-10-11

0-30-32

0-70-73

0-150-154

0-310-315

0-630-636

0-1270-1277

0-2550-2558

0-5110-5119

0-10230-102310

0-20470-204711

0-40950-409512

0-81910-819113

0-163830-1638314

0-327670-3276715

0-655350-6553516

0-1310710-13107117

0-2621430-26214318

0-5242870-52428719

0-10485750-104857520

0-20971510-209715121

0-41943030-419430322

0-83886070-838860723

0-16777215*24

0-33554431*25

0-67108863*26

0-134217727*27

0-268435455*28

0-536870911*29

0-1073741823*30

0-2147483647*31

0-4294967295*32

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 699
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.242 SetGO - Changes the value of a group of digital output signals

RobotWare - OS
Continued

*) The Value argument of type num can only hold up to 23 signals compared to
the Dvalue argument of type dnum that can hold up to 32 signals.

Program execution
The programmed value is converted to an unsigned binary number. This binary
number is sent on the signal group with the result that individual signals in the
group are set to 0 or 1. Because of internal delays the value of the signal may be
undefined for a short period of time.

Limitations
Maximum number of signals that can be used for a group is 23 if argument Value
is used and 32 if argument Dvalue is used. This limitation is valid for all instructions
and functions using group signals.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The value for the SDelay argument exceeds the maximum
value allowed (2000 s).

ERR_ARGVALERR

The programmed Value or Dvalue argument for the spe-
cified digital group output signal Signal is outside limits.

ERR_GO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
SetGO

['\' SDelay ':=' < expression (IN) of num > ',']

[Signal ':='] < variable (VAR) of signalgo > ','

[Value ':='] < expression (IN) of num >

| [Dvalue' :='] < expression (IN) of dnum > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther input/output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical referencemanual - System parametersConfiguration of I/O (system parameters)

700 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.242 SetGO - Changes the value of a group of digital output signals
RobotWare - OS
Continued

1.243 SetLeadThrough - Activate and deactivate lead-through

Usage
SetLeadThrough is used to activate and deactivate lead-through for a TCP robot.

Basic examples
The following examples illustrates the instruction SetLeadThrough.

Example 1
SetLeadThrough \On;

Activates lead-through for the TCP robot ROB_L if executed in the T_ROB_LRAPID
task. By default a StopMove instruction is ordered when lead-through is activated.

Example 2
SetLeadThrough \Off;

Deactivates lead-through for the TCP robot ROB_L if executed in the T_ROB_L
RAPID task. By default a ClearPath instruction and a StartMove instruction is
also executed.

Example 3
SetLeadThrough \On \NoStopMove;

..

StopMove;

..

SetLeadThrough \Off \NoStartMove \NoClearPath;

..

StartMove;

Set lead-through for the TCP robot. The lead-through will not be activated until a
StopMove instruction has been executed or the program execution has been
stopped. The deactivation of the lead-through is done and later on the movement
is restarted.

Arguments
SetLeadThrough [\On] | [\Off] [\NoStopMove] | [\NoStartMove]

[\NoClearPath]

[\On]

Data type: switch
Activate lead-through.

[\Off]

Data type: switch
Deactivate lead-through.

[\NoStopMove]

Data type: switch
Can only be used together with the \On switch.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 701
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.243 SetLeadThrough - Activate and deactivate lead-through

IRB 14000

If using \NoStopMove switch, no StopMove order will be executed. Lead-through
has been set, but not activated. Lead-through is activated when the program
execution is stopped or when a StopMove instruction is executed.

[\NoStartMove]

Data type: switch
Can only be used together with the \Off switch.
If this switch is used, the restart of the movement of the TCP robot will not be
ordered. A StartMove instruction is needed to resume the movement.

[\NoClearPath]

Data type: switch
Can only be used together with the \Off switch.
The path is not cleared when deactivating lead-through, and the TCP robot will
continue on the programmed path when the StartMove order is executed.

Program execution
Lead-through status is set if the argument \On (or no argument) is used, but not
activated until a StopMove instruction has been executed or the program execution
is stopped.
By default a StopMove instruction is executed when lead-through is activated with
SetLeadThrough \On. A ClearPath instruction and a StartMove instruction
is executed when lead-through is deactivated if not using \NoClearPath or
\NoStartMove switches.
If the SetLeadThrough instruction is executed from a non-motion task, the
lead-through activation will be done for the TCP robot in the connected motion
task. The StartMove order must be done from the same task as the StopMove
order.
The activation of lead-through is valid until a SetLeadThrough \Off instruction
is executed.
The default value (no lead-through) is automatically set:

• when using the restart mode Reset RAPID.
• when loading a new program or a new module.
• when starting program execution from the beginning.
• when moving the program pointer to main.
• when moving the program pointer to a routine.
• when moving the program pointer in such a way that the execution order is

lost.
• when going to motors off.

Continues on next page
702 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.243 SetLeadThrough - Activate and deactivate lead-through
IRB 14000
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The robot is too far from the path (more than 10 mm or 20
degrees) to perform a restart of the interrupted movement.

ERR_PATHDIST

Move the robot closer to the path before attempting RETRY.

The robot is in hold state when executing a
SetLeadThrough \Off.

ERR_STARTMOVE

Wait some time before attempting RETRY.

The robot is in program stop state when executing a
SetLeadThrough \Off.

ERR_PROGSTOP

Wait some time before attempting RETRY.

The robot is already moving when executing a
SetLeadThrough \Off.

ERR_ALRDY_MOVING

Wait some time before attempting RETRY.

Limitations
• Only one of several non-motion tasks is allowed at the same time to do

SetLeadThrough against the same motion task.
• SetLeadThrough only works for TCP robots.

SetLeadThrough can only be used for the IRB 14000 robot (YuMi).

Syntax
SetLeadThrough

['\'On] | ['\'Off]

['\'NoStopMove] | ['\'NoStartMove]

['\'NoClearPath] ';'

Related information

SeeFor information about

IsLeadThrough - Check lead-through status on page1318Check lead-through status

StopMove - Stops robot movement on page 810Stopping movements

StartMove - Restarts robot movement on page 781Continuing a movement

StartMoveRetry - Restarts robot movement and execution
on page 784

Continuing a movement

ClearPath - Clear current path on page 129More examples

Technical reference manual - RAPID Instructions, Functions and Data types 703
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.243 SetLeadThrough - Activate and deactivate lead-through

IRB 14000
Continued

1.244 SetSysData - Set system data

Usage
SetSysData activates the specified system data name for the specified data type.
With this instruction it is possible to change the current active Tool, Work Object,
PayLoad or Total Load for the robot in actual or connected motion task.

Basic examples
The following example illustrates the instruction SetSysData:

Example 1
SetSysData tool5;

The tool tool5 is activated.
SetSysData tool0 \ObjectName := "tool6";

The tool tool6 is activated.
SetSysData anytool \ObjectName := "tool2";

The tool tool2 is activated.

Arguments
SetSysData SourceObject [\ObjectName]

SourceObject

Data type:anytype
Persistent variable that should be active as current system data.
The data type of this argument also specifies the type of system data to be activated
for the robot in actual or connected motion task.

Type of system dataData type

Tooltooldata

Work Objectwobjdata

Payload/Total Loadloaddata

Entire array or record component cannot be used.

[\ObjectName]

Data type:string
If this optional argument is specified then it specifies the name of the data object
to be active (overrides name specified in argument SourceObject). The data type
of the data object to be active is always fetched from the argument SourceObject.

Program execution
The current active system data object for the Tool, Work Object, PayLoad or Total
Load is set according to the arguments.
Note that this instruction only activates a new data object (or the same as before)
and never changes the value of any data object.

Continues on next page
704 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.244 SetSysData - Set system data
RobotWare - OS

Syntax
SetSysData

[SourceObject':='] < persistent(PERS) of anytype>

['\'ObjectName':=' < expression (IN) of string>] ';'

Related information

SeeFor information about

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

loaddata - Load data on page 1650Definition of payload

GetSysData - Get system data on page 259Get system data

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

Technical referencemanual - System parametersSystem parameter ModalPayLoadMode
for activating and deactivating payload.
(Topic Controller, Type General RAPID,
Action values, ModalPayLoadMode)

Application manual - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 705
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.244 SetSysData - Set system data

RobotWare - OS
Continued

1.245 SetupCyclicBool - Setup a Cyclic bool condition

Usage
SetupCyclicBool is used to set up a logical condition that cyclically will be
evaluated and assigned to a persistent boolean variable, a Cyclic bool.

Basic examples
The following example illustrates the instruction SetupCyclicBool.
See also More examples on page 707.

Example 1
PERS bool cyclicflag1;

PROC main()

SetupCyclicBool cyclicflag1, di1=1 AND do2=1;

...

Sets up a cyclic evaluation of the logical condition di1=1 AND do2=1 and assigns
the result to the persistent boolean variable cyclicflag1.

Arguments
SetupCyclicBool Flag Cond [\Signal]

Flag

Data type: bool
The persistent boolean variable that stores the value of the logical condition.

Cond

Data type: bool
The logical expression that should be evaluated cyclically.
The expression can consist of:

• Constants or persistent variables of the types bool, num and dnum (and alias
of bool, num and dnum).

• Global digital input and output signals.
• Operands: 'NOT' 'AND' 'OR' 'XOR' '=' '(' ')'

[\Signal]

Data type: signaldo
The result of the logical condition is set to the digital output signal used in optional
argument Signal when the persistent boolean variable is updated.
It is not recommended to use the resultant signal as a part of the condition to a
cyclic bool.

Program execution
With this instruction it is possible to setup more complex conditions and use the
cyclic flag instead to see if the condition is met or not.
The cyclic evaluation of the logical condition and the assignment to the persistent
boolean variable is done every 12 ms.

Continues on next page
706 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.245 SetupCyclicBool - Setup a Cyclic bool condition
RobotWare - OS

The behavior of the Cyclic bool functionality can be configured. Formore information
see Application manual - Controller software IRC5 and Technical reference
manual - System parameters.

Limitations
• The expression must be evaluated to a boolean value TRUE or FALSE. All

parts of the expression must also be be evaluated to a boolean value TRUE
or FALSE.

• Any PERS num or dnum, CONST num or dnum or literal num or dnum used in a
condition must be of integer type. If using any decimal value this will cause
a fatal error.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with the instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed (only valid for ICI field
bus).

ERR_SIG_NOT_VALID

More examples
More examples of the instruction SetupCyclicBool are illustrated below.

Example 1
ALIAS bool aliasBool;

PERS bool cyclicflag1;

TASK PERS aliasBool cyclicflag2:=FALSE;

PERS aliasBool flag1:=FALSE;

TASK PERS aliasBool flag2:=FALSE;

CONST num HIGH:=1;

CONST num LOW:=0;

PROC main()

SetupCyclicBool cyclicflag1, (di1=HIGH AND di2=HIGH AND di3=LOW)
OR flag1=TRUE;

SetupCyclicBool cyclicflag2, di4=HIGH AND flag2=TRUE;

...

WaitUntil cyclicflag1=TRUE;

IF cyclicflag2 = TRUE THEN

MoveL p1, v1000, z30, tool2;

ELSE

MoveL p2, v1000, z30, tool2;

ENDIF

...

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 707
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.245 SetupCyclicBool - Setup a Cyclic bool condition

RobotWare - OS
Continued

The example above sets up cyclic evaluation of 2 expressions. The execution waits
until cyclicflag1 is set. cyclicflag2 decides to which position the robot should
move.

Example 2
!This condition is wrong:

SetupCyclicBool m1, 5;

!This condition is correct:

SetupCyclicBool m1, myNum = 5;

The first condition is not correct since the value 5 is not a boolean. The second
condition is correct since the comparison can be evaluated as a boolean condition,
i.e. TRUE or FALSE.

Syntax
SetupCyclicBool

[Flag ':='] <persistent (PERS) of bool> ','

[Cond ':='] <expression (IN) of bool>

['\' Signal ':=' <variable (VAR) of signaldo>] ';'

Related information

SeeFor information about

IsCyclicBool - Checks if a persistent variable is
a Cyclic bool on page 1311

Check if a persistent variable is a Cyclic
bool

RemoveCyclicBool - Remove a Cyclic bool con-
dition on page 593

Remove a Cyclic bool condition

RemoveAllCyclicBool - Remove all Cyclic bool
conditions on page 591

Remove all Cyclic bool conditions

Application manual - Controller software IRC5Cyclically evaluated logical conditions,
Cyclic bool.

Technical referencemanual - System parametersConfiguring Cyclic bool.

708 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.245 SetupCyclicBool - Setup a Cyclic bool condition
RobotWare - OS
Continued

1.246 SetupSuperv - Setup conditions for signal supervision in CAP

Usage
SetupSuperv is used to set up conditions for I/O signals to be supervised. The
conditions are collected in different lists:

• PRE
• PRE_START
• END_PRE
• START
• MAIN
• END_MAIN
• START_POST1
• POST1
• END_POST1
• START_POST2
• POST2
• END_POST2

For more information about supervision lists see Application manual - Continuous
Application Platform.
As an optional parameter an out signal can be specified. This out signal is set to
high, if the given condition fails.

Basic example
PROC main()

InitSuperv;

SetupSuperv diWR_EST, ACT, SUPERV_MAIN \ErrIndSig:= do_WR_Sup;

SetupSuperv diGA_EST, ACT, SUPERV_MAIN;

CapL p2, v100, cdata1, weavestart, weave, fine, tWeldGun;

ENDPROC

SetupSuperv is used to set up supervision on signals. If signal diWR_EST fails
during SUPERV_MAIN phase, the digital output signal do_WR_Sup is set high.
The SetupSuperv instruction should be executed only if supervision data is
changed. If the supervision data is never changed, it is a good idea to put it into a
module, that is executed from the startup shelf.

Arguments
SetupSuperv Signal Condition Listtype [\ErrIndSig]

Signal
Data type: signaldi
Digital signal to be supervised.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 709
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.246 SetupSuperv - Setup conditions for signal supervision in CAP

Continuous Application Platform (CAP)

Condition
Data type: num
The name representing one of the following available conditions:

Used for status supervision. Expected signal status during supervi-
sion: active. If the signal becomes passive, supervision triggers.

ACT:

Used for status supervision. Expected signal status during supervi-
sion: passive. If the signal becomes active, supervision triggers.

PAS:

Used for handshake supervision. Expected signal status at the end
of supervision: active. If the signal does not become active within
the chosen timeout, supervision triggers.

POS_EDGE:

Used for handshake supervision. Expected signal status at the end
of supervision: passive. If the signal does not become passive
within the chosen timeout, supervision triggers.

NEG_EDGE:

Listtype
Data type: num
The name representing the number of the different lists (for example, phases in
the process):

• SUPERV_PRE
• SUPERV_PRE_START
• SUPERV_END_PRE
• SUPERV_START
• SUPERV_MAIN
• SUPERV_END_MAIN
• SUPERV_START_POST1
• SUPERV_POST1
• SUPERV_END_POST1
• SUPERV_START_POST2
• SUPERV_POST2
• SUPERV_END_POST2

[\ErrIndSig]
Data type: signaldo
Used to indicate which condition that failed if a failure has occurred. When the
failure occurs the value on this signal is set to 1. This is an optional parameter.

Program execution
The given signal and its condition is added to the selected list. If a signal fails, the
CapL/CapC instruction will report that a supervision error occurred during the
specified phase and which signal(s) failed.

Errors

CAP_SPV_LIM
The maximum number of supervisions set up is exceeded.

Continues on next page
710 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.246 SetupSuperv - Setup conditions for signal supervision in CAP
Continuous Application Platform (CAP)
Continued

CAP_SPV_UNK_LST
The supervision list is unknown.

Limitations
Only digital input signals can be supervised.
Status supervision applies for a complete sequence of CAP instructions (see
section Supervision and process phases in Application manual - Continuous
Application Platform).

Syntax
SetupSuperv

[Signal ':='] < variable (VAR) of signaldi > ','

[Condition ':='] < variable (IN) of num > ','

[Listtype ':='] < variable (IN) of num >

[\ErrIndSig ':=' < variable (VAR) of signaldo >] ';'

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

InitSuperv - Reset all supervision for CAP on
page 305

InitSuperv instruction

RemoveSuperv - Remove condition for one
signal on page 598

RemoveSuperv instruction

Technical reference manual - RAPID Instructions, Functions and Data types 711
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.246 SetupSuperv - Setup conditions for signal supervision in CAP

Continuous Application Platform (CAP)
Continued

1.247 SiConnect - Sensor Interface Connect

Usage
SiConnect is used to establish a connection to an external device.

Basic examples
A basic example of the instruction SiConnect is illustrated below.
See also More examples on page 712.

Example 1
PERS sensor AnyDevice;

...

SiConnect AnyDevice;

Establish a connection to the device called AnyDevice.

Arguments
SiConnect Sensor [\NoStop]

Sensor

Data type: sensor
The descriptor for the external device to connect to. The argument is a persistent
variable and its name must be the same as the name specified as the client in
setup file Settings.xml.

[\NoStop]

Data type: switch
\NoStop will prevent system stop when a communication error with the sensor is
detected. It can be useful if no robot movements are depending on the sensor.
When \NoStop is used, movements in the system will continue even if the
communication with the sensor is lost.
If using \NoStop it is possible to do error handling in a TRAP routine, with the use
of IError or IPers.

Program execution
Loads the current sensor configuration and establishes the connection to the
external device.
The sensor stays connected, even if the program pointer is set to main.

More examples
More examples of how to use the instruction SiConnect are illustrated below.

Example 1
PERS sensor AnyDevice;

PERS robdata DataOut := [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

PERS sensdata DataIn :=
["No",[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

VAR num SampleRate:=64;

...

Continues on next page
712 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.247 SiConnect - Sensor Interface Connect
Robot Reference Interface

! Setup Interface Procedure

PROC RRI_Open()

SiConnect AnyDevice;

! Send and receive data cyclic with 64 ms rate

SiGetCyclic AnyDevice, DataIn, SampleRate;

SiSetCyclic AnyDevice, DataOut, SampleRate;

ENDPROC

When calling routine RRI_Open, first a connection to the device with name
AnyDevice is opened. Then, cyclic transmission is started at rate SampleRate.

Example 2
PERS sensor AnyDevice;

...

SiConnect AnyDevice \NoStop;

! Send and receive data cyclic with 64 ms rate

SiGetCyclic AnyDevice, DataIn, SampleRate;

SiSetCyclic AnyDevice, DataOut, SampleRate;

...

TRAP sensorChange

IF AnyDevice.state = STATE_ERROR THEN

...

ENDIF

ENDTRAP

Establish a connection to the device called AnyDevicewith the optional argument
\NoStop preventing the system to stop if the connection to AnyDevice is broken.
Handle error states in the TRAP routine.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

TCP is used as communication protocol and the connect
operation fails.

ERR_COMM_INIT

If UDP is used as communication protocol no guarantees are given regarding the
success of the connect operation and therefore no error handling is possible at
the connect moment.
The switch \NoStop makes it possible to handle communication errors detected
after a successful connect. \NoStop means that movements and execution of
RAPID continues and that a TRAP routine can be used to handle specific errors
using IError or specific state changes using IPers.

Note

IPers and IError are not safe interrupts, so if an error is detected after a stop,
no TRAP will be executed. A way to handle this problem is to have a SiConnect
\NoStop in the restart shelf, to be sure that the application tries to reestablish
the connection to the client.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 713
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.247 SiConnect - Sensor Interface Connect

Robot Reference Interface
Continued

Syntax
SiConnect

[Sensor ':='] < persistent (PERS) of sensor >

['\' NoStop] ';'

Related information

SeeFor information about

SiClose - Sensor Interface Close on page715.Close connection to an external system.

SiSetCyclic - Sensor Interface Set Cyclic on
page 722.

Register data for cyclic transmission.

SiGetCyclic - Sensor Interface Get Cyclic on
page 717

Subscribe on cyclic data transmission.

sensor - External device descriptor on
page 1705.

Descriptor to the external device.

sensorstate - Communication state of the
device on page 1707.

Communication state of a device.

Applicationmanual - Controller software IRC5Robot Reference Interface

714 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.247 SiConnect - Sensor Interface Connect
Robot Reference Interface
Continued

1.248 SiClose - Sensor Interface Close

Usage
SiClose closes an existing connection to an external device.

Basic examples
Basic example of the instruction SiClose is illustrated below.

Example 1
PERS sensor AnyDevice;

...

SiClose AnyDevice;

Close the connection to the device called AnyDevice.

Arguments
SiClose Sensor

Sensor

Data type: sensor
The descriptor for the external device that should be closed. The argument is a
persistent variable, and its name must be the same as the name specified as the
client in the setup file Settings.xml.

Program execution
Closes an existing connection to the external device.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

TCP is used as communication protocol and the connect
operation fails.

ERR_COMM_INIT

If UDP is used as communication protocol then there is no guarantee regarding
the success of the close operation and therefore no error handling is possible.

Syntax
SiClose

[Sensor ':='] < persistent (PERS) of sensor > ';'

Related information

SeeFor information about

SiConnect - Sensor Interface Connect on
page 712.

Establish a connection to an external system.

SiSetCyclic - Sensor Interface Set Cyclic on
page 722.

Register data for cyclic transmission.

SiGetCyclic - Sensor Interface Get Cyclic on
page 717.

Subscribe on cyclic data transmission.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 715
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.248 SiClose - Sensor Interface Close

Robor Reference Interface

SeeFor information about

sensor - External device descriptor on
page 1705.

Descriptor to the external device.

sensorstate - Communication state of the
device on page 1707.

Communication state of a device.

Applicationmanual - Controller software IRC5Robot Reference Interface

716 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.248 SiClose - Sensor Interface Close
Robor Reference Interface
Continued

1.249 SiGetCyclic - Sensor Interface Get Cyclic

Usage
SiGetCyclic subscribes data for cyclic transmission from an external device.

Basic examples
A basic example of the instruction SiGetCyclic is illustrated below.
See also More examples on page 717.

Example 1
SiConnect AnyDevice;

! Receive data cyclic with 64 ms rate

SiGetCyclic AnyDevice, DataIn, 64;

The example shows how to establish connection to an external device and set up
a cyclic transmission from the device AnyDevice.

Arguments
SiGetCyclic Sensor Data Rate

Sensor

Data type: sensor
A descriptor for the external device to receive cyclic data from. The argument is a
persistent variable, and its name must be the same as the name specified as the
client in setup file Settings.xml.

Data

Data type: anytype
Reference to a persistent containing the data to receive from the client specified
in argument Sensor. The variable must be defined as Readable in the file
Configuration.xml.

Rate

Data type: num
Transfer rate in milliseconds (only multiples of 4ms are supported).

Program execution
Instruction SiGetCyclic subscribes data for cyclic transmission from an external
device.
For SiGetCyclic and SiSetCyclic instructions, a transfer rate of 0 stops
(unregisters / unsubscribes) the cyclic transmission of the given data or data set.

More examples
More examples of how to use the instruction SiGetCyclic are illustrated below.

Example 1
PERS sensor AnyDevice;

PERS robdata DataOut := [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 717
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.249 SiGetCyclic - Sensor Interface Get Cyclic

Robor Reference Interface

PERS sensdata DataIn :=
["No",[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

VAR num SampleRate:=64;

...

! Setup Interface Procedure

PROC RRI_Open()

SiConnect AnyDevice;

! Send and receive data cyclic with 64 ms rate

SiGetCyclic AnyDevice, DataIn, SampleRate;

SiSetCyclic AnyDevice, DataOut, SampleRate;

ENDPROC

When calling routine RRI_Open, first a connection to the device with name
AnyDevice is opened. Then, cyclic transmission is started at rate SampleRate.

Syntax
SiGetCyclic

[Sensor ':='] < persistent (PERS) of sensor > ','

[Data ':='] < persistent (PERS) of anytype > ','

[Rate ':='] < expression (IN) of num >] ';'

Related information

SeeFor information about

SiConnect - Sensor Interface Connect on
page 712.

Establish a connection to an external system.

SiClose - Sensor Interface Close on page715.Close connection to an external system.

SiSetCyclic - Sensor Interface Set Cyclic on
page 722.

Register data for cyclic transmission.

sensor - External device descriptor on
page 1705.

Descriptor to the external device.

sensorstate - Communication state of the
device on page 1707.

Communication state of a device.

Applicationmanual - Controller software IRC5Robot Reference Interface

718 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.249 SiGetCyclic - Sensor Interface Get Cyclic
Robor Reference Interface
Continued

1.250 SingArea - Defines interpolation around singular points

Usage
SingArea is used to define how the robot is to move in the proximity of singular
points.
SingArea is also used to define linear and circular interpolation for robots with
less than six axes, and a six-axes robot can be programmed to run with axis 4
locked to 0 or ±180 degrees.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction SingArea:

Example 1
SingArea \Wrist;

The orientation of the tool may be changed slightly to pass a singular point (axes
4 and 6 in line).
Robots with less than six axes may not be able to reach an interpolated tool
orientation. By using SingArea \Wrist the robot can achieve the movement but
the orientation of the tool will be slightly changed.

Example 2
SingArea \LockAxis4;

A six-axis robot can be programmed to run with axis 4 locked to 0 or ±180 degrees
to avoid singularity problems when axis 5 is close to 0.
The programmed position is reached with axis 4 locked to 0 or ±180 degrees. If
the position was not programmedwith axis 4 at 0 or ±180 degrees, it is now reached
with a different tool orientation.
If the starting position of axis 4 deviates more than 2 degrees from the locked
position, then the first movement will behave as if SingArea was called with the
argument \Wrist.

Example 3
SingArea \Off;

The tool orientation is not allowed to differ from the programmed orientation. If a
singular point is passed then one or more axesmay perform a sweepingmovement
resulting in a reduction in TCP velocity.
Robots with less than six axes may not be able to reach a programmed tool
orientation. As a result the robot will stop.

Arguments
SingArea [\Wrist] | [\LockAxis4] | [\Off]

[\Wrist]

Data type: switch

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 719
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.250 SingArea - Defines interpolation around singular points

RobotWare - OS

The tool orientation is allowed to differ somewhat to avoid wrist singularity. Used
when axes 4 and 6 are parallel (axis 5 at 0 degrees). Also used for linear and circular
interpolation of robots with less than six axes where the tool orientation is allowed
to differ.

[\LockAxis4]

Data type: switch
The programmed position is reached with axis 4 locked to 0 or ±180 degrees. If
the position was not programmedwith axis 4 at 0 or ±180 degrees, it is now reached
with a different tool orientation.
If the starting position of axis 4 deviates more than 2 degrees from the locked
position, then the first movement will behave as if SingArea was called with the
argument \Wrist.

[\Off]

Data type: switch
The tool orientation is not allowed to differ. Used when no singular points are
passed or when the orientation is not permitted to be changed.
If none of the arguments are specified the system will be set to \Off.

Program execution
The specified interpolation applies for the next executed movement instruction
until a new SingArea instruction is executed.
If the argument \Wrist is specified then the orientation is joint-interpolated to
avoid singular points. In this way the TCP follows the correct path, but the
orientation of the tool deviates somewhat. This will also happen when a singular
point is not passed.
If the argument \LockAxis4 is specified, then axis 4 is locked to 0 or ±180 degrees
to avoid singular points. The TCP will in general follow the correct path, but the
orientation of the tool will deviate if the position was not programmed with axis 4
at 0 or ±180 degrees. For paths with large reorientations, the TCP may deviate
from the programmed linear path.
The movement is only affected on execution of linear or circular interpolation.
By default, program execution automatically uses the Off argument for robots with
six axes. Robots with less than six axes may use either the Off argument or the
/Wrist argument by default. This is automatically set in event routine SYS_RESET.
The default value is automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Continues on next page
720 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.250 SingArea - Defines interpolation around singular points
RobotWare - OS
Continued

Syntax
SingArea

['\' Wrist] | ['\' LockAxis4] | ['\' Off] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewSingularity

Technical reference manual - RAPID OverviewInterpolation

motsetdata - Motion settings data on page 1660Motion settings data

Technical reference manual - RAPID Instructions, Functions and Data types 721
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.250 SingArea - Defines interpolation around singular points

RobotWare - OS
Continued

1.251 SiSetCyclic - Sensor Interface Set Cyclic

Usage
SiSetCyclic registers data for cyclic transmission to an external device.

Basic examples
A basic example of the instruction SiSetCyclic is illustrated below.
See also More examples on page 722.

Example 1
PERS sensor AnyDevice;

PERS robdata DataOut := [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

...

SiConnect AnyDevice;

SiSetCyclic AnyDevice, DataOut, 40;

Establish a connection to the device called AnyDevice. Then register data for
cyclic transmission to the external device AnyDevice every 40 ms.

Arguments
SiSetCyclic Sensor Data Rate

Sensor

Data type: sensor
A descriptor for the external device to send data to.

Data

Data type: anytype
Reference to a persistent of any complex or supported simple type containing the
data to be sent to the client specified in argument Sensor. The variable must be
defined asWritable in the Configuration.xml file.

Rate

Data type: num
Transfer rate in milliseconds (only multiples of 4 ms are supported).

Program execution
Instruction SiSetCyclic registers data for cyclic transmission to an external
device.
For SiGetCyclic and SiSetCyclic instructions, a transfer rate of 0 stops
(unregisters / unsubscribes) the cyclic transmission of the given data or data set.

More examples
More examples of how to use the instruction SiSetCyclic are illustrated below.

Example 1
PERS sensor AnyDevice;

PERS robdata DataOut := [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

Continues on next page
722 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.251 SiSetCyclic - Sensor Interface Set Cyclic
Robor Reference Interface

PERS sensdata DataIn :=
["No",[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

VAR num SampleRate:=64;

...

! Setup Interface Procedure

PROC RRI_Open()

SiConnect AnyDevice;

! Send and receive data cyclic with 64 ms rate

SiGetCyclic AnyDevice, DataIn, SampleRate;

SiSetCyclic AnyDevice, DataOut, SampleRate;

ENDPROC

When calling routine RRI_Open, first a connection to the device with name
AnyDevice is opened. Then, cyclic transmission is started at rate SampleRate.

Syntax
SiSetCyclic

[Sensor ':='] < persistent (PERS) of sensor > ','

[Data ':='] < persistent (PERS) of anytype >

[Rate ':='] < expression (IN) of num >] ';'

Related information

SeeFor information about

SiConnect - Sensor Interface Connect on
page 712.

Establish a connection to an external system.

SiClose - Sensor Interface Close on page715.Close connection to an external system.

SiGetCyclic - Sensor Interface Get Cyclic on
page 717.

Subscribe on cyclic data transmission.

sensor - External device descriptor on
page 1705.

Descriptor to the external device.

sensorstate - Communication state of the
device on page 1707.

Communication state of a device.

Applicationmanual - Controller software IRC5Robot Reference Interface

Technical reference manual - RAPID Instructions, Functions and Data types 723
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.251 SiSetCyclic - Sensor Interface Set Cyclic

Robor Reference Interface
Continued

1.252 SkipWarn - Skip the latest warning

Usage
SkipWarn(Skip Warning) is used to skip the latest generated warning message to
be stored in the Event Log during execution in running mode continuously or cycle
(no warnings skipped in FWD or BWD step).
With SkipWarn it is possible to repeatedly do error recovery in RAPID without
filling the Event Log with only warning messages.

Basic examples
The following example illustrates the instruction SkipWarn:

Example 1
%"notexistingproc"%;

nextinstruction;

ERROR

IF ERRNO = ERR_REFUNKPRC THEN

SkipWarn;

TRYNEXT;

ENDIF

ENDPROC

The program will execute the nextinstruction and no warning message will be
stored in the Event Log.

Syntax
SkipWarn ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewError recovery
Technical reference manual - RAPID Overview

errnum - Error number on page 1621Error number

724 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.252 SkipWarn - Skip the latest warning
RobotWare-OS

1.253 SocketAccept - Accept an incoming connection

Usage
SocketAccept is used to accept incoming connection requests. SocketAccept
can only be used for server applications.

Basic examples
The following example illustrates the instruction SocketAccept:
See also More examples on page 726.

Example 1
VAR socketdev server_socket;

VAR socketdev client_socket;

...

SocketCreate server_socket;

SocketBind server_socket,"192.168.0.1", 1025;

SocketListen server_socket;

SocketAccept server_socket, client_socket;

A server socket is created and bound to port 1025 on the controller network address
192.168.0.1. After execution of SocketListen the server socket starts to listen
for incoming connections on this port and address. SocketAccept waits for any
incoming connections, accepts the connection request, and returns a client socket
for the established connection.

Arguments
SocketAccept Socket ClientSocket [\ClientAddress] [\Time]

Socket

Data type: socketdev
The server socket that are waiting for incoming connections. The socket must
already be created, bounded, and ready for listening.

ClientSocket

Data type: socketdev
The returned new client socket that will be updated with the accepted incoming
connection request.

[\ClientAddress]

Data type: string
The variable that will be updated with the IP-address of the accepted incoming
connection request.

[\Time]

Data type: num
The maximum amount of time [s] that program execution waits for incoming
connections. If this time runs out before any incoming connection then the error
handler will be called, if there is one, with the error code ERR_SOCK_TIMEOUT. If
there is no error handler then the execution will be stopped.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 725
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.253 SocketAccept - Accept an incoming connection

Socket Messaging

If parameter \Time is not used then the waiting time is 60 s. To wait forever, use
the predefined constant WAIT_MAX.

Program execution
The server socket will wait for any incoming connection requests. When accepting
the incoming connection request the instruction is ready and the returned client
socket is by default connected and can be used in SocketSend and
SocketReceive instructions.

More examples
More examples of the instruction SocketAccept are illustrated below.

Example 1
VAR socketdev server_socket;

VAR socketdev client_socket;

VAR string receive_string;

VAR string client_ip;

...

SocketCreate server_socket;

SocketBind server_socket, "192.168.0.1", 1025;

SocketListen server_socket;

WHILE TRUE DO

SocketAccept server_socket, client_socket
\ClientAddress:=client_ip;

SocketReceive client_socket \Str := receive_string;

SocketSend client_socket \Str := "Hello client with ip-address
" +client_ip;

! Wait for client acknowledge

...

SocketClose client_socket;

ENDWHILE

ERROR

RETRY;

UNDO

SocketClose server_socket;

SocketClose client_socket;

A server socket is created and bound to port 1025 on the controller network address
192.168.0.1. After execution of SocketListen the server socket starts to listen
for incoming connections on this port and address. SocketAccept will accept the
incoming connection from some client and store the client address in the string
client_ip. Then the server receives a string message from the client and stores
the message in receive_string. Then the server responds with the message "
Hello client with ip-address xxx.xxx.x.x" and closes the client
connection.
After that the server is ready for a connection from the same or some other client
in the WHILE loop. If PP is moved to main in the program then all open sockets are
closed (SocketClose can always be done even if the socket is not created).

Continues on next page
726 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.253 SocketAccept - Accept an incoming connection
Socket Messaging
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The socket is closed (has been closed or is not created). Use
SocketCreate to create a new socket.

ERR_SOCK_CLOSED

The connection was not established within the time out timeERR_SOCK_TIMEOUT

Syntax
SocketAccept

[Socket ':='] < variable (VAR) of socketdev > ','

[ClientSocket ':='] < variable (VAR) of socketdev >

['\' ClientAddress ':=' < variable (VAR) of string>]

['\' Time ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5,
section Socket Messaging

Socket communication in general

SocketCreate - Create a new socket on page735Create a new socket

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketSend - Send data to remote computer on
page 749

Send data to remote computer

SocketReceive - Receive data from remote
computer on page 739

Receive data from remote computer

SocketClose - Close a socket on page 730Close the socket

SocketBind - Bind a socket to my IP-address and
port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketSend - Send data to remote computer on
page 749

Example client socket application

SocketReceive - Receive data from remote
computer on page 739

Example of server socket application

Technical reference manual - RAPID Instructions, Functions and Data types 727
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.253 SocketAccept - Accept an incoming connection

Socket Messaging
Continued

1.254 SocketBind - Bind a socket to my IP-address and port

Usage
SocketBind is used to bind a socket to the specified server IP-address and port
number. SocketBind can only be used for server applications.

Basic examples
The following example illustrates the instruction SocketBind:

Example 1
VAR socketdev server_socket;

SocketCreate server_socket;

SocketBind server_socket, "192.168.0.1", 1025;

A server socket is created and bound to port 1025 on the controller network address
192.168.0.1. The server socket can now be used in an SocketListen instruction
to listen for incoming connections on this port and address.

Arguments
SocketBind Socket LocalAddress LocalPort

Socket

Data type: socketdev
The server socket to bind. The socket must be created but not already bound.

LocalAddress

Data type: string
The server network address to bind the socket to. The only valid addresses are
any public WAN addresses or the controller service port address 192.168.125.1.

LocalPort

Data type: num
The server port number to bind the socket to. Generally ports 1025-4999 are free
to use.

Program execution
The server socked is bound to the specified server port and IP-address.
An error is generated if the specified port is already in use.
Use the SocketBind and SocketListen instructions in the startup of the program
to associate a local address with a socket and then listen for incoming connections
on the specified port. This is recommended to do only once for each socket and
port that is used (TCP/IP).
Use the SocketBind instruction if receiving data with SocketReceiveFrom
(UDP/IP).

Continues on next page
728 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.254 SocketBind - Bind a socket to my IP-address and port
Socket Messaging

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The socket is closed (has been closed or is not created)ERR_SOCK_CLOSED

Use SocketCreate to create a new socket.

The address and port is already in use and cannot be used
again. Use a different port number.

ERR_SOCK_ADDR_INUSE

Syntax
SocketBind

[Socket ':='] < variable (VAR) of socketdev > ','

[LocalAddress ':='] < expression (IN) of string > ','

[LocalPort ':='] < expression (IN) of num > ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

SocketCreate - Create a new socket on page735Create a new socket

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketSend - Send data to remote computer on
page 749

Send data to remote computer

SocketReceive - Receive data from remote com-
puter on page 739

Receive data from remote computer

SocketClose - Close a socket on page 730Close the socket

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketSend - Send data to remote computer on
page 749

Example client socket application

SocketReceive - Receive data from remote com-
puter on page 739

Example server socket application

SocketReceiveFrom - Receive data from remote
computer on page 744

Receive data from remote computer

Technical reference manual - RAPID Instructions, Functions and Data types 729
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.254 SocketBind - Bind a socket to my IP-address and port

Socket Messaging
Continued

1.255 SocketClose - Close a socket

Usage
SocketClose is used when a socket connection is no longer going to be used.
After a socket has been closed it cannot be used in any socket call except
SocketCreate.

Basic examples
The following example illustrates the instruction SocketClose:

Example 1
SocketClose socket1;

The socket is closed and cannot be used anymore.

Arguments
SocketClose Socket

Socket

Data type: socketdev
The socket to be closed.

Program execution
The socket will be closed and its allocated resources will be released.
Any socket can be closed at any time. The socket cannot be used after closing. It
can be reused for a new connection after a call to SocketCreate.

Limitations
Closing the socket connection immediately after sending the data with SocketSend
can lead to loss of sent data. This is because TCP/IP socket has built-in
functionality to resend the data if there is some communication problem.
To avoid such problems with loss of data, do the following before SocketClose:

• handshake the shutdown or
• WaitTime 2

Avoid fast loops with SocketCreate ... SocketClose, because the socket is
not really closed until a certain time (TCP/IP functionality).

Syntax
SocketClose

[Socket ':='] < variable (VAR) of socketdev > ';'

Related information

SeeFor information about

Application manual - Controller software IRC5,
section Socket Messaging

Socket communication in general

SocketCreate - Create a new socket on page 735Create a new socket

Continues on next page
730 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.255 SocketClose - Close a socket
Socket Messaging

SeeFor information about

SocketConnect - Connect to a remote computer
on page 732

Connect to a remote computer (onlycli-
ent)

SocketSend - Send data to remote computer on
page 749

Send data to remote computer

SocketReceive - Receive data from remote com-
puter on page 739

Receive data from remote computer

SocketBind - Bind a socket to my IP-address and
port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketAccept - Accept an incoming connection
on page 725t

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketSend - Send data to remote computer on
page 749

Example client socket application

SocketSendTo - Send data to remote computer
on page 753

Send data to remote computer

SocketReceive - Receive data from remote com-
puter on page 739

Example server socket application

SocketReceiveFrom - Receive data from remote
computer on page 744

Receive data from remote computer

Technical reference manual - RAPID Instructions, Functions and Data types 731
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.255 SocketClose - Close a socket

Socket Messaging
Continued

1.256 SocketConnect - Connect to a remote computer

Usage
SocketConnect is used to connect the socket to a remote computer in a client
application.

Basic examples
The following example illustrates the instruction SocketConnect:
See also More examples on page 733.

Example 1
SocketConnect socket1, "192.168.0.1", 1025;

Trying to connect to a remote computer at ip-address 192.168.0.1 and port 1025.

Arguments
SocketConnect Socket Address Port [\Time]

Socket

Data type: socketdev
The client socket to connect. The socket must be created but not already connected.

Address

Data type: string
The address of the remote computer. The remote computer must be specified as
an IP address. It is not possible to use the name of the remote computer.

Port

Data type: num
The port on the remote computer. Generally ports 1025-4999 are free to use. Ports
below 1025 can already be taken.

[\Time]

Data type: num
The maximum amount of time [s] that program execution waits for the connection
to be accepted or denied. If this time runs out before the condition is met then the
error handler will be called, if there is one, with the error code ERR_SOCK_TIMEOUT.
If there is no error handler then the execution will be stopped.
If parameter \Time is not used the waiting time is 60 s. To wait forever, use the
predefined constant WAIT_MAX.

Program execution
The socket tries to connect to the remote computer on the specified address and
port. The program execution will wait until the connection is established, failed, or
a timeout occurs.

Continues on next page
732 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.256 SocketConnect - Connect to a remote computer
Socket Messaging

More examples
More examples of the instruction SocketConnect are illustrated below.

Example 1
VAR num retry_no := 0;

VAR socketdev my_socket;

...

SocketCreate my_socket;

SocketConnect my_socket, "192.168.0.1", 1025;

...

ERROR

IF ERRNO = ERR_SOCK_TIMEOUT THEN

IF retry_no < 5 THEN

WaitTime 1;

retry_no := retry_no + 1;

RETRY;

ELSE

RAISE;

ENDIF

ENDIF

A socket is created and tries to connect to a remote computer. If the connection
is not established within the default time-out time, i.e. 60 seconds, then the error
handler retries to connect. Four retries are attemped then the error is reported to
the user.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The socket is closed (has been closed or is not created).ERR_SOCK_CLOSED

Use SocketCreate to create a new socket.

Network is unreachable or connection is lost after a socket
is opened.

ERR_SOCK_NET_UNREACH

The connection was not established within the time-out time.ERR_SOCK_TIMEOUT

Syntax
SocketConnect

[Socket ':='] < variable (VAR) of socketdev > ','

[Address ':='] < expression (IN) of string > ','

[Port ':='] < expression (IN) of num >

['\' Time ':=' < expression (IN) of num >] ';'

Related information

Described in:For information about

Application manual - Controller software IRC5Socket communication in general

SocketCreate - Create a new socket on page735Create a new socket

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 733
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.256 SocketConnect - Connect to a remote computer

Socket Messaging
Continued

Described in:For information about

SocketSend - Send data to remote computer on
page 749

Send data to remote computer

SocketReceive - Receive data from remote
computer on page 739

Receive data from remote computer

SocketBind - Bind a socket to my IP-address and
port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketSend - Send data to remote computer on
page 749

Example client socket application

SocketReceive - Receive data from remote
computer on page 739

Example server socket application

734 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.256 SocketConnect - Connect to a remote computer
Socket Messaging
Continued

1.257 SocketCreate - Create a new socket

Usage
SocketCreate is used to create a new socket for connection based communication
or connectionless communication.
Both socket messaging of stream type protocol TCP/IP with delivery guarantee
and datagram protocol UDP/IP is supported. Both server and client application can
be developed. For datagram protocol UDP/IP, broadcast is supported.

Basic examples
The following example illustrates the instruction SocketCreate:

Example 1
VAR socketdev socket1;

...

SocketCreate socket1;

A new socket device using stream type protocol TCP/IP is created and assigned
into the variable socket1.

Example 2
VAR socketdev udp_sock1;

...

SocketCreate udp_sock1 \UDP;

A new socket device using datagram protocol UDP/IP is created and assigned into
the variable udp_sock1.

Arguments
SocketCreate Socket [\UDP]

Socket

Data type: socketdev
The variable for storage of the system’s internal socket data.

[\UDP]

Data type: switch
Specifies that the socket should be of the type datagram protocol UDP/IP.

Program execution
The instruction creates a new socket device.
The socketmust not already be in use. The socket is in use between SocketCreate
and SocketClose.

Limitations
Any number of sockets can be declared but it is only possible to use 32 sockets
at the same time.
Avoid fast loops with SocketCreate ... SocketClose, because the socket is
not really closed until after a certain time (when using TCP/IP functionality).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 735
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.257 SocketCreate - Create a new socket

Socket Messaging

Syntax
SocketCreate

[Socket ':='] < variable (VAR) of socketdev >

['\' UDP] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5,
section Socket Messaging

Socket communication in general

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketSend - Send data to remote computer on
page 749

Send data to remote computer

SocketReceive - Receive data from remote
computer on page 739

Receive data from remote computer

SocketClose - Close a socket on page 730Close the socket

SocketBind - Bind a socket to my IP-address
and port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketSend - Send data to remote computer on
page 749

Example client socket application

SocketSendTo - Send data to remote computer
on page 753

Send data to remote computer

SocketReceive - Receive data from remote
computer on page 739

Example server socket application

SocketReceiveFrom - Receive data from remote
computer on page 744

Receive data from remote computer

736 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.257 SocketCreate - Create a new socket
Socket Messaging
Continued

1.258 SocketListen - Listen for incoming connections

Usage
SocketListen is used to start listening for incoming connections, i.e. start acting
as a server. SocketListen can only used for server applications.

Basic examples
The following example illustrates the instruction SocketListen:

Example 1
VAR socketdev server_socket;

VAR socketdev client_socket;

...

SocketCreate server_socket;

SocketBind server_socket, "192.168.0.1", 1025;

SocketListen server_socket;

WHILE listening DO;

! Waiting for a connection request

SocketAccept server_socket, client_socket;

A server socket is created and bound to port 1025 on the controller network address
192.168.0.1. After execution of SocketListen the server socket starts to listen
for incoming connections on this port and address.

Arguments
SocketListen Socket

Socket

Data type: socketdev
The server socket that should start listening for incoming connections. The socket
must already be created and bound.

Program execution
The server socket start listening for incoming connections. When the instruction
is ready the socket is ready to accept an incoming connection.
Use the SocketBind and SocketListen instructions in the startup of the program
to associate a local address with a socket and then listen for incoming connections
on the specified port. This is recommended to do only once for each socket and
port that is used.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The socket is closed (has been closed or is not created).ERR_SOCK_CLOSED

Use SocketCreate to create a new socket.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 737
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.258 SocketListen - Listen for incoming connections

Socket Messaging

Syntax
SocketListen

[Socket ':='] < variable (VAR) of socketdev > ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

SocketCreate - Create a new socket on page735Create a new socket

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketSend - Send data to remote computer on
page 749

Send data to remote computer

SocketReceive - Receive data from remote
computer on page 739

Receive data from remote computer

SocketClose - Close a socket on page 730Close the socket

SocketBind - Bind a socket to my IP-address
and port on page 728

Bind a socket (only server)

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketSend - Send data to remote computer on
page 749

Example client socket application

SocketReceive - Receive data from remote
computer on page 739

Example server socket application

738 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.258 SocketListen - Listen for incoming connections
Socket Messaging
Continued

1.259 SocketReceive - Receive data from remote computer

Usage
SocketReceive is used for receiving data from a remote computer.
SocketReceive can be used both for client and server applications.

Basic examples
The following example illustrates the instruction SocketReceive:
See also More examples on page 741.

Example 1
VAR string str_data;

...

SocketReceive socket1 \Str := str_data;

Receive data from a remote computer and store it in the string variable str_data.

Arguments
SocketReceive Socket [\Str] | [\RawData] | [\Data]

[\ReadNoOfBytes] [\NoRecBytes] [\Time]

Socket

Data type: socketdev
In a client application where the socket receives the data, the socket must already
be created and connected.
In a server application where the socket receives the data, the socket must already
be accepted.

[\Str]

Data type: string
The variable in which the received string data should be stored. Max. number of
characters 80 can be handled.

[\RawData]

Data type: rawbytes
The variable in which the received rawbytes data should be stored. Max. number
of rawbytes 1024 can be handled.

[\Data]

Data type: array of byte
The variable in which the received byte data should be stored. Max. number of
byte 1024 can be handled.
Only one of the optional parameters \Str, \RawData, and \Data can be used at
the same time.

[\ReadNoOfBytes]

Read number of Bytes
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 739
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.259 SocketReceive - Receive data from remote computer

Socket Messaging

The number of bytes to read. The minimum value of bytes to read is 1, and the
maximum amount is the value of the size of the data type used, i.e. 80 bytes if
using a variable of the data type string.
If communicating with a client that always sends a fixed number of bytes, this
optional parameter can be used to specify that the same amount of bytes should
be read for each SocketReceive instruction.
If the sender sends RawData, the receiver needs to specify that 4 bytes should be
received for each rawbytes sent.

[\NoRecBytes]

Number Received Bytes
Data type: num
Variable for storage of the number of bytes needed from the specified socketdev.
The same result can also be achieved with

• function StrLen on varable in argument \Str
• function RawBytesLen on variable in argument \RawData

[\Time]

Data type: num
The maximum amount of time [s] that program execution waits for the data to be
received. If this time runs out before the data is transferred then the error handler
will be called, if there is one, with the error code ERR_SOCK_TIMEOUT. If there is
no error handler then the execution will be stopped.
If parameter \Time is not used then the waiting time is 60 s. To wait forever, use
the predefined constant WAIT_MAX.

Program execution
The execution of SocketReceive will wait until the data is available or fail with a
timeout error.
The amount of bytes read is specified by the data type used in the instruction. If
using a string data type to receive data in, 80 bytes is received if there is 80 bytes
that can be read. If using optional argument ReadNoOfBytes the user can specify
how many bytes that should be received for each SocketReceive.
The data that is transferred on the cable is always bytes, max. 1024 bytes in one
message. No header is added by default to the message. The usage of any header
is reserved for the actual application.

Output dataCable dataInput dataParameter

1 char1 byte (8 bits)1 char\Str

1 rawbytes1 byte (8 bits)1 rawbytes\RawData

1 byte1 byte (8 bits)1 byte\Data

It is possible to mix the used data type (string, rawbytes, or array of byte)
between SocketSend and SocketReceive.

Continues on next page
740 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.259 SocketReceive - Receive data from remote computer
Socket Messaging
Continued

More examples
More examples of the instruction SocketReceive are illustrated below.

Example 1
VAR socketdev server_socket;

VAR socketdev client_socket;

VAR string client_ip;

PROC server_messaging()

VAR string receive_string;

...

! Create, bind, listen and accept of sockets in error handlers

SocketReceive client_socket \Str := receive_string;

SocketSend client_socket \Str := "Hello client with
ip-address"+client_ip;

! Wait for acknowlegde from client

...

SocketClose server_socket;

SocketClose client_socket;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

server_recover;

RETRY;

ELSE

! No error recovery handling

ENDIF

ENDPROC

PROC server_recover()

SocketClose server_socket;

SocketClose client_socket;

SocketCreate server_socket;

SocketBind server_socket, "192.168.0.1", 1025;

SocketListen server_socket;

SocketAccept server_socket,
client_socket\ClientAddress:=client_ip;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

RETURN;

ELSE

! No error recovery handling

ENDIF

ENDPROC

This is an example of a server program with creation, binding, listening, and
accepting of sockets in error handlers. In this way the program can handle power
fail restart.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 741
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.259 SocketReceive - Receive data from remote computer

Socket Messaging
Continued

In the procedure server_recover, a server socket is created and bound to port
1025 on the controller network address 192.168.0.1. After execution of
SocketListen the server socket starts to listen for incoming connections on this
port and address. SocketAccept will accept the incoming connection from some
client and store the client address in the string client_ip.
In the communication procedure server_messaging the server receives a string
message from the client and stores the message in receive_string. Then the
server responds with the message "Hello client with ip-address
xxx.xxx.x.x".

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The socket is closed. Broken connection.ERR_SOCK_CLOSED

Network is unreachable or connection is lost after a socket
is opened.

ERR_SOCK_NET_UNREACH

No data was received within the time out time.ERR_SOCK_TIMEOUT

Limitations
There is no built-in synchronization mechanism in Socket Messaging to avoid
received messages that are compounded of several sent messages. It is up to the
programmer to handle the synchronization with “Ack” messages (one sequence
of SocketSend - SocketReceive in the client or server program must be
completed before next sequence of SocketSend - SocketReceive).
All sockets are closed after power fail restart. This problem can be handled by
error recovery. See example above.
Avoid fast loops with SocketCreate ... SocketClose because the socket is
not really closed until a certain time (TCP/IP functionality).
The maximum size of the data that can be received in one call is limited to 1024
bytes.

Syntax
SocketReceive

[Socket ':='] < variable (VAR) of socketdev >

['\' Str ':=' < variable (VAR) of string >]

| ['\' RawData ':=' < variable (VAR) of rawbytes >]

| ['\' Data ':=' < array {*} (VAR) of byte >]

['\' ReadNoOfBytes ':=' < expression (IN) of num >]

['\' NoRecBytes ':=' < variable (VAR) of num >]

['\' Time ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

Continues on next page
742 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.259 SocketReceive - Receive data from remote computer
Socket Messaging
Continued

SeeFor information about

SocketCreate - Create a new socket on page735Create a new socket

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketSend - Send data to remote computer on
page 749

Send data to remote computer

SocketClose - Close a socket on page 730Close the socket

SocketBind - Bind a socket to my IP-address and
port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketSend - Send data to remote computer on
page 749

Example client socket application

SocketPeek - Test for the presence of data on a
socket on page 1433

Test for the presence of data on a socket.

Technical reference manual - RAPID Instructions, Functions and Data types 743
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.259 SocketReceive - Receive data from remote computer

Socket Messaging
Continued

1.260 SocketReceiveFrom - Receive data from remote computer

Usage
SocketReceiveFrom is used for receiving data from a remote computer.
SocketReceiveFrom can be used both for client and server applications.
SocketReceiveFrom is used for connectionless communication with datagram
protocol UDP/IP.

Basic examples
The following example illustrates the instruction SocketReceiveFrom:
See also More examples on page 741.

Example 1
VAR string str_data;

VAR string RemoteAddress;

VAR num RemotePort;

...

SocketCreate \UDP;

SocketBind myUDPsock, "192.168.9.100", 4044;

SocketReceiveFrom socket1 \Str := str_data, RemoteAddress,
RemotePort;

Receive data from a remote computer and store it in the string variable str_data.
The address of the remote computer is stored in the string variable RemoteAddress
and the port number is stored in the num variable RemotePort.

Arguments
SocketReceiveFrom Socket [\Str] | [\RawData] | [\Data]

[\NoRecBytes] RemoteAddress RemotePort [\Time]

Socket

Data type: socketdev
A socket device identifying a bound socket.

[\Str]

Data type: string
The variable in which the received string data should be stored. Max. number of
characters 80 can be handled.

[\RawData]

Data type: rawbytes
The variable in which the received rawbytes data should be stored. Max. number
of rawbytes 1024 can be handled.

[\Data]

Data type: array of byte
The variable in which the received byte data should be stored. Max. number of
byte 1024 can be handled.

Continues on next page
744 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.260 SocketReceiveFrom - Receive data from remote computer
Socket Messaging

Only one of the optional parameters \Str, \RawData, and \Data can be used at
the same time.

[\NoRecBytes]

Number Received Bytes
Data type: num
Variable for storage of the number of bytes needed from the specified socketdev.
The same result can also be achieved with

• function StrLen on varable in argument \Str
• function RawBytesLen on variable in argument \RawData

RemoteAddress

Data type: string
A string variable containing the source address of the remote computer.

RemotePort

Data type: num
A num variable containing the port used by the remote computer when sending
the datagram package.

[\Time]

Data type: num
The maximum amount of time [s] that program execution waits for the data to be
received. If this time runs out before the data is transferred then the error handler
will be called, if there is one, with the error code ERR_SOCK_TIMEOUT. If there is
no error handler then the execution will be stopped.
If parameter \Time is not used then the waiting time is 60 s. To wait forever, use
the predefined constant WAIT_MAX.

Program execution
The execution of SocketReceiveFrom receives a datagram and stores the source
address and source port. It will wait until the data is available or fail with a timeout
error.
The amount of bytes read is specified by the data type used in the instruction. If
using a string data type to receive data in, 80 bytes is received if there is 80 bytes
that can be read.
The data that is transferred on the cable is always bytes, max. 1024 bytes in one
message. No header is added by default to the message. The usage of any header
is reserved for the actual application.

Output dataCable dataInput dataParameter

1 char1 byte (8 bits)1 char\Str

1 rawbytes1 byte (8 bits)1 rawbytes\RawData

1 byte1 byte (8 bits)1 byte\Data

It is possible to mix the used data type (string, rawbytes, or array of byte)
between SocketSendTo and SocketReceiveFrom.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 745
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.260 SocketReceiveFrom - Receive data from remote computer

Socket Messaging
Continued

More examples
More examples of the instruction SocketReceiveFrom are illustrated below.

Example 1
VAR socketdev udp_socket;

VAR string client_ip;

VAR num client_port;

PROC server_messaging()

VAR string receive_string;

...

! Create and bind of sockets in error handlers

SocketReceiveFrom udp_socket \Str := receive_string, client_ip,
client_port;

SocketSendTo udp_socket, client_ip, client_port \Str := "Hello
client with ip-address"+client_ip;

...

SocketClose udp_socket;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=SOCK_CLOSED THEN

messaging_recover;

RETRY;

ELSE

! No error recovery handling

ENDIF

ENDPROC

PROC messaging_recover()

SocketClose udp_socket;

SocketCreate udp_socket \UDP;

SocketBind udp_socket, "192.168.0.1", 1025;

ERROR

IF ERRNO=ERR_SOCK_CLOSED THEN

RETURN;

ELSE

! No error recovery handling

ENDIF

ENDPROC

This is an example of a server program with creation and binding of sockets in
error handlers. In this way the program can handle power fail restart.
In the communication procedure server_messaging the server receives a string
message from the client and stores the message in receive_string. Then the
server responds with the message "Hello client with ip-address
xxx.xxx.x.x".

Continues on next page
746 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.260 SocketReceiveFrom - Receive data from remote computer
Socket Messaging
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The socket is closed.ERR_SOCK_CLOSED

Network is unreachable or connection is lost after a socket
is opened.

ERR_SOCK_NET_UNREACH

No data was received within the time out time.ERR_SOCK_TIMEOUT

Limitations
All sockets are closed after power fail restart. This problem can be handled by
error recovery. See example above.
The maximum size of the data that can be received in one call is limited to 1024
bytes.

Syntax
SocketReceiveFrom

[Socket ':='] < variable (VAR) of socketdev >

['\' Str ':=' < variable (VAR) of string >]

| ['\' RawData ':=' < variable (VAR) of rawbytes >]

| ['\' Data ':=' < array {*} (VAR) of byte >]

['\' NoRecBytes ':=' < variable (VAR) of num >]

[RemoteAddress ':='] < variable (VAR) of string >

[RemotePort ':='] < variable (VAR) of num >

['\' Time ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

SocketCreate - Create a new socket on page735Create a new socket

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketSend - Send data to remote computer on
page 749

Send data to remote computer

SocketClose - Close a socket on page 730Close the socket

SocketBind - Bind a socket to my IP-address and
port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketSend - Send data to remote computer on
page 749

Example client socket application

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 747
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.260 SocketReceiveFrom - Receive data from remote computer

Socket Messaging
Continued

SeeFor information about

SocketSendTo - Send data to remote computer
on page 753

Send data to remote computer

SocketPeek - Test for the presence of data on a
socket on page 1433

Test for the presence of data on a socket.

748 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.260 SocketReceiveFrom - Receive data from remote computer
Socket Messaging
Continued

1.261 SocketSend - Send data to remote computer

Usage
SocketSend is used to send data to a remote computer. SocketSend can be used
both for client and server applications.

Basic examples
The following example illustrates the instruction SocketSend:
See also More examples on page 750.

Example 1
SocketSend socket1 \Str := "Hello world";

Sends the message "Hello world" to the remote computer.

Arguments
SocketSend Socket [\Str] | [\RawData] | [\Data] [\NoOfBytes

]

Socket

Data type: socketdev
In client application the socket to send frommust already be created and connected.
In server application the socket to send to must already be accepted.

[\Str]

Data type: string
The string to send to the remote computer.

[\RawData]

Data type: rawbytes
The rawbytes data to send to the remote computer.

[\Data]

Data type: array of byte
The data in the byte array to send to the remote computer.
Only one of the optional parameters \Str, \RawData, or \Data can be used at
the same time.

[\NoOfBytes]

Data type: num
If this argument is specified only this number of bytes will be sent to the remote
computer. The call to SocketSend will fail if \NoOfBytes is larger than the actual
number of bytes in the data structure to send.
If this argument is not specified then the whole data structure (valid part of
rawbytes) will be sent to the remote computer.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 749
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.261 SocketSend - Send data to remote computer

Socket Messaging

Program execution
The specified data is sent to the remote computer. If the connection is broken an
error is generated.
The data that is transferred on the cable is always bytes, max. 1024 bytes in one
message. No header is added by default to the message. The usage of any header
is reserved for the actual application.

Output dataCable dataInput dataParameter

1 char1 byte (8 bits)1 char\Str

1 rawbytes1 byte (8 bits)1 rawbytes\RawData

1 byte1 byte (8 bits)1 byte\Data

It’s possible to mix the used data type (string, rawbytes, or array of byte)
between SocketSend and SocketReceive.

More examples
More examples of the instruction SocketSend are illustrated below.

Example 1
VAR socketdev client_socket;

VAR string receive_string;

PROC client_messaging()

...

! Create and connect the socket in error handlers

SocketSend client_socket \Str := "Hello server";

SocketReceive client_socket \Str := receive_string;

...

SocketClose client_socket;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

client_recover;

RETRY;

ELSE

! No error recovery handling

ENDIF

ENDPROC

PROC client_recover()

SocketClose client_socket;

SocketCreate client_socket;

SocketConnect client_socket, "192.168.0.2", 1025;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

RETURN;

Continues on next page
750 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.261 SocketSend - Send data to remote computer
Socket Messaging
Continued

ELSE

! No error recovery handling

ENDIF

ENDPROC

This is an example of a client program with creation and connection of socket in
error handlers. In this way the program can handle power fail restart.
In the procedure client_recover the client socket is created and connected to
a remote computer server with IP-address 192.168.0.2 on port 1025.
In the communication procedure client_messaging the client sends "Hello
server" to the server and the server responds with "Hello client" to the client,
which is stored in the variable receive_string.

Example 2
VAR socketdev client_socket;

VAR string receive_string;

PROC client_messaging()

...

! Send cr and lf to the server

SocketSend client_socket \Str := "\0D\0A";

...

ENDPROC

This is an example of a client program that sends non printable characters (binary
data) in a string. This can be useful if communicating with sensors or other clients
that requires such characters.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The socket is closed. Broken connection.ERR_SOCK_CLOSED

Network is unreachable or connection is lost after a socket
is opened.

ERR_SOCK_NET_UNREACH

Limitations
There is no built-in synchronization mechanism in Socket Messaging to avoid
received messages that are compounded of several sent messages. It’s up to the
programmer to handle the synchronization with “Ack” messages (one sequence
of SocketSend - SocketReceive in the client or server program must be
completed before the next sequence of SocketSend - SocketReceive).
All sockets are closed after power fail restart. This problem can be handled by
error recovery. See example above.
Avoid fast loops with SocketCreate ... SocketClose because the socket is
not really closed until a certain time (TCP/IP functionality).
The size of the data to send is limited to 1024 bytes.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 751
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.261 SocketSend - Send data to remote computer

Socket Messaging
Continued

Syntax
SocketSend

[Socket ':='] < variable (VAR) of socketdev >

[\Str ':=' < expression (IN) of string >]

| [\RawData ':=' < variable (VAR) of rawdata >]

| [\Data ':=' < array {*} (IN) of byte >]

['\' NoOfBytes ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

SocketCreate - Create a new socket on page735Create a new socket

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketReceive - Receive data from remote
computer on page 739

Receive data from remote computer

SocketClose - Close a socket on page 730Close the socket

SocketBind - Bind a socket to my IP-address
and port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketReceive - Receive data from remote
computer on page 739

Example server socket application

Technical reference manual manual - RAPID
kernel

Use of non printable characters (binary
data) in string literals.

752 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.261 SocketSend - Send data to remote computer
Socket Messaging
Continued

1.262 SocketSendTo - Send data to remote computer

Usage
SocketSendTo is used to send data to a remote computer. SocketSendTo can
be used both for client and server applications.
SocketSendTo is used for connectionless communication with datagram protocol
UDP/IP.

Basic examples
The following example illustrates the instruction SocketSendTo:
See also More examples on page 750.

Example 1
VAR socketdev udp_socket;

SocketCreate udp_socket \UDP;

SocketSendTo udp_socket, Address, Port \Str := "Hello world";

Sends the message "Hello world" to the remote computer with IP address
Address and port Port.

Arguments
SocketSendTo Socket RemoteAddress RemotePort [\Str] | [\RawData

] | [\Data] [\NoOfBytes]

Socket

Data type: socketdev
The socket must already been created.

RemoteAddress

Data type: string
The address of the remote computer. The remote computer must be specified as
an IP address. It is not possible to use the name of the remote computer.

RemotePort

Data type: num
The port on the remote computer. Generally ports 1025-4999 are free to use. Ports
below 1025 can already be taken.

[\Str]

Data type: string
The string to send to the remote computer.

[\RawData]

Data type: rawbytes
The rawbytes data to send to the remote computer.

[\Data]

Data type: array of byte

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 753
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.262 SocketSendTo - Send data to remote computer

Socket Messaging

The data in the byte array to send to the remote computer.
Only one of the optional parameters \Str, \RawData, or \Data can be used at
the same time.

[\NoOfBytes]

Data type: num
If this argument is specified only this number of bytes will be sent to the remote
computer. The call to SocketSendTo will fail if \NoOfBytes is larger than the
actual number of bytes in the data structure to send.
If this argument is not specified then the whole data structure (valid part of
rawbytes) will be sent to the remote computer.

Program execution
The specified data is sent to the remote computer.
The data that is transferred on the cable is always bytes, max. 1024 bytes in one
message. No header is added by default to the message. The usage of any header
is reserved for the actual application.

Output dataCable dataInput dataParameter

1 char1 byte (8 bits)1 char\Str

1 rawbytes1 byte (8 bits)1 rawbytes\RawData

1 byte1 byte (8 bits)1 byte\Data

It’s possible to mix the used data type (string, rawbytes, or array of byte)
between SocketSendTo and SocketReceiveFrom.

More examples
More examples of the instruction SocketSendTo are illustrated below.

Example 1
VAR socketdev client_socket;

VAR string receive_string;

VAR string RemoteAddress;

VAR num RemotePort;

PROC client_messaging()

...

! Create and bind the socket in error handlers

SocketSendTo client_socket, "192.168.0.2", 1025 \Str := "Hello
server";

SocketReceiveFrom client_socket \Str := receive_string,
RemoteAddress, RemotePort;

...

SocketClose client_socket;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

client_recover;

Continues on next page
754 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.262 SocketSendTo - Send data to remote computer
Socket Messaging
Continued

RETRY;

ELSE

! No error recovery handling

ENDIF

ENDPROC

PROC client_recover()

SocketClose client_socket;

SocketCreate client_socket \UDP;

SocketBind client_socket, "192.168.0.2", 1025;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

RETURN;

ELSE

! No error recovery handling

ENDIF

ENDPROC

This is an example of a client program with creation and bind of socket in error
handlers. In this way the program can handle power fail restart.
In the procedure client_recover the client socket is created and bound to a
remote computer server with IP-address 192.168.0.2 on port 1025.
In the communication procedure client_messaging the client sends "Hello
server" to the server and the server responds with "Hello client" to the client,
which is stored in the variable receive_string.

Example 2
VAR socketdev udp_socket;

PROC message_send()

...

! Send cr and lf to the server

SocketSendTo udp_socket, "192.168.0.2", 1025 \Str := "\0D\0A";

...

ENDPROC

This is an example the program sends non printable characters (binary data) in a
string. This can be useful if communicating with sensors or other clients that
requires such characters.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The socket is closed.ERR_SOCK_CLOSED

Network is unreachable or connection is lost after a socket
is opened.

ERR_SOCK_NET_UNREACH

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 755
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.262 SocketSendTo - Send data to remote computer

Socket Messaging
Continued

Limitations
All sockets are closed after power fail restart. This problem can be handled by
error recovery. See example above.
The size of the data to send is limited to 1024 bytes.

Syntax
SocketSendTo

[Socket ':='] < variable (VAR) of socketdev >

[RemoteAddress ':='] < expression (IN) of string >

[RemotePort ':='] < expression (IN) of num >

[\Str ':=' < expression (IN) of string >]

| [\RawData ':=' < variable (VAR) of rawdata >]

| [\Data ':=' < array {*} (IN) of byte >]

['\' NoOfBytes ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

SocketCreate - Create a new socket on page735Create a new socket

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketReceive - Receive data from remote
computer on page 739

Receive data from remote computer

SocketClose - Close a socket on page 730Close the socket

SocketBind - Bind a socket to my IP-address
and port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketReceive - Receive data from remote
computer on page 739

Example server socket application

SocketReceiveFrom - Receive data from remote
computer on page 744

Receive data from remote computer

Technical reference manual manual - RAPID
kernel

Use of non printable characters (binary
data) in string literals.

756 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.262 SocketSendTo - Send data to remote computer
Socket Messaging
Continued

1.263 SoftAct - Activating the soft servo

Usage
SoftAct (Soft Servo Activate) is used to activate the so called “soft” servo on any
axis of the robot or external mechanical unit.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in any motion tasks.

Basic examples
The following example illustrates the instruction SoftAct:

Example 1
SoftAct 3, 20;

Activation of soft servo on robot axis 3 with softness value 20%.

Example 2
SoftAct 1, 90 \Ramp:=150;

Activation of the soft servo on robot axis 1with softness value 90% and ramp factor
150%.

Example 3
SoftAct \MechUnit:=orbit1, 1, 40 \Ramp:=120;

Activation of soft servo on axis 1 for the mechanical unit orbit1 with softness
value 40% and ramp factor 120%.

Arguments
SoftAct [\MechUnit] Axis Softness [\Ramp]

[\MechUnit]
Mechanical Unit
Data type: mecunit
The name of themechanical unit. If this argument is omitted then it means activation
of the soft servo for specified robot axis in the current program task.

Axis

Data type: num
Number of the robot or external axis to work with soft servo.

Softness

Data type: num
Softness value in percent (0 - 100%). 0% denotes min. softness (max. stiffness),
and 100% denotes max. softness.

[\Ramp]

Data type: num
Ramp factor in percent (>= 100%). The ramp factor is used to control the
engagement of the soft servo. A factor 100% denotes the normal value; with greater

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 757
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.263 SoftAct - Activating the soft servo

RobotWare - OS

values the soft servo is engaged more slowly (longer ramp). The default value for
ramp factor is 100 %.

Program execution
Softness is activated at the value specified for the current axis. The softness value
is valid for all movement until a new softness value is programmed for the current
axis or until the soft servo is deactivated by the instruction SoftDeact.

Limitations
Soft servo for any robot or external axis is always deactivated when there is a
power failure. This limitation can be handled in the user program when restarting
after a power failure.
The same axis must not be activated twice unless there is a moving instruction in
between. Thus, the following program sequence should be avoided. Otherwise
there will be a jerk in the robot movement:

SoftAct n , x ;

SoftAct n , y ;

(n = robot axis n, x, and y softness values)

WARNING

The braking distance for category 1 stops will be longer when soft servo is active.

Syntax
SoftAct

['\'MechUnit ':=' < variable (VAR) of mecunit>',']

[Axis ':='] < expression (IN) of num> ','

[Softness':='] < expression (IN) of num> ','

['\'Ramp':=' < expression (IN) of num>]';'

Related information

SeeFor information about

SoftDeact - Deactivating the soft servo on page759Deactivate soft servo

Technical reference manual - RAPID OverviewBehavior with the soft servo engaged

Application manual - Additional axes and stand
alone controller

Configuration of external axes

758 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.263 SoftAct - Activating the soft servo
RobotWare - OS
Continued

1.264 SoftDeact - Deactivating the soft servo

Usage
SoftDeact (Soft Servo Deactivate) is used to deactivate the so called “soft” servo.

Basic examples
The following examples illustrate the instruction SoftDeact:

Example 1
SoftDeact;

Deactivating the soft servo on all axes.

Example 2
SoftDeact \Ramp:=150;

Deactivating the soft servo on all axes, with ramp factor 150 %.

Arguments
SoftDeact [\Ramp]

[\Ramp]

Data type: num
Ramp factor in percent (>= 100 %). The ramp factor is used to control the
deactivating of the soft servo. A factor 100% denotes the normal value. With greater
values the soft servo is deactivated more slowly (longer ramp). The default value
for ramp factor is 100 %.

Program execution
The soft servo is deactivated for the mechanical units that are controlled from
current program task. If SoftDeact is done from a non-motion task, the soft servo
is deactivated for the mechanical unit controlled by the connected motion task.
Executing a SoftDeact when in synchronized movement mode, soft servo will be
deactivated for all mechanical units that are synchronized.
When deactivating soft servo with SoftDeact the robot will move to the
programmed position even if the robot has moved out of position during soft servo
activation.

Syntax
SoftDeact

['\'Ramp ':=' < expression (IN) of num>]';'

Related information

SeeFor information about

SoftAct - Activating the soft servo on page 757Activating the soft servo

Technical reference manual - RAPID Instructions, Functions and Data types 759
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.264 SoftDeact - Deactivating the soft servo

RobotWare - OS

1.265 SoftElbow - Making the elbow flexible for external forces

Usage
SoftElbow is used to activate or deactivate soft elbow on a 7-axes robot. When
active, the elbow can be pushed so the elbow position is changed without affecting
the TCP. The TCP will continue to move along its programed path.

Basic example
The following examples illustrate the instruction SoftElbow:

Example 1
SoftElbow \On;

After executing this instruction, the robot elbow can be moved without affecting
the TCP.

Arguments
SoftElbow [\On] | [\Off]

[\On]

Data type: switch
Activates soft elbow.

[\Off]

Data type: switch
Deactivates soft elbow.

Program execution
Once soft elbow is turned on, the elbow will remain soft until it is turned off with a
new SoftElbow instruction.
As long as soft elbow is active, the elbow will bend away from any obstacle or
anything pushing the elbow. If the robot is moving, the TCP will continue following
its path and the program execution will not be interrupted in any way.
The default value (deactivated soft elbow) is automatically set:

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Limitations
• SoftElbow is only available for 7-axes robots (e.g. IRB14000 Yumi).
• SoftElbow will not work when the tool is in contact with a fixed object and

a non-negligible force is applied (for example when pressing an object into
a fixture).

Continues on next page
760 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.265 SoftElbow - Making the elbow flexible for external forces
RobotWare - OS

• While the arm is being pushed, it may lead to somewhat decreased path
accuracy.

• SoftElbow is not compatible with other compliant modes (for example Lead
Through, Force control or SoftMove).

• SoftElbow is not compatible with MultiMove Coordinated.
• SoftElbow only works well with moderate speeds, typically lower than

1000mm/s.
• Absolute accuracy will be temporarily deactivated while soft elbow is active.

Syntax
SoftElbow

['\' On] | ['\' Off]';'

Technical reference manual - RAPID Instructions, Functions and Data types 761
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.265 SoftElbow - Making the elbow flexible for external forces

RobotWare - OS
Continued

1.266 SpeedLimAxis - Set speed limitation for an axis

Usage
SpeedLimAxis is used to set a speed limit value for an axis. The speed reduction
is done when the system input signal LimitSpeed is set to 1. With this instruction
it is possible to setup a speed limitation that later on should be applied.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in any Motion tasks.

Basic examples
The following examples illustrate the instruction SpeedLimAxis:

Example 1
SpeedLimAxis STN_1, 1, 20;

This will limit the speed to 20 degrees/second on axis 1 for mechanical unit STN_1
when system input LimitSpeed is set to 1.

Example 2
SpeedLimAxis ROB_1, 1, 10;

SpeedLimAxis ROB_1, 2, 30;

SpeedLimAxis ROB_1, 3, 30;

SpeedLimAxis ROB_1, 4, 30;

SpeedLimAxis ROB_1, 5, 30;

SpeedLimAxis ROB_1, 6, 30;

This will limit the speed to 30 degrees/second on axis 2 to 6, and limit the speed
to 10 degrees/second on axis 1 for mechanical unit ROB_1 when system input
LimitSpeed is set to 1.

Arguments
SpeedLimAxis MechUnit AxisNo AxisSpeed

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

AxisNo

Data type: num
The number of the current axis for the mechanical unit.

AxisSpeed

Data type: num
The speed that should be applied. For a rotating axis the speed should be in
degrees/second and for a linear axis it should be in mm/s.

Continues on next page
762 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.266 SpeedLimAxis - Set speed limitation for an axis
RobotWare - OS

Program execution
SpeedLimAxis is used to set a speed limit value for an axis for a specific
mechanical unit. The speed reduction is not done at once. The values are stored
and are applied when the system input signal LimitSpeed is set to 1.
If SpeedLimAxis is not used to set a limitation for an axis, then the speed limitation
for manual mode will be used instead. If no limitation at all is wanted for a specific
axis, a high value should be entered. Furthermore, if no limitation of the checkpoint
speed is set using the instruction SpeedLimCheckPoint, then the speed limitations
for manual mode will be used to limit the checkpoint speed.
When the system input signal LimitSpeed is set to 1, the speed is ramped down
to the reduced speed.
When the system input signal LimitSpeed is set to 0, the speed is ramped up to
the programmed speed used in the current movement instruction.
The system output signal LimitSpeed is set to 1, when the reduced speed is
reached. The system output signal LimitSpeed is set to 0, when the speed starts
to ramp up.
The default values for speed limitation are automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

More examples
More examples of the instruction SpeedLimAxis are illustrated below.

Example 1
..

VAR intnum sigint1;

VAR intnum sigint2;

..

PROC main()

! Setup interrupts reacting on a signal input

IDelete sigint1;

CONNECT sigint1 WITH setlimitspeed;

ISignalDI \SingleSafe, mysensorsignal, 1, sigint1;

IDelete sigint2;

CONNECT sigint2 WITH resetlimitspeed;

ISignalDI \SingleSafe, mysensorsignal, 0, sigint2;

..

MoveL p1, z50, fine, tool2;

MoveL p2, z50, fine, tool2;

..

MoveL p10, v100, fine, tool2;

! Set limitations for checkpoints and axes

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 763
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.266 SpeedLimAxis - Set speed limitation for an axis

RobotWare - OS
Continued

SpeedLimCheckPoint 200;

SpeedLimAxis ROB_1, 1, 10;

SpeedLimAxis ROB_1, 2, 10;

SpeedLimAxis ROB_1, 3, 10;

SpeedLimAxis ROB_1, 4, 20;

SpeedLimAxis ROB_1, 5, 20;

SpeedLimAxis ROB_1, 6, 20;

WHILE run_loop = TRUE DO

MoveL p1, vmax, z50, tool2;

..

MoveL p99, vmax, fine, tool2;

ENDWHILE

! Set the default manual mode max speed

SpeedLimCheckPoint 0;

SpeedLimAxis ROB_1, 1, 0;

SpeedLimAxis ROB_1, 2, 0;

SpeedLimAxis ROB_1, 3, 0;

SpeedLimAxis ROB_1, 4, 0;

SpeedLimAxis ROB_1, 5, 0;

SpeedLimAxis ROB_1, 6, 0;

..

TRAP setlimitspeed

IDelete sigint1;

CONNECT sigint1 WITH setlimitspeed;

ISignalDI \SingleSafe, mysensorsignal, 1, sig1int1;

! Set out signal that is cross connected to system input
LimitSpeed

SetDO do1LimitSpeed, 1;

ENDTRAP

TRAP resetlimitspeed

IDelete sigint2;

CONNECT sigint2 WITH resetlimitspeed;

ISignalDI \SingleSafe, mysensorsignal, 0, sig1int2;

! Reset out signal that is cross connected to system input
LimitSpeed

SetDO do1LimitSpeed, 0;

ENDTRAP

During the robot movement from position p1 to p10, the default speed limitation
is used (manual mode speed). A new speed limit for the checkpoints for the TCP
robot and for the axes are added. The TRAP setlimitspeed will apply the speed
limitation if signal mysensorsignal changes value to 1.
The TRAP resetlimitspeed will remove the speed limitation when signal
mysensorsignal changes value to 0.
The new settings for the speed limitation will be used as long as the variable
run_loop is TRUE and the system input signal LimitSpeed is set to 1. When

Continues on next page
764 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.266 SpeedLimAxis - Set speed limitation for an axis
RobotWare - OS
Continued

run_loop is set to FALSE the default speed limitation (manual mode speed) is
set.

Note

The TRAP routine in the example is only used to visualize the functionality. The
signal used to limit the speed could also be connected either directly to the
system input signal LimitSpeed, or through a safety PLC.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Parameter axis in instruction is wrongERR_AXIS_PAR

The speed used in argument AxisSpeed is too low.ERR_SPEEDLIM_VALUE

Limitations
SpeedLimAxis cannot be used in the POWER ON event routine.
When reducing the speed of one axis or checkpoint, the other axes will also be
reduced to the same percentage to be able to run along the programmed path.
The process speed along the programmed path will vary.
When using SafeMove together with speed limitation, SafeMove must be setup
with a margin since the SafeMove and motion calculations are slightly different.

Syntax
SpeedLimAxis

[MechUnit':='] < variable (VAR) of mecunit> ','

[AxisNo':='] < expression (IN) of num> ','

[AxisSpeed':='] < expression (IN) of num> ';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Positioning instructions

SpeedLimCheckPoint - Set speed limitation
for check points on page 766

Set speed limitation for check points

Technical reference manual - System para-
meters

System input and output signals

Technical reference manual - RAPID Instructions, Functions and Data types 765
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.266 SpeedLimAxis - Set speed limitation for an axis

RobotWare - OS
Continued

1.267 SpeedLimCheckPoint - Set speed limitation for check points

Usage
SpeedLimCheckPoint is used to set a speed limit value for a TCP robot. The
speed reduction is done when the system input signal LimitSpeed is set to 1.
With this instruction it is possible to setup a speed limit that later on should be
applied.
The reduction of the speed is done if any of the checkpoints are running faster
than the limit set by SpeedLimCheckPoint. (For More information about
checkpoints, see More examples on page 768.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in any Motion tasks.

Basic examples
The following example illustrates the instruction SpeedLimCheckPoint:

Example 1
VAR num limit_speed:=200;

SpeedLimCheckPoint limit_speed;

This will limit the speed to 200 mm/s for the TCP robot when system input
LimitSpeed is set to 1.

Arguments
SpeedLimCheckPoint RobSpeed

RobSpeed

Data type: num
The speed limitation in mm/s that should be applied.

Continues on next page
766 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.267 SpeedLimCheckPoint - Set speed limitation for check points
RobotWare - OS

Program execution
Definition of checkpoints, see figure below.

A

B

F

C

D

E

xx1200000521

World coordinate systemA

Base coordinate systemB

Arm checkpointC

Wrist Center Point (WCP)D

tool0E

Tool Center Point (TCP)F

SpeedLimCheckPoint is used to set a speed limit value for 4 checkpoints for a
TCP robot. The checkpoints that will be limited are the arm, the wrist, tool0, and
the active TCP, as seen in the picture above. The speed reduction is not done at
once. The values are stored and are applied when the system input signal
LimitSpeed is set to 1. The speed of the checkpoints are limited relative to the
base coordinate system.
If instruction SpeedLimCheckPoint is not used to set a limitation, the speed
limitation for manual mode will be used as limitation. If no limitation at all is wanted
for the checkpoints, a high value should be entered. Furthermore, if no limitation
of the axis speeds are set using the instruction SpeedLimAxis, then the speed
limitations for manual mode will be used to limit the axis speed.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 767
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.267 SpeedLimCheckPoint - Set speed limitation for check points

RobotWare - OS
Continued

When the system input signal LimitSpeed is set to 1, the speed is ramped down
to the reduced speed.
When the system input signal LimitSpeed is set to 0, the speed is ramped up to
the programmed speed used in the current movement instruction.
The system output signal LimitSpeed is set to 1, when the reduced speed is
reached. The system output signal LimitSpeed is set to 0, when the speed starts
to ramp up.
The default values for speed limitation are automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

More examples
More examples of the instruction SpeedLimCheckPoint are illustrated below.

Example 1
..

VAR intnum sigint1;

VAR intnum sigint2;

..

PROC main()

! Setup interrupts reacting on a signal input

IDelete sigint1;

CONNECT sigint1 WITH setlimitspeed;

ISignalDI \SingleSafe, mysensorsignal, 1, sigint1;

IDelete sigint2;

CONNECT sigint2 WITH resetlimitspeed;

ISignalDI \SingleSafe, mysensorsignal, 0, sigint2;

..

MoveL p1, z50, fine, tool2;

MoveL p2, z50, fine, tool2;

..

MoveL p10, v100, fine, tool2;

! Set limitations for checkpoints and axes

SpeedLimCheckPoint 200;

SpeedLimAxis ROB_1, 1, 10;

SpeedLimAxis ROB_1, 2, 10;

SpeedLimAxis ROB_1, 3, 10;

SpeedLimAxis ROB_1, 4, 20;

SpeedLimAxis ROB_1, 5, 20;

SpeedLimAxis ROB_1, 6, 20;

WHILE run_loop = TRUE DO

MoveL p1, vmax, z50, tool2;

..

Continues on next page
768 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.267 SpeedLimCheckPoint - Set speed limitation for check points
RobotWare - OS
Continued

MoveL p99, vmax, fine, tool2;

ENDWHILE

! Set the default manual mode max speed

SpeedLimCheckPoint 0;

SpeedLimAxis ROB_1, 1, 0;

SpeedLimAxis ROB_1, 2, 0;

SpeedLimAxis ROB_1, 3, 0;

SpeedLimAxis ROB_1, 4, 0;

SpeedLimAxis ROB_1, 5, 0;

SpeedLimAxis ROB_1, 6, 0;

..

TRAP setlimitspeed

IDelete sigint1;

CONNECT sigint1 WITH setlimitspeed;

ISignalDI \SingleSafe, mysensorsignal, 1, sig1int1;

! Set out signal that is cross connected to system input
LimitSpeed

SetDO do1LimitSpeed, 1;

ENDTRAP

TRAP resetlimitspeed

IDelete sigint2;

CONNECT sigint2 WITH resetlimitspeed;

ISignalDI \SingleSafe, mysensorsignal, 0, sig1int2;

! Reset out signal that is cross connected to system input
LimitSpeed

SetDO do1LimitSpeed, 0;

ENDTRAP

During the robot movement from position p1 to p10, the default speed limitation
is used (manual mode speed). A new speed limit for the checkpoints for the TCP
robot and for the axes are added. The TRAP setlimitspeed will apply the speed
limitation if signal mysensorsignal changes value to 1.
The TRAP resetlimitspeed will remove the speed limitation when signal
mysensorsignal changes value to 0.
The new settings for the speed limitation will be used as long as the variable
run_loop is TRUE and the system input signal LimitSpeed is set to 1. When
run_loop is set to FALSE the default speed limitation (manual mode speed) is
set.

Note

The TRAP routine in the example is only used to visualize the functionality. The
signal used to limit the speed could also be connected either directly to the
system input signal LimitSpeed, or through a safety PLC.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 769
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.267 SpeedLimCheckPoint - Set speed limitation for check points

RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The speed used in argument RobSpeed is too low.ERR_SPEEDLIM_VALUE

Limitations
SpeedLimCheckPoint cannot be used in the POWER ON event routine.
If a robot is standing on a moving track, then the checkpoint speed in the world
frame can be higher than the specified checkpoint speed limit in the base frame.
The checkpoint speed in the world frame can be the sum of the track speed and
the checkpoint speed in the base frame. To also limit the checkpoint speed in the
world frame, make sure that the sum of both does not exceed the limit.
When reducing the speed of one axis or checkpoint, the other axes will also be
reduced to the same percentage to be able to run along the programmed path.
The process speed along the programmed path will vary.
When using SafeMove together with speed limitation, SafeMove must be setup
with a margin and tested, since the SafeMove and motion calculations are slightly
different. A change of tool TCP on the fly is not synchronized with SafeMove. So
the tool TCP in SafeMove must either be shorter than the tools used by the robot,
or the max checkpoint speed for SafeMove must be setup with an extra margin
and tested.

Syntax
SpeedLimCheckPoint

[RobSpeed ':='] < expression (IN) of num > ';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Positioning instructions

SpeedLimAxis - Set speed limitation for an
axis on page 762

Set speed limitation for an axis

Technical reference manual - System para-
meters

Defining arm loads

Technical reference manual - System para-
meters

System input and output signals

770 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.267 SpeedLimCheckPoint - Set speed limitation for check points
RobotWare - OS
Continued

1.268 SpeedRefresh - Update speed override for ongoing movement

Usage
SpeedRefresh is used to change the movement speed for the ongoing robot
movement in current motion program task. With this instruction it is possible to
create some type of coarse speed adaptation from some sensor input.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in any Motion tasks.

Basic examples
The following example illustrates the instruction SpeedRefresh:

Example 1
VAR num change_speed:=70;

SpeedRefresh change_speed;

This will change the current speed override to 70%.

Arguments
SpeedRefresh Override

Override

Data type: num
The speed override value within range 0 ... 100 %.

Program execution
The actual speed override value for the ongoing movements of robot and external
units in current motion program task will be updated.
All speed data components for any mechanical units in current motion task will be
influenced.

Note

Speed override set from SpeedRefresh is not equal to setting the speed from
the FlexPendant. These are two different values. The product of these two values
and the programmed speed will be the speed that is used in the movement.

If a PP to main is done or if a new program is loaded, the speed that was set with
SpeedRefresh will be reset, and the speed set from the FlexPendant will be
applied.

More examples
More examples of the instruction SpeedRefresh are illustrated below.

Example 1
VAR intnum time_int;

VAR num override;

...

PROC main()

CONNECT time_int WITH speed_refresh;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 771
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.268 SpeedRefresh - Update speed override for ongoing movement

RobotWare - OS

ITimer 0.1, time_int;

ISleep time_int;

...

MoveL p1, v100, fine, tool2;

! Read current speed override set from FlexPendant

override := CSpeedOverride (\CTask);

IWatch time_int;

MoveL p2, v100, fine, tool2;

IDelete time_int;

! Reset to FlexPendant old speed override

WaitTime 0.5;

SpeedRefresh override;

...

TRAP speed_refresh

VAR speed_corr;

! Analog input signal value from sensor, value 0 ... 10

speed_corr := (ai_sensor * 10);

SpeedRefresh speed_corr;

ERROR

IF ERRNO = ERR_SPEED_REFRESH_LIM THEN

IF speed_corr > 100 speed_corr := 100;

IF speed_corr < 0 speed_corr := 0;

RETRY;

ENDIF

ENDTRAP

During the robot movement from position p1 to p2, the speed override value is
updated every 0.1 s in the TRAP speed_refresh. The analog input signal
ai_sensor is used for calculation of Overide value for the instruction
SpeedRefresh. There is no TRAP execution before and after the robot movement
between p1 and p2. The manual speed override from FlexPendant is restored.
After that the robot has to reach p2.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Override has a value outside the range of 0 to 100 %.ERR_SPEED_REFRESH_LIM

Limitations
Note that with SpeedRefresh the speed override will not be done momentary.
Instead there will be a lag of 0.3 - 0.5 seconds between the order and the influence
on the physical robot.
The user is responsible to reset the speed override value from the RAPID program
after the SpeedRefresh sequence.
If SpeedRefresh is used in the START or in the RESET event routine, the speed
that is set is always the actual FlexPendant speed override.

Continues on next page
772 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.268 SpeedRefresh - Update speed override for ongoing movement
RobotWare - OS
Continued

Syntax
SpeedRefresh

[Override ':='] < expression (IN) of num > ';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Positioning instructions

speeddata - Speed data on page 1718Definition of velocity

CSpeedOverride - Reads the current override
speed on page 1211

Read current speed override

Technical reference manual - RAPID Instructions, Functions and Data types 773
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.268 SpeedRefresh - Update speed override for ongoing movement

RobotWare - OS
Continued

1.269 SpyStart - Start recording of execution time data

Usage
SpyStart is used to start the recording of instruction and time data during
execution.
The execution data will be stored in a file for later analysis.
The stored data is intended for debugging RAPID programs, specifically for
multi-tasking systems (only necessary to have SpyStart - SpyStop in one
program task).

Basic examples
The following example illustrates the instruction SpyStart:

Example 1
SpyStart "HOME:/spy.log";

Starts recording the execution time data in the file spy.log on the HOME: disk.

Arguments
SpyStart File

File
Data type: string
The file path and the file name to the file that will contain the execution data.

Program execution
The specified file is opened for writing and the execution time data begins recording
in the file.
Recording of execution time data is active until:

• execution of instruction SpyStop
• starting program execution from the beginning
• loading a new program
• next Restart
• changing from manual to auto and Auto Condition Reset enabled

Limitations
Never use the spy function in production programs because the function increases
the cycle time and consumes memory on the mass memory device in use.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The file in the SpyStart instruction can’t be opened.ERR_FILEOPEN

Continues on next page
774 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.269 SpyStart - Start recording of execution time data
RobotWare - OS

File format

OUTCODEININSTRTASK

0READY0FOR i FROM 1 TO 3 DOMAIN

1READY1mynum:=mynum+i;MAIN

2READY2ENDFORMAIN

2READY2mynum:=mynum+i;MAIN

2READY2ENDFORMAIN

2READY2mynum:=mynum+i;MAIN

3READY2ENDFORMAIN

3READY3SetDo1,1;MAIN

4READY3IF di1=0 THENMAIN

14WAIT4MoveL p1, v1000, fine, tool0;MAIN

111READY111MoveL p1, v1000, fine, tool0;MAIN

108READY108ENDIFMAIN

118WAIT111MoveL p2, v1000, fine, tool0;MAIN

326READY326MoveL p2, v1000, fine, tool0;MAIN

READY326SpyStop;MAIN

TASK column shows executed program task.
INSTR column shows executed instruction in specified program task.
IN column shows the time in ms when entering the executed instruction.
CODE column shows if the instruction is READY or the instruction WAIT for
completion at OUT time.
OUT column shows the time in ms upon leaving the executed instruction.
All times are given in ms (relative values).
SYSTEM TRAP means that the system is doing something else than execution of
RAPID instructions.
If the procedure calls to some NOSTEPIN procedure (module) then the output list
shows only the name of the called procedure. This is repeated for every executed
instruction in the NOSTEPIN routine.

Syntax
SpyStart

[File':=']<expression (IN) of string>';'

Related information

SeeFor information about

SpyStop - Stop recording of time execution
data on page 776

Stop recording of execution data

Technical reference manual - System para-
meters

Auto condition

Technical reference manual - RAPID Instructions, Functions and Data types 775
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.269 SpyStart - Start recording of execution time data

RobotWare - OS
Continued

1.270 SpyStop - Stop recording of time execution data

Usage
SpyStop is used to stop the recording of time data during execution.
The data, which can be useful for optimizing the execution cycle time, is stored in
a file for later analysis.

Basic examples
The following example illustrates the instruction SpyStop :
See also More examples on page 776.

Example 1
SpyStop;

Stops recording the execution time data in the file specified by the previous
SpyStart instruction.

Program execution
The execution data recording is stopped and the file specified by the previous
SpyStart instruction is closed. If no SpyStart instruction has been executed
before then the SpyStop instruction is ignored.

More examples
More examples of the instruction SpyStop are illustrated below.

Example 1
IF debug = TRUE SpyStart "HOME:/spy.log";

produce_sheets;

IF debug = TRUE SpyStop;

If the debug flag is true then start recording execution data in the file spy.log on
the HOME: disk. Perform actual production; stop recording, and close the file
spy.log.

Limitations
Never use the spy function in production programs because the function increases
the cycle time and consumes memory on the mass memory device in use.

Syntax
SpyStop';'

Related information

SeeFor information about

SpyStart - Start recording of execution time data
on page 774

Start recording of execution data

776 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.270 SpyStop - Stop recording of time execution data
RobotWare - OS

1.271 StartLoad - Load a program module during execution

Usage
StartLoad is used to start the loading of a program module into the program
memory during execution.
When loading is in progress other instructions can be executed in parallel. The
loaded module must be connected to the program task with the instruction
WaitLoad before any of its symbols/routines can be used.
The loaded program module will be added to the modules already existing in the
program memory.
A program or system module can be loaded in static (default) or dynamic mode.
Depending on the usedmode, some operations will unload themodule or not affect
the module at all.

Static mode
The following table shows how two different operations affect a static loaded
program or system modules.

Open new RAPID programSet PP to main from TP

UnloadedNot affectedProgram Module

Not affectedNot affectedSystem Module

Dynamic mode
The following table shows how two different operations affect a dynamic loaded
program or system modules.

Open new RAPID programSet PP to main from TP

UnloadedUnloadedProgram Module

UnloadedUnloadedSystem Module

Both static and dynamic loaded modules can be unloaded by the instruction
UnLoad.

Basic examples
The following example illustrates the instruction StartLoad:
See also More examples on page 779.

Example 1
VAR loadsession load1;

! Start loading of new program module PART_B containing routine
routine_b in dynamic mode

StartLoad \Dynamic, diskhome \File:="PART_B.MOD", load1;

! Executing in parallel in old module PART_A containing routine_a

%"routine_a"%;

! Unload of old program module PART_A

UnLoad diskhome \File:="PART_A.MOD";

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 777
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.271 StartLoad - Load a program module during execution

RobotWare - OS

! Wait until loading and linking of new program module PART_B is
ready

WaitLoad load1;

! Execution in new program module PART_B

%"routine_b"%;

Starts the loading of programmodule PART_B.MOD from diskhome into the program
memory with instruction StartLoad. In parallel with the loading the program
executes routine_a in module PART_A.MOD. Then instruction WaitLoad waits
until the loading and linking is finished. The module is loaded in dynamic mode.
Variable load1 holds the identity of the load session updated by StartLoad and
referenced by WaitLoad.
To save linking time the instruction UnLoad and WaitLoad can be combined in
the instruction WaitLoad by using the optional argument \UnLoadPath.

Arguments
StartLoad [\Dynamic] FilePath [\File] LoadNo

[\Dynamic]

Data type: switch
The switch enables loading of a program module in dynamic mode. Otherwise the
loading is in static mode.

FilePath

Data type: string
The file path and the file name to the file that will be loaded into the program
memory. The file name shall be excluded when the argument \File is used.

[\File]

Data type: string
When the file name is excluded in the argument FilePath it must be defined with
this argument.

LoadNo

Data type: loadsession
This is a reference to the load session that should be used in the instruction
WaitLoad to connect the loaded program module to the program task.

Program execution
Execution of StartLoad will only order the loading and then proceed directly with
the next instruction without waiting for the loading to be completed.
The instruction WaitLoad will then wait at first for the loading to be completed if
it is not already finished, and then it will be linked and initialized. The initiation of
the loaded module sets all variables at module level to their initial values.
Unresolved references will default be accepted for this loading operation
StartLoad - WaitLoad, but it will be a run time error on execution of an
unresolved reference.

Continues on next page
778 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.271 StartLoad - Load a program module during execution
RobotWare - OS
Continued

To obtain a good program structure that is easy to understand and maintain, all
loading and unloading of programmodules should be done from the main module,
which is always present in the program memory during execution.
For loading of program that contains a main procedure to a main program (with
another main procedure), see instruction Load, Load - Load a program module
during execution on page 362.

More examples
More examples of how to use the instruction StartLoad are illustrated below.

Example 1
StartLoad \Dynamic, "HOME:/DOORDIR/DOOR1.MOD", load1;

Loads the program module DOOR1.MOD from the HOME: at the directory DOORDIR
into the program memory. The program module is loaded in dynamic mode.

Example 2
StartLoad \Dynamic, "HOME:" \File:="/DOORDIR/DOOR1.MOD", load1;

Same as in example 1 but with another syntax.

Example 3
StartLoad "HOME:" \File:="/DOORDIR/DOOR1.MOD", load1;

Same as in examples 1 and 2 above but the module is loaded in static mode.

Example 4
StartLoad \Dynamic, "HOME:" \File:="/DOORDIR/DOOR1.MOD", load1;

WaitLoad load1;

is the same as
Load \Dynamic, "HOME:" \File:="/DOORDIR/DOOR1.MOD";

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

File not found.ERR_FILNOTFND

The variable specified in argument LoadNo is already in
use.

ERR_LOADNO_INUSE

Syntax
StartLoad

['\'Dynamic ',']

[FilePath' :='] <expression (IN) of string>

['\'File ':=' <expression (IN) of string>] ','

[LoadNo ':='] <variable (VAR) of loadsession>';'

Related information

SeeFor information about

WaitLoad - Connect the loaded module to the task
on page 1035

Connect the loaded module to the task

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 779
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.271 StartLoad - Load a program module during execution

RobotWare - OS
Continued

SeeFor information about

loadsession - Program load session on page1657Load session

Load - Load a program module during execution
on page 362

Load a program module

UnLoad - UnLoad a programmodule during execu-
tion on page 992

Unload a program module

CancelLoad - Cancel loading of a module on
page 69

Cancel loading of a program module

Technical reference manual - RAPID OverviewProcedure call with Late binding

780 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.271 StartLoad - Load a program module during execution
RobotWare - OS
Continued

1.272 StartMove - Restarts robot movement

Usage
StartMove is used to resume robot, external axes movement and belonging
process after the movement has been stopped

• by the instruction StopMove.
• after execution of StorePath ... RestoPath sequence.
• after asynchronously raised movements errors, such as ERR_PATH_STOP or

specific process error after handling in the ERROR handler.
For base system it is possible to use this instruction in the following type of program
tasks:

• main task T_ROB1 for restart of the movement in that task.
• any other task for restart of the movements in the main task.

For MultiMove system it is possible to use this instruction in the following type of
program tasks:

• motion task, for restart of the movement in that task.
• non motion task, for restart of the movement in the connected motion task.

Besides that, if movement is restarted in one connectedmotion task belonging
to a coordinated synchronized task group, the movement is restarted in all
the cooperating tasks.

Basic examples
The following examples illustrate the instruction StartMove:

Example 1
StopMove;

WaitDI ready_input,1;

StartMove;

The robot starts to move again when the input ready_input is set.

Example 2
...

MoveL p100, v100, z10, tool1;

StorePath;

p:= CRobT(\Tool:=tool1);

! New temporary movement

MoveL p1, v100, fine, tool1;

...

MoveL p, v100, fine, tool1;

RestoPath;

StartMove;

...

After moving back to a stopped position p (in this example equal to p100), the
robot starts to move again on the basic path level.

Arguments
StartMove [\AllMotionTasks]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 781
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.272 StartMove - Restarts robot movement

[\AllMotionTasks]

Data type: switch
Restart the movement of all mechanical units in the system. The switch
[\AllMotionTasks] can only be used from a non-motion program task.

Program execution
Any processes associated with the stopped movement are restarted at the same
time that the motion resumes.
To restart a MultiMove application in synchronized coordinatedmode, StartMove
must be executed in all motion tasks that are involved in coordination.
With the switch \AllMotionTasks (only allowed from non-motion program task)
the movements for all mechanical units in the system are restarted.
In a base system without the switch \AllMotionTasks, the movements for
following mechanical units are restarted:

• always the mechanical units in the main task, independent of which task
executes the StartMove instruction.

In a MultiMove system without the switch \AllMotionTasks the movements for
the following mechanical units are restarted:

• the mechanical units in the motion task executing StartMove.
• the mechanical units in the motion task that are connected to the non motion

task executing StartMove. Besides that, if mechanical units are restarted
in one connected motion task belonging to a coordinated synchronized task
group then the mechanical units are restarted in all the cooperated tasks.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The robot is too far from the path (more than 10 mm or 20
degrees) to perform a restart of the interrupted movement.

ERR_PATHDIST

Move the robot closer to the path before attempting RETRY.

The robot is in hold state when executing a StartMove
instruction.

ERR_STARTMOVE

Wait some time before attempting RETRY.

The robot is in program stop state when executing a
StartMove instruction.

ERR_PROGSTOP

Wait some time before attempting RETRY.

The robot is already moving when executing a StartMove
instruction.

ERR_ALRDY_MOVING

Wait some time before attempting RETRY.

Limitations
Only one of several non-motion tasks is allowed at the same time to do StopMove
- StartMove sequence against some motion task.

Continues on next page
782 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.272 StartMove - Restarts robot movement
Continued

It is not possible to do any error recovery if StartMove is executed in any error
handler.

Syntax
StartMove

['\'AllMotionTasks]';'

Related information

SeeFor information about

StopMove - Stops robot movement on page 810Stopping movements

StartMoveRetry - Restarts robot movement and execution
on page 784

Continuing a movement

StorePath - Stores the path when an interrupt occurs on
page 816

More examples

RestoPath - Restores the path after an interrupt on page610

Technical reference manual - RAPID Instructions, Functions and Data types 783
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.272 StartMove - Restarts robot movement

Continued

1.273 StartMoveRetry - Restarts robot movement and execution

Usage
StartMoveRetry is used to resume robot and external axes movements and
belonging processes and also retry the execution from an ERROR handler.
This instruction can be used in an ERROR handler in the following types of program
tasks:

• main task T_ROB1 in a base system
• any motion task in a MultiMove system

Basic examples
The following example illustrates the instruction StartMoveRetry:

Example 1
VAR robtarget p_err;

...

MoveL p1\ID:=50, v1000, z30, tool1 \WObj:=stn1;

...

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StorePath;

p_err := CRobT(\Tool:= tool1 \WObj:=wobj0);

! Fix the problem

MoveL p_err, v100, fine, tool1;

RestoPath;

StartMoveRetry;

ENDIF

ENDPROC

This is an example from a MultiMove system with coordinated synchronized
movements (two robots working on some rotated work object).
During themovement to position p1, the other cooperated robot gets some process
error so that the coordinated synchronized movements stops. This robots then
gets the error ERR_PATH_STOP, and the execution is transferred to the ERROR
handler.
In the ERROR handler, do the following:

• StorePath stores the original path, goes to a new path level, and sets the
MultiMove system in independent mode.

• If there are problems with the robot then initiate movements on the new path
level.

• Before RestoPath go back to the error position.
• RestoPath goes back to the original path level and sets the MultiMove

system back to synchronized mode again.
• StartMoveRetry restarts the interrupted movement and any process. It

also transfers the execution back to resume the normal execution.

Continues on next page
784 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.273 StartMoveRetry - Restarts robot movement and execution
RobotWare - OS

Program execution
StartMoveRetry does the following sequence:

• regain to path
• restart any processes associated with the stopped movement
• restart the interrupted movement
• RETRY of the program execution

StartMoveRetry does the same as StartMove and RETRY together in one
indivisible operation.
Only the mechanical units in the program task that execute StartMoveRetry are
restarted.

Limitations
Can only be used in an ERROR handler in a motion task.
In a MultiMove system executing coordinated synchronized movements the
following programming rules must be followed in the ERROR handler:

• StartMoveRetry must be used in all cooperated program tasks.
• If movement is needed in any ERROR handler then the instructions StorePath

... RestoPath must be used in all cooperated program tasks.
• The program must move the robot back to the error position before

RestoPath is executed if the robot was moved on the StorePath level.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The robot is too far from the path (more than 10 mm or 20
degrees) to perform a restart of the interrupted movement.

ERR_PATHDIST

The robot is in hold state when executing a
StartMoveRetry instruction.

ERR_STARTMOVE

The robot is in program stop state when executing a
StartMoveRetry instruction.

ERR_PROGSTOP

The robot is already moving when executing a
StartMoveRetry instruction.

ERR_ALRDY_MOVING

Syntax
StartMoveRetry ';'

Related information

SeeFor information about

StopMove - Stops robot movement on page 810Stopping movements

StartMove - Restarts robot movement on page 781Continuing a movement

RETRY - Resume execution after an error on page 612Resume execution after an error

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 785
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.273 StartMoveRetry - Restarts robot movement and execution

RobotWare - OS
Continued

SeeFor information about

StorePath - Stores the path when an interrupt occurs on
page 816

Store/restore path

RestoPath - Restores the path after an interrupt on
page 610

786 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.273 StartMoveRetry - Restarts robot movement and execution
RobotWare - OS
Continued

1.274 STCalib - Calibrate a Servo Tool

Usage
STCalib is used to calibrate the distance between the tool tips. This is necessary
after tip change or tool change, and it is recommended after performing a tip dress
or after using the tool for a while.
Note! The tool performs two close/open movements during the calibration. The
first close movement will detect the tip contact position.

Basic examples
The following examples illustrate the instruction STCalib:

Example 1
VAR num curr_tip_wear;

VAR num retval;

CONST num max_adjustment := 20;

STCalib gun1 \ToolChg;

Calibrate a servo gun after a toolchange. Wait until the gun calibration has finished
before continuing with the next Rapid instruction.

Example 2
STCalib gun1 \ToolChg \Conc;

Calibrate a servo gun after a toolchange. Continue with the next Rapid instruction
without waiting for the gun calibration to be finished.

Example 3
STCalib gun1 \TipChg;

Calibrate a servo gun after a tipchange.

Example 4
STCalib gun1 \TipWear \RetTipWear := curr_tip_wear;

Calibrate a servo gun after tip wear. Save the tip wear in variable curr_tip_wear.

Example 5
STCalib gun1 \TipChg \RetPosAdj:=retval;

IF retval > max_adjustment THEN

TPWrite "The tips are lost!";

...

Calibrate a servo gun after a tipchange. Check if the tips are missing.

Example 6
STCalib gun1 \TipChg \PrePos:=10;

Calibrate a servo gun after a tipchange. Move fast to position 10 mm then start to
search for contact position with slower speed.

Example 7
Example of non valid combination:

STCalib gun1 \TipWear \RetTipWear := curr_tip_wear \Conc;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 787
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.274 STCalib - Calibrate a Servo Tool

Servo Tool Control

Perform a tip wear calibration. Continue with the next Rapid instruction without
waiting for the gun calibration to be finished. The parameter curr_tip_wear will
in this case not hold any valid value since the \Conc switch is used (The next
Rapid instruction will start to execute before the calibration process is finished).

Arguments
STCalib ToolName [\ToolChg] | [\TipChg] | [\TipWear] [\RetTipWear]

[\RetPosAdj] [\PrePos] [\Conc]

ToolName

Data type: string
The name of the mechanical unit.

[\ToolChg]

Data type: switch
Calibration after a tool change.

[\TipChg]

Data type: switch
Calibration after a tip change.

[\TipWear]

Data type: switch
Calibration after tip wear.

[\RetTipWear]

Data type: num
The achieved tip wear [mm].

[\RetPosAdj]

Data type: num
The positional adjustment since the last calibration [mm].

[\PrePos]

Data type: num
The position to move with high speed before the search for contact position with
slower speed is started [mm].

[\Conc]

Data type: switch
Subsequent instructions are executed while the gun is moving. The argument can
be used to shorten cycle time. This is useful when, for example, two guns are
controlled at the same time.

Program execution
Calibration modes
If the mechanical unit exists then the servo tool is ordered to calibrate. The
calibration is done according to the switches, see below. If the RetTipWear
parameter is used then the tip wear is updated.

Continues on next page
788 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.274 STCalib - Calibrate a Servo Tool
Servo Tool Control
Continued

Calibration after toolchange:
The tool will close with slow speed waiting for tips in contact to open fast, close
fast to a low force, and open again in one sequence. The tip wear will remain
unchanged.
Calibration after tipchange:
The tool will close with slow speed waiting for tips in contact to open fast, close
fast to a low force, and open again in one sequence. The tip wear will be reset.
Calibration after tipwear:
The tool will close with high speed to the contact position, open fast, close fast to
a low force, and open again in one sequence. The tip wear will be updated.
NOTE! If the switch Conc is used then the instruction will be considered ready
once started and therefore the return value RetTipWear will not be available. In
this case the RetTipWear will be returned by the function STIsOpen. For more
details, see RobotWareOS functions - STIsOpen.
Positional adjustment
The optional argument RetPosAdj can be used to detect, for example, if the tips
are lost after a tip change. The parameter will hold the value of the positional
adjustment since the last calibration. The value can be negative or positive.
Using a pre-position
To speed up the calibration it is possible to define a pre-position. When the
calibration starts the gun arm will run fast to the pre-position, stop, and then
continue slowly*) forward to detect the tip contact position. If a pre-position is used
then select it carefully! It is important that the tips do not get in contact until after
the pre-position is reached! Otherwise the accuracy of the calibration will become
poor and motion supervision errors may possibly occur. A pre-position will be
ignored if it is larger than the current gun position (in order not to slow down the
calibration).
*) The second movement will also be fast if the \TipWear option is used.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The specified servo tool name is not a configured servo
tool.

ERR_NO_SGUN

Emergency stop during servo tool movement.ERR_SGUN_ESTOP

The instruction is invoked from a background task and there
is an emergency stop, the instruction will be finished.
Note that if the instruction is invoked from the main task
then the program pointer will be stopped at the instruction,
and the instruction will be restarted from the beginning at
program restart.

The instruction is invoked from a background task and the
system is in motors off state.

ERR_SGUN_MOTOFF

The argument PrePos is specified with a value less than
zero.

ERR_SGUN_NEGVAL

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 789
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.274 STCalib - Calibrate a Servo Tool

Servo Tool Control
Continued

Cause of errorName

The servo tool mechanical unit is not activated.ERR_SGUN_NOTACT

Use instruction ActUnit to activate the servo tool.

The servo tool position is not initialized.ERR_SGUN_NOTINIT

The servo tool position must be initialized the first time the
gun is installed or after a fine calibration is made. Use the
service routine ManServiceCalib or perform a tip change
calibration. The tip wear will be reset.

The gun is not open when STCalib is invoked.ERR_SGUN_NOTOPEN

The servo tool tips are not synchronized.ERR_SGUN_NOTSYNC

The servo tool tips must be synchronized if the revolution
counter has been lost and/or updated. No process data
such as tip wear will be lost.

Syntax
STCalib

['ToolName' :='] < expression (IN) of string > ','

['\'ToolChg] | ['\'TipChg] | ['\'TipWear]

[' \'RetTipWear' :=' < variable or persistent(INOUT) of num >
]';'

['\'RetPosAdj' :=' < variable or persistent(INOUT) of num >]';'

['\'PrePos' :=' < expression (IN) of num >]'

['\'Conc'];'

Related information

SeeFor information about

STOpen - Open a Servo Tool on page 808Open a servo tool

STClose - Close a Servo Tool on page 791Close a servo tool

790 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.274 STCalib - Calibrate a Servo Tool
Servo Tool Control
Continued

1.275 STClose - Close a Servo Tool

Usage
STClose is used to close the Servo Tool.

Basic examples
The following examples illustrate the instruction STClose:

Example 1
VAR num curr_thickness1;

VAR num curr_thickness2;

STClose gun1, 1000, 5;

Close the servo gun with tip force 1000 N and plate thickness 5mm. Wait until the
gun is closed before continuing with the next Rapid instruction.

Example 2
STClose gun1, 2000, 3\RetThickness:=curr_thickness;

Close the servo gun with tip force 2000 N and plate thickness 3 mm. Get the
measured thickness in variable curr_thickness.

Example 3
Concurrent mode:

STClose gun1, 1000, 5 \Conc;

STClose gun2, 2000, 3 \Conc;

Close the servo gun1 with tip force 1000 N and plate thickness 5 mm. Continue
the program execution without waiting for gun1 to be closed, and close the servo
gun2 with tip force 2000N and plate thickness 3 mm. Continue the execution of
the Rapid program without waiting for gun2 to be closed.

Example 4
IF STIsClosed (gun1)\RetThickness:=curr_thickness1 THEN

IF curr_thickness1 < 0.2 Set weld_start1;

ENDIF

IF STIsClosed (gun2)\RetThickness:=curr_thickness2 THEN

IF curr_thickness2 < 0.2 Set weld_start2;

ENDIF

Get the measured thickness in the function STIsClosed variable
curr_thickness1 and curr_thickness2.

Example 5
Example of non valid combination:

STClose gun1, 2000, 3\RetThickness:=curr_thickness \Conc;

Close the servo gun and continue with the Rapid program execution. The parameter
curr_thickness will in this case not hold any valid value since the \Conc switch
is used (The next Rapid instruction will start to execute before the gun is closed).

Arguments
STClose ToolName TipForce Thickness [\RetThickness][\Conc]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 791
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.275 STClose - Close a Servo Tool

Servo Tool Control

ToolName

Data type: string
The name of the mechanical unit.

TipForce

Data type: num
The desired tip force [N].

Thickness

Data type: num
The expected contact position for the servo tool [mm].

[\RetThickness]

Data type: num
The achieved thickness [mm], will only get a value if the \Conc switch is not used.

[\Conc]

Data type: switch
Subsequent instructions are executed while the gun is moving. The argument can
be used to shorten cycle time. This is useful when e.g. two guns are controlled at
the same time.

Program execution
If the mechanical unit exists then the servo tool is ordered to close to the expected
thickness and force.
The closing will start to move the tool arm to the expected contact position
(thickness). The movement is stopped in this position, and a switch from position
control mode to force control mode is done.
The tool arm is moved with max speed and acceleration as it is defined in the
system parameters for corresponding external axis. As for other axes movements,
the speed is reduced in manual mode.
When the desired tip force is achieved the instruction is ready and the achieved
thickness is returned if the optional argument RetThickness is specified.
NOTE! If the switch Conc is used then the instruction will be considered to be ready
once started and therefore the return value RetThickness will not be available.
In this case the RetThickness will be returned by the function STIsClosed. For
more details see RobotWare OS functions - STIsClosed.
It is possible to close the tool during a programmed robot movement as long as
the robot movement does not include a movement of the tool arm.
For more details see Servo tool motion control.

Continues on next page
792 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.275 STClose - Close a Servo Tool
Servo Tool Control
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The specified servo tool name is not a configured servo
tool.

ERR_NO_SGUN

Emergency stop during servo tool movement.ERR_SGUN_ESTOP

The instruction is invoked from a background task and there
is an emergency stop, the instruction will be finished.
Note that if the instruction is invoked from the main task
then the program pointer will be stopped at the instruction,
and the instruction will be restarted from the beginning at
program restart.

The instruction is invoked from a background task and the
system is in motors off state.

ERR_SGUN_MOTOFF

The argument PrePos is specified with a value less than
zero.

ERR_SGUN_NEGVAL

The servo tool mechanical unit is not activated.ERR_SGUN_NOTACT

Use instruction ActUnit to activate the servo tool.

The servo tool position is not initialized.ERR_SGUN_NOTINIT

The servo tool position must be initialized the first time the
gun is installed or after a fine calibration is made. Use the
service routine ManServiceCalib or perform a tip change
calibration. The tip wear will be reset.

The gun is not open when STClose is invoked.ERR_SGUN_NOTOPEN

The servo tool tips are not synchronized.ERR_SGUN_NOTSYNC

The servo tool tips must be synchronized if the revolution
counter has been lost and/or updated. No process data
such as tip wear will be lost.

Syntax
STClose

['ToolName ':='] < expression (IN) of string > ','

['Tipforce' :='] < expression (IN) of num > ','

['Thickness' :='] < expression (IN) of num >]

['\' 'RetThickness' :=' < variable or persistent (INOUT) of num
>]

['\'Conc]

Related information

SeeFor information about

STOpen - Open a Servo Tool on page 808Open a servo tool

Technical reference manual - RAPID Instructions, Functions and Data types 793
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.275 STClose - Close a Servo Tool

Servo Tool Control
Continued

1.276 StepBwdPath - Move backwards one step on path

Usage
StepBwdPath is used to move the TCP backwards on the robot path from a
RESTART event routine.
It is up to the user to introduce a restart process flag so StepBwdPath in the
RESTART event routine is only executed at process restart and not at all program
restarts.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
System, in Motion tasks.

Basic examples
The following example illustrates the instruction StepBwdPath:

Example 1
StepBwdPath 30, 1;

StepBwdPath 30, 1;

The first instruction move backwards 30 mm. The second instruction move
backwards 30 mm further.

Arguments
StepBwdPath StepLength StepTime

StepLength

Data type: num
Specifies the distance, in millimeters, to move backwards during this step. This
argument must be a positive value.

StepTime

Data type: num
This argument is obsolete. Set it to 1.

Program execution
The robot moves back on its path for the specified distance. The path is exactly
the same in the reverse way as it was before the stop occurred. In the case of a
quick stop or emergency stop, the RESTART event routine is called after the regain
phase has completed so the robot will already be back on its path when this
instruction is executed.
The actual speed for this movement is the programmed speed on the movement
order but limited to 250 mm/s.
Following properties are valid in MultiMove System - Synchronized Coordinated
Movements:

• All involved mechanical units are moved backward simultaneously and
coordinated

• Each executed StepBwdPath in any involved program task results in one
new backward movement step (without need of any StartMove)

Continues on next page
794 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.276 StepBwdPath - Move backwards one step on path
RobotWare - OS

• To restart and continue the interrupted process movements, instruction
StartMove must be executed in all involved program tasks

Limitations
After the program has been stopped it is possible to step backwards on the path
with the following limits:

• The StepBwdPath movements are limited to the last fine point, and the
length of the movement order history that normally is five.

Error handling
If an attempt is made to move beyond these limits then the error handler will be
called with ERRNO set to ERR_BWDLIMIT.

Syntax
StepBwdPath

[StepLength':='] < expression (IN) of num >','

[StepTime ':='] < expression (IN) of num >';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID OverviewPositioning instructions

Application manual - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 795
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.276 StepBwdPath - Move backwards one step on path

RobotWare - OS
Continued

1.277 STIndGun - Sets the gun in independent mode

Usage
STIndGun(Servo Tool independent gun) is used to set the gun in independent
mode and thereafter move the gun to a specified independent position. The gun
will stay in independent mode until the instruction STIndGunReset is executed.
During independent mode the control of the gun is separated from the robot. The
gun can be closed, opened, calibrated, or moved to a new independent position,
but it will not follow coordinated robot movements.
Independent mode is useful if the gun performs a task that is independent of the
robot’s task, e.g. tip dressing of a stationary gun.

Basic examples
The following example illustrates the instruction STIndGun:

Example 1
This procedure could be run from a background task while the robot in the main
task can continue with, for example, move instructions.

PROC tipdress()

! Note that the gun will move to current robtarget position, if

! already in independent mode.

STIndGunReset gun1;

...

STIndGun gun1, 30;

StClose gun1, 1000, 5;

WaitTime 10;

STOpen gun1;

...

STIndGunReset gun1;

ENDPROC

Independent mode is activated and the gun is moved to an independent position
(30 mm). During independent mode the instructions StClose, WaitTime, and
STOpen are executed without interfering with robot motion. The instruction

Continues on next page
796 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.277 STIndGun - Sets the gun in independent mode
Servo Tool Control

StIndGunReset will take the gun out of independent mode and move the gun to
current robtarget position.

xx0500002342

The position p1 depends on the position of the gun given in the robtarget just
performed by the robot.

Arguments
STIndGun ToolName GunPos

ToolName

Data type: string
The name of the mechanical unit.

GunPos

Data type: num
The position (stroke) of the servo gun in mm.

Syntax
STIndGun

[ToolName ':='] < expression (IN) of string > ','

[GunPos ':=' < expression (IN) of num >]';'

Technical reference manual - RAPID Instructions, Functions and Data types 797
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.277 STIndGun - Sets the gun in independent mode

Servo Tool Control
Continued

1.278 STIndGunReset - Resets the gun from independent mode

Usage
STIndGunReset (Servo Tool independent gun reset) is used to reset the gun from
independent mode and thereafter move the gun to current robtarget position.

Basic examples
The following example illustrates the instruction STIndGunReset:

STIndGunReset gun1;

Arguments
STIndGunReset ToolName

ToolName

Data type: string
The name of the mechanical unit.

Program execution
The instruction will reset the gun from independent mode and move the gun to
current robtarget position. During this movement the coordinated speed of the gun
must be zero otherwise an error will occur. The coordinated speed will be zero if
the robot is standing still or if the current robot movement includes a “zero
movement” from the gun.

Syntax
STIndGunReset

[ToolName ':=']<expression (IN) of string>';'

798 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.278 STIndGunReset - Resets the gun from independent mode
Servo Tool Control

1.279 SToolRotCalib - Calibration of TCP and rotation for stationary tool

Usage
SToolRotCalib (Stationary Tool Rotation Calibration) is used to calibrate the
TCP and rotation of a stationary tool.
The position of the robot and its movements are always related to its tool coordinate
system, i.e. the TCP and tool orientation. To get the best accuracy it is important
to define the tool coordinate system as correctly as possible.
The calibration can also be done with a manual method using the FlexPendant
(described in Operating manual - IRC5 with FlexPendant, section Programming
and testing).

Description
To define the TCP and rotation of a stationary tool, you need a movable pointing
tool mounted on the end effector of the robot.
Before using the instruction SToolRotCalib, some preconditionsmust be fulfilled:

• The stationary tool that is to be calibrated must be mounted stationary and
defined with the correct component robhold (FALSE).

• The pointing tool (robhold TRUE) must be defined and calibrated with the
correct TCP values.

• If using the robot with absolute accuracy then the load and center of gravity
for the pointing tool should be defined. LoadIdentify can be used for the
load definition.

• The pointing tool, wobj0, and PDispOff must be activated before jogging
the robot.

• Jog the TCP of the pointing tool as close as possible to the TCP of the
stationary tool (origin of the tool coordinate system) and define a robtarget
for the reference point RefTip.

• Jog the robot without changing the tool orientation so the TCP of the pointing
tool is pointing at some point on the positive z-axis of the tool coordinate
system, and define a robtarget for point ZPos.

• Jog the robot without changing the tool orientation so the TCP of the pointing
tool is pointing at some point on the positive x-axis of the tool coordinate
system, and define a robtarget for point XPos.

As a help for pointing out the positive z-axis and x-axis, some type of elongator
tool can be used.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 799
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.279 SToolRotCalib - Calibration of TCP and rotation for stationary tool

RobotWare - OS

Definition of robtargets RefTip, ZPos, and XPos. See figure below.

xx0500002343

Note

It is not recommended to modify the positions RefTip, ZPos, and XPos in the
instruction SToolRotCalib.

Basic examples
The following example illustrates the instruction SToolRotCalib:

Example 1
! Created with pointing TCP pointing at the stationary tool

! coordinate system

CONST robtarget pos_tip := [...];

CONST robtarget pos_z := [...];

CONST robtarget pos_x := [...];

PERS tooldata tool1:= [FALSE, [[0, 0, 0], [1, 0, 0 ,0]], [0, [0,
0, 0], [1, 0, 0, 0], 0, 0, 0]];

!Instructions for creating or ModPos of pos_tip, pos_z and pos_x

MoveJ pos_tip, v10, fine, point_tool;

MoveJ pos_z, v10, fine, point_tool;

MoveJ pos_x, v10, fine, point_tool;

SToolRotCalib pos_tip, pos_z, pos_x, tool1;

The position of the TCP (tframe.trans) and the tool orientation (tframe.rot)
of tool1 in the world coordinate system is calculated and updated.

Arguments
SToolRotCalib RefTip ZPos XPos Tool

RefTip

Data type: robtarget
The point where the TCP of the pointing tool is pointing at the stationary tool TCP
to calibrate.

Continues on next page
800 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.279 SToolRotCalib - Calibration of TCP and rotation for stationary tool
RobotWare - OS
Continued

ZPos

Data type: robtarget
The elongator point that defines the positive z direction.

XPos

Data type: robtarget
The elongator point that defines the positive x direction.

Tool

Data type: tooldata
The persistent variable of the tool that is to be calibrated.

Program execution
The system calculates and updates the TCP (tframe.trans) and the tool
orientation (tfame.rot) in the specified tooldata. The calculation is based on
the specified 3 robtarget. The remaining data in tooldata is not changed.

Syntax
SToolRotCalib

[RefTip ':='] < expression (IN) of robtarget > ','

[ZPos ':='] < expression (IN) of robtarget > ','

[XPos ':='] < expression (IN) of robtarget > ','

[Tool ':='] < persistent (PERS) of tooldata > ';'

Related information

SeeFor information about

MToolTCPCalib - Calibration of TCP for moving
tool on page 494

Calibration of TCP for a moving tool

MToolRotCalib - Calibration of rotation for moving
tool on page 491

Calibration of rotation for a moving tool

MToolTCPCalib - Calibration of TCP for moving
tool on page 494

Calibration of TCP for a stationary tool

Technical reference manual - RAPID Instructions, Functions and Data types 801
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.279 SToolRotCalib - Calibration of TCP and rotation for stationary tool

RobotWare - OS
Continued

1.280 SToolTCPCalib - Calibration of TCP for stationary tool

Usage
SToolTCPCalib (Stationary Tool TCP Calibration) is used to calibrate the Tool
Center Point - TCP for a stationary tool.
The position of the robot and its movements are always related to its tool coordinate
system, i.e. the TCP and tool orientation. To get the best accuracy it is important
to define the tool coordinate system as correctly as possible.
The calibration can also be done with a manual method using the FlexPendant
(described in Operating manual - IRC5 with FlexPendant, section Programming
and testing).

Description
To define the TCP of a stationary tool, you need a movable pointing tool mounted
on the end effector of the robot.
The following are the prerequisites before using the instruction SToolTCPCalib:

• The stationary tool that is to be calibrated must be mounted stationary and
defined with the correct component robhold (FALSE).

• The pointing tool (robhold TRUE) must be defined and calibrated with the
correct TCP values.

• If using the robot with absolute accuracy then the load and center of gravity
for the pointing tool should be defined. LoadIdentify can be used for the
load definition.

• The pointing tool, wobj0 and PDispOff, must be activated before jogging
the robot.

• Jog the TCP of the pointing tool as close as possible to the TCP of the
stationary tool and define a robtarget for the first point p1.

• Define the further three positions p2, p3, and p4, all with different orientations.
• It is recommended that the TCP is pointing in different directions to obtain

a reliable statistical result.
Definition of 4 robtargets p1...p4. See figure below.

xx0500002344

Continues on next page
802 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.280 SToolTCPCalib - Calibration of TCP for stationary tool
RobotWare - OS

Note

It is not recommended to modify the positions Pos1 to Pos4 in the instruction
SToolTCPCalib.
The reorientation between the 4 positions should be as big as possible, putting
the robot in different configurations.Its also good practice to check the quality
of the TCP after a calibration. Which can be performed by reorientation of the
tool to check if the TCP is standing still.

Basic example
The following example illustrates the instruction SToolTCPCalib:

Example 1
! Created with pointing TCP pointing at the stationary TCP

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

CONST robtarget p4 := [...];

PERS tooldata tool1:= [FALSE, [[0, 0, 0], [1, 0, 0 ,0]], [0,001,
[0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]];

VAR num max_err;

VAR num mean_err;

! Instructions for creating or ModPos of p1 - p4

MoveJ p1, v10, fine, point_tool;

MoveJ p2, v10, fine, point_tool;

MoveJ p3, v10, fine, point_tool;

MoveJ p4, v10, fine, point_tool;

SToolTCPCalib p1, p2, p3, p4, tool1, max_err, mean_err;

The TCP value (tframe.trans) of tool1will be calibrated and updated. max_err
and mean_errwill hold themax error in mm from the calculated TCP and themean
error in mm from the calculated TCP, respectively.

Arguments
SToolTCPCalib Pos1 Pos2 Pos3 Pos4 Tool MaxErr MeanErr

Pos1

Data type: robtarget
The first approach point.

Pos2

Data type: robtarget
The second approach point.

Pos3

Data type: robtarget
The third approach point.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 803
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.280 SToolTCPCalib - Calibration of TCP for stationary tool

RobotWare - OS
Continued

Pos4

Data type: robtarget
The fourth approach point.

Tool

Data type: tooldata
The persistent variable of the tool that is to be calibrated.

MaxErr

Data type: num
The maximum error in mm for one approach point.

MeanErr

Data type: num
The average distance that the approach points are from the calculated TCP, i.e.
how accurately the robot was positioned relative to the stationary TCP.

Program execution
The system calculates and updates the TCP value in the world coordinate system
(tfame.trans) in the specified tooldata. The calculation is based on the
specified 4 robtarget. The remaining data in tooldata, such as tool orientation
(tframe.rot), is not changed.

Syntax
SToolTCPCalib

[Pos1 ':='] < expression (IN) of robtarget > ','

[Pos2 ':='] < expression (IN) of robtarget > ','

[Pos3 ':='] < expression (IN) of robtarget > ','

[Pos4 ':='] < expression (IN) of robtarget > ','

[Tool ':='] < persistent (PERS) of tooldata > ','

[MaxErr ':='] < variable (VAR) of num > ','

[MeanErr ':='] < variable (VAR) of num > ';'

Related information

SeeFor information about

SToolTCPCalib - Calibration of TCP for stationary
tool on page 802

Calibration of TCP for a moving tool

MToolRotCalib - Calibration of rotation for moving
tool on page 491

Calibration of rotation for a moving tool

SToolRotCalib - Calibration of TCP and rotation
for stationary tool on page 799

Calibration of TCP and rotation for a
stationary tool

804 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.280 SToolTCPCalib - Calibration of TCP for stationary tool
RobotWare - OS
Continued

1.281 Stop - Stops program execution

Usage
Stop is used to stop the program execution. Any movement performed at the time
will be finished before the Stop instruction is ready.

Basic examples
The following example illustrates the instruction Stop:
See also More examples on page 807.

Example 1
TPWrite "The line to the host computer is broken";

Stop;

Program execution stops after a message has been written on the FlexPendant.

Arguments
Stop [\NoRegain] | [\AllMoveTasks]

[\NoRegain]

Data type: switch
Specifies for the next program start, whether or not the affected mechanical unit
should return to the stop position.
If the argument \NoRegain is set then the robot and external axes will not return
to the stop position (if they have been jogged away from it).
If the argument is omitted and if the robot or external axes have been jogged away
from the stop position then the robot displays a question on the FlexPendant. The
user can then answer whether or not the robot should return to the stop position.

[\AllMoveTasks]

Data type: switch
Specifies that programs in all running normal tasks besides the actual task should
be stopped.
If the argument is omitted then only the program in the task that executes the
instruction will be stopped.

Program execution
The instruction stops program execution when the affected mechanical units in
the actual motion task have reached zero speed for the movement it is performing
at the time, and stands still. Program execution can then be restarted from the next
instruction.
If the instruction is used without any switches then only the program in that task
will be affected.
If the AllMoveTasks switch is used in a task (Normal, Static, or Semistatic) then
the program in that task and all normal tasks will stop. See more about declaration
of tasks in documentation for System Parameters

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 805
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.281 Stop - Stops program execution

RobotWare - OS

The NoRegain switch is only possible to use in motion tasks since it only concerns
the motion path.
If there is a Stop instruction in an event routine then the execution of the routine
will be stopped, and the execution continues as described in Stop on page 806.
If there is a Stop\AllMoveTasks instruction in an event routine in a MultiMove
system, then the task containing the instruction continues as described in Stop
on page 806, and all other motion tasks executing an event routine continues as
described in Stop \AllMoveTasks on page806 (same effect as for normal program
stop during execution of the event routine).

Stop

Effect by Stop instructionEvent routines

The execution is stopped for all tasks. The
execution does not continue in the event
routine at the next start order.

POWER ON

The execution is stopped for all tasks. The
execution continues in the event routine at the
next start order.

START

The execution is stopped for all tasks. The
execution continues in the event routine at the
next start order.

RESTART

The execution is stopped. The execution does
not continue in the event routine at the next
start order.

STOP

The execution is stopped. The execution does
not continue in the event routine at the next
start order.

QSTOP

The execution is stopped. The execution does
not continue in the event routine at the next
start order.

RESET

Stop \AllMoveTasks

Effect by Stop \AllMoveTasks instructionEvent routines

The execution is stopped for all tasks. The
execution does not continue in the event
routine at the next start order.

POWER ON

The execution is stopped for all tasks. The
execution continues in the event routine at the
next start order.

START

The execution is stopped for all tasks. The
execution continues in the event routine at the
next start order.

RESTART

The execution is stopped for all tasks. The
execution does not continue in the event
routine at the next start order.

STOP

The execution is stopped for all tasks. The
execution does not continue in the event
routine at the next start order.

QSTOP

The execution is stopped. The execution does
not continue in the event routine at the next
start order.

RESET

Continues on next page
806 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.281 Stop - Stops program execution
RobotWare - OS
Continued

More examples
More examples of how to use the instruction Stop are illustrated below.

Example 1
MoveL p1, v500, fine, tool1;

TPWrite "Jog the robot to the position for pallet corner 1";

Stop \NoRegain;

p1_read := CRobT(\Tool:=tool1 \WObj:=wobj0);

MoveL p2, v500, z50, tool1;

Program execution stops with the robot at p1. The operator jogs the robot to
p1_read. For the next program start the robot does not regain to p1, so the position
p1_read can be stored in the program.

Syntax
Stop

['\' NoRegain] '|'

['\' AllMoveTasks]';'

Related information

SeeFor information about

EXIT - Terminates program execution on
page 239

Terminating program execution

StopMove - Stops robotmovement on page810Only stopping robot movements

Break - Break program execution on page 47Stop program for debugging

Technical reference manual - RAPID Instructions, Functions and Data types 807
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.281 Stop - Stops program execution

RobotWare - OS
Continued

1.282 STOpen - Open a Servo Tool

Usage
STOpen is used to open the Servo Tool.

Basic examples
The following examples illustrate the instruction STOpen:

Example 1
STOpen gun1;

Open the servo tool gun1. Wait until the gun is opened before continuing with the
next Rapid instruction.

Example 2
STOpen gun1 \Conc;

Open the servo tool gun1. Continue with the next Rapid instruction without waiting
for the gun to be opened.

Example 3
STOpen "SERVOGUN"\WaitZeroSpeed;

Stop the servo tool SERVOGUN, wait until any coordinated movement has finished,
and then open the servo tool SERVOGUN.

Arguments
STOpen ToolName [\WaitZeroSpeed] [\Conc]

ToolName

Data type: string
The name of the mechanical unit.

[\WaitZeroSpeed]

Data type: switch
Stop the servo tool, wait until any coordinated movement has finished, and then
open the servo tool.

[\Conc]

Data type: switch
Subsequent instructions are executed while the gun is moving. The argument can
be used to shorten cycle time. This is useful when, for example, two guns are
controlled at the same time.

Program execution
If the mechanical unit exists then the servo tool is ordered to open. The tip force
is reduced to zero and the tool arm is moved back to the pre_close position.
The tool arm is moved with max speed and acceleration as it is defined in the
system parameters for the corresponding external axis. As for other axes
movements, the speed is reduced in manual mode.

Continues on next page
808 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.282 STOpen - Open a Servo Tool
Servo Tool Control

It is possible to open the tool during a programmed robot movement as long as
the robot movement does not include a movement of the tool arm. If the tool is
opened during such movement then an error 50251 Tool opening failed will
be displayed. The switch WaitZeroSpeed can be used to reduce the risk for this
error.
If the switch Conc is used then the instruction will be considered to be ready before
the servo tool is opened. It is recommended that the function STIsOpen is used
after STOpen to avoid any problems in concurrent mode.
For more details, see Servo tool motion control.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The specified servo tool name is not a configured servo
tool.

ERR_NO_SGUN

The servo tool mechanical unit is not activated.ERR_SGUN_NOTACT

Use instruction ActUnit to activate the servo tool.

The servo tool position is not initialized.ERR_SGUN_NOTINIT

The servo tool position must be initialized the first time the
gun is installed or after a fine calibration is made. Use the
service routine ManServiceCalib or perform a tip change
calibration. The tip wear will be reset.

The servo tool tips are not synchronized.ERR_SGUN_NOTSYNC

The servo tool tips must be synchronized if the revolution
counter has been lost and/or updated. No process data
such as tip wear will be lost.

Note

If the instruction is invoked from a background task and there is an emergency
stop the instruction will be finished without an error.

Syntax
STOpen

['ToolName ':='] < expression (IN) of string > ','

['\'WaitZeroSpeed]' ,'

['\'Conc]'

Related information

SeeFor information about

STClose - Close a Servo Tool on page 791Close a servo tool

Technical reference manual - RAPID Instructions, Functions and Data types 809
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.282 STOpen - Open a Servo Tool

Servo Tool Control
Continued

1.283 StopMove - Stops robot movement

Usage
StopMove is used to stop robot and external axes movements and any belonging
process temporarily. If the instruction StartMove is given then the movement and
process resumes.
This instruction can, for example, be used in a trap routine to stop the robot
temporarily when an interrupt occurs.
For base system it is possible to use this instruction in the following type of program
tasks:

• main task T_ROB1 for stopping the movement in that task.
• any other task for stopping the movements in the main task.

For MultiMove systems it is possible to use this instruction in following type of
program tasks:

• motion task for stopping the movement in that task.
• non-motion task for stopping the movement in the connected motion task.

Besides that, if movement is stopped in one motion task belonging to a
coordinated synchronized task group then the movement is stopped in all
the cooperated tasks.

Basic examples
The following example illustrates the instruction StopMove:
See also More examples on page 811.

Example 1
StopMove;

WaitDI ready_input, 1;

StartMove;

The robot movement is stopped until the input, ready_input is set.

Arguments
StopMove [\Quick] [\AllMotionTasks]

[\Quick]

Data type: switch
Stops the robot on the path as fast as possible.
Without the optional parameter \Quick, the robot stops on the path, but the braking
distance is longer (same as for normal Program Stop).

[\AllMotionTasks]

Data type: switch
Stop the movement of all mechanical units in the system. The switch
[\AllMotionTasks] can only be used from a non-motion program task.

Continues on next page
810 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.283 StopMove - Stops robot movement
RobotWare - OS

Program execution
The movements of the robot and external axes stop without the brakes being
engaged. Any processes associated with the movement in progress are stopped
at the same time as the movement is stopped.
Program execution continues after waiting for the robot and external axes to stop
(standing still).
With the switch \AllMotionTasks (only allowed from non-motion program task)
the movements for all mechanical units in the system are stopped.
In a base system without the switch \AllMotionTasks, the movements for the
following mechanical units are stopped:

• always the mechanical units in the main task, independent of which task
executes the StopMove instruction.

In a MultiMove system without the switch \AllMotionTasks, the movements for
the following mechanical units are stopped:

• the mechanical units in the motion task executing StopMove.
• the mechanical units in the motion task that are connected to the non-motion

task executing StopMove. Besides that, if mechanical units are stopped in
one connected motion task belonging to a coordinated synchronized task
group then the mechanical units are stopped in all the cooperated tasks.

The StopMove state in the motion task generated from the motion task itself will
automatically be reset when starting that task from the beginning.
The StopMove state in connected motion task, generated from some non-motion
task, will automatically be reset:

• if normal non-motion task, at the start of that task from the beginning.
• if semi-static non-motion task, at power fail restart when the task is starting

from the beginning.
• if static non-motion task, at installation start when the task is starting from

the beginning.

More examples
More examples of the instruction StopMove are illustrated below.

Example 1
VAR intnum intno1;

...

PROC main()

...

CONNECT intno1 WITH go_to_home_pos;

ISignalDI di1,1,intno1;

...

TRAP go_to_home_pos

VAR robtarget p10;

StopMove;

StorePath;

p10:=CRobT(\Tool:=tool1 \WObj:=wobj0);

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 811
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.283 StopMove - Stops robot movement

RobotWare - OS
Continued

MoveL home,v500,fine,tool1;

WaitDI di1,0;

Move L p10,v500,fine,tool1;

RestoPath;

StartMove;

ENDTRAP

When the input di1 is set to 1 an interrupt is activated which in turn activates the
interrupt routine go_to_home_pos. The current movement is stopped, and the
robot moves instead to the home position. When di1 is set to 0 the robot returns
to the position at which the interrupt occurred and continues to move along the
programmed path.

Example 2
VAR intnum intno1;

...

PROC main()

...

CONNECT intno1 WITH go_to_home_pos;

ISignalDI di1,1,intno1;

...

TRAP go_to_home_pos ()

VAR robtarget p10;

StorePath;

p10:=CRobT(\Tool:=tool1 \WObj:=wobj0);

MoveL home,v500,fine,tool1;

WaitDI di1,0;

MoveL p10,v500,fine,tool1;

RestoPath;

StartMove;

ENDTRAP

Similar to the previous example but the robot does not move to the home position
until the current movement instruction is finished.

Limitations
Only one of several non-motion tasks is allowed at the same time to do StopMove
- StartMove sequence against some motion task.

Syntax
StopMove

['\'Quick]

['\'AllMotionTasks]';'

Related information

SeeFor information about

StartMove - Restarts robot movement on page 781Continuing a movement
StartMoveRetry - Restarts robot movement and exe-
cution on page 784

Continues on next page
812 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.283 StopMove - Stops robot movement
RobotWare - OS
Continued

SeeFor information about

StorePath - Stores the path when an interrupt occurs
on page 816

Store - restore path

RestoPath - Restores the path after an interrupt on
page 610

Technical reference manual - RAPID Instructions, Functions and Data types 813
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.283 StopMove - Stops robot movement

RobotWare - OS
Continued

1.284 StopMoveReset - Reset the system stop move state

Usage
StopMoveReset is used to reset the system stop move state without starting any
movements.
Asynchronously raised movements errors, such as ERR_PATH_STOP or specific
process error during the movements, can be handled in the ERROR handler. When
such an error occurs the movements are stopped at once, and the system stop
move flag is set for actual program tasks. This means that the movement is not
restarted if doing any program start while program pointer is inside the ERROR
handler.
Restart of the movements after such movement error will be done after one of
these action:

• Execute StartMove or StartMoveRetry.
• Execute StopMoveReset and the movement will restart at the next program

start.

Basic examples
The following example illustrates the instruction StopMoveReset:

Example 1
...

ArcL p101, v100, seam1, weld1, weave1, z10, gun1;

...

ERROR

IF ERRNO=AW_WELD_ERR OR ERRNO=ERR_PATH_STOP THEN

! Execute something but without any restart of the movement

! ProgStop - ProgStart must be allowed

...

! No idea to try to recover from this error, so let the error

! stop the program

...

! Reset the move stop flag, so it’s possible to manual restart

! the program and the movement after that the program has

! stopped

StopMoveReset;

ENDIF

ENDPROC

After that above ERROR handler has executed the ENDPROC, the program execution
stops and the pointer is at the beginning of the ArcL instruction. Next program
start restarts the program and movement from the position where the original
movement error occurred.

Arguments
StopMoveReset [\AllMotionTasks]

[\AllMotionTasks]

Data type: switch

Continues on next page
814 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.284 StopMoveReset - Reset the system stop move state
RobotWare - OS

Reset the system stopmove state for all mechanical units in the system. The switch
[\AllMotionTasks] can only be used from a non-motion program task.

Program execution
To reset a MultiMove application in synchronized coordinated mode,
StopMoveReset must be executed in all motion tasks that are involved in
coordination.
With the switch \AllMotionTasks (only allowed from non-motion program task)
the reset is done for all all mechanical units in the system.
In a base system without the switch \AllMotionTasks, the reset is always done
for the main task, independent of which task that executes the StopMoveReset
instruction.
For base system it is possible to use StopMoveReset in the following type of
program tasks:

• main task T_ROB1 to reset the stop move state in that task.
• any other task to reset the stop move state in the main task.

For MultiMove system it is possible to use this instruction in the following type of
program tasks:

• motion task, to reset the stop move state in that task.
• non motion task, to reset the stop move state in the connected motion task.

Besides that, if the reset of the stop move state in one connected motion
task belonging to a coordinated synchronized task group, the stop move
state is reset in all the cooperating tasks.

Syntax
StopMoveReset

['\'AllMotionTasks]';'

Related information

SeeFor information about

StopMove - Stops robot movement on page 810Stop the movement

StartMove - Restarts robotmovement on page781Continuing a movement
StartMoveRetry - Restarts robot movement and
execution on page 784

StorePath - Stores the path when an interrupt oc-
curs on page 816

Store - restore path

RestoPath - Restores the path after an interrupt
on page 610

Technical reference manual - RAPID Instructions, Functions and Data types 815
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.284 StopMoveReset - Reset the system stop move state

RobotWare - OS
Continued

1.285 StorePath - Stores the path when an interrupt occurs

Usage
StorePath is used to store themovement path being executed, e.g. when an error
or interrupt occurs. The error handler or a trap routine can then start a new
temporary movement and finally restart the original movement that was stored
earlier.
For example, this instruction can be used to go to a service position or to clean
the gun when an error occurs.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction StorePath:
See also More examples on page 817.

Example 1
StorePath;

The current movement path is stored for later use. Set the system to independent
movement mode.

Example 2
StorePath \KeepSync;

The current movement path is stored for later use. Keep synchronized movement
mode.

Arguments
StorePath [\KeepSync]

[\KeepSync]

Keep Synchronization
Data type: switch
Keeps synchronized movement mode after the StorePath \KeepSync. The
KeepSync switch can only be used if the system is in synchronized movement
mode before the StorePath \KeepSync call.
Without the optional parameter \KeepSync, in a MultiMove coordinated
synchronized system, the system is set to independent-semicoordinatedmovement
mode. After execution of StorePath in all involved tasks, the system is in
semicoordinated mode if further on use of coordinated work object. Otherwise it
is in independent mode. If in semicoordinated mode it is recommended to always
start with a movement in the mechanical unit that controls the user frame before
WaitSyncTask in all involved tasks.

Continues on next page
816 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.285 StorePath - Stores the path when an interrupt occurs
RobotWare - OS

Program execution
The current movement path of the robot and external axes are saved. After this,
another movement can be started in a trap routine or in an error handler. When
the reason for the error or interrupt has been rectified then the saved movement
path can be restarted.

More examples
More examples of how to use the instruction StorePath are illustrated below.

Example 1
TRAP machine_ready

VAR robtarget p1;

StorePath;

p1 := CRobT();

MoveL p100, v100, fine, tool1;

...

MoveL p1, v100, fine, tool1;

RestoPath;

StartMove;

ENDTRAP

When an interrupt occurs that activates the trap routine machine_ready, the
movement path which the robot is executing at the time is stopped at the end of
the instruction (ToPoint) and stored. After this the robot remedies the interrupt by,
for example, replacing a part in the machine. Then the normal movement is
restarted.

Limitations
Only the movement path data is stored with the instruction StorePath.
If the user wants to order movements on the new path level then the actual stop
position must be stored directly after StorePath and before RestoPath makes
a movement to the stored stop position on the path.
Only one movement path can be stored at a time.

Syntax
StorePath

['\'KeepSync]';'

Related information

SeeFor information about

RestoPath - Restores the path after an interrupt on
page 610

Restoring a path

RestoPath - Restores the path after an interrupt on
page 610

More examples

PathRecStart - Start the path recorder on page 523
SyncMoveResume - Set synchronized coordinated
movements on page 838
SyncMoveSuspend - Set independent-semicoordinated
movements on page 840

Technical reference manual - RAPID Instructions, Functions and Data types 817
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.285 StorePath - Stores the path when an interrupt occurs

RobotWare - OS
Continued

1.286 STTune - Tuning Servo Tool

Usage
STTune is used to tune/change a servo tool parameter. The parameter is changed
temporarily from the original value, which is set up in the system parameters. The
new tune value will be active immediately after executing the instruction.
STTune is useful in tuning procedures. A tuning procedure is typically used to find
an optimal value for a parameter. An experiment (i.e. a program execution with a
servo tool movement) is repeated when using different parameter tune values.
STTune shall not be used during calibration or tool closure.

Basic examples
The following example illustrates the instruction STTune:

Example 1
STTune SEOLO_RG, 0.050, CloseTimeAdjust;

The servo tool parameter CloseTimeAdjust is temporarily set to 0.050 seconds.

Arguments
STTune MecUnit TuneValue Type

MecUnit

Data type: mecunit
The name of the mechanical unit.

TuneValue

Data type: num
New tuning value.

Type

Data type: tunegtype
Parameter type. Servo tool parameters available for tuning are RampTorqRefOpen,
RampTorqRefClose, KV, SpeedLimit, CollAlarmTorq, CollContactPos,
CollisionSpeed, CloseTimeAdjust, ForceReadyDelayT, PostSyncTime,
CalibTime, CalibForceLow, CalibForceHigh. These types are predefined in
the system parameters and defines the original values.

Description

RampTorqRefOpen

Tunes the system parameter Ramp when decrease force, which decides how
fast force is released while opening the tool. The unit is Nm/s and a typical value
200.
Corresponding system parameter: topic Motion, type Force master, parameter
ramp_torque_ref_opening.

Continues on next page
818 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.286 STTune - Tuning Servo Tool
Servo Tool Control

RampTorqRefClose

Tunes the system parameter Ramp when increase force, which decides how
fast force is built up while opening the tool. The unit is Nm/s and a typical value
80.
Corresponding system parameter: topic Motion, type Force master, parameter
ramp_torque_ref_closing.

KV

Tunes the system parameter KV, which is used for speed limitation. The unit is
Nms/rad and a typical value 1. For more details, see the external axis
documentation.
Corresponding system parameter: topicMotion, type Force master, parameter Kv.

SpeedLimit

Tunes the system parameter Speed limit, which is used for speed limitation.
The unit is rad/s (motor speed) and a typical value 60. For more details, see the
external axis documentation.
Corresponding system parameter: topic Motion, type Force master, parameter
speed_limit.

CollAlarmTorq

Tunes the system parameter Collision alarm torque, which is used for the
automatic calibration of new tips. The unit is Nm (motor torque) and a typical value
1. For more details, see the external axis documentation.
Corresponding system parameter: topic Motion, type Force master, parameter
alarm_torque.

CollContactPos

Tunes the system parameter Collision delta pos, which is used for automatic
calibration of new tips. The unit is m and a typical value 0,002. For more details,
see the external axis documentation.
Corresponding system parameter: topic Motion, type Force master, parameter
distance_to_contact_position.

CollisionSpeed

Tunes the system parameter Collision speed, which is used for automatic
calibration of new tips. The unit is m/s and a typical value 0,02. For more details,
see the external axis documentation.
Corresponding system parameter: topic Motion, type Force master, parameter
col_speed.

CloseTimeAdjust

Constant time adjustment (s), positive or negative, of the moment when the tool
tips reaches contact during a tool closure. May be used to delay the closing slightly
when the synchronized pre-closing is used for welding.
Corresponding system parameter: topic Motion, type SG process, parameter
min_close_time_adjust.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 819
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.286 STTune - Tuning Servo Tool

Servo Tool Control
Continued

ForceReadyDelayT

Constant time delay (s) before sending the weld ready signal after reaching the
programmed force.
Corresponding system parameter: topic Motion, type SG process, parameter
pre_sync_delay_time.

PostSyncTime

Release time anticipation (s) of the next robot movement after a weld. This tune
type can be tuned to synchronize the gun opening with the next robot movement.
The synchronization may fail if the parameters is set too high.
Corresponding system parameter: topic Motion, type SG process, parameter
post_sync_time.

CalibTime

The wait time (s) during a calibration before the positional tool tip correction is
done. For best results do not use too low a value like 0.5 s.
Corresponding system parameter: topic Motion, type SG process, parameter
calib_time.

CalibForceLow

The minimum tip force (N) used during a TipWear calibration. For best result of
the thickness detection it is recommended to use the minimum programmed weld
force.
Corresponding system parameter: topic Motion, type SG process, parameter
calib_force_low.

CalibForceHigh

The maximum tip force (N) used during a TipWear calibration. For best result of
the thickness detection it is recommended to use themax programmedweld force.
Corresponding system parameter: topic Motion, type SG process, parameter
calib_force_high.

Program execution
The specified tuning type and tuning value are activated for the specifiedmechanical
unit. This value is applicable for all movements until a new value is programmed
for the current mechanical unit or until the tuning types and values are reset using
the instruction STTuneReset.
The original tune values may be permanently changed in the system parameters.
The default servo tool tuning values are automatically set

• by executing instruction STTuneReset.
• at a Restart.

Continues on next page
820 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.286 STTune - Tuning Servo Tool
Servo Tool Control
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The specified servo tool name is not a configured servo
tool.

ERR_NO_SGUN

Syntax
STTune

[MecUnit ':='] < variable (VAR) of mecunit > ','

[TuneValue' :='] < expression (IN) of num > ','

['Type ':='] < expression (IN) of tunegtype >]';'

Related information

SeeFor information about

TuneReset - Resetting servo tuning on page966Restore of servo tool parameters

Application manual - Additional axes and stand
alone controller

Tuning of servo tool

Technical reference manual - RAPID Instructions, Functions and Data types 821
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.286 STTune - Tuning Servo Tool

Servo Tool Control
Continued

1.287 STTuneReset - Resetting Servo tool tuning

Usage
STTuneReset is used to restore original values of servo tool parameters if they
have been changed by the STTune instruction.

Basic examples
The following example illustrates the instruction STTuneReset:

Example 1
STTuneReset SEOLO_RG;

Restore original values of servo tool parameters for the mechanical unit SEOLO_RG.

Arguments
STTuneReset MecUnit

MecUnit

Data type: mecunit
The name of the mechanical unit.

Program execution
The original servo tool parameters are restored.
This is also achieved at a Restart.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The specified servo tool name is not a configured servo
tool.

ERR_NO_SGUN

Syntax
STTuneReset

[MecUnit ':='] < variable (VAR) of mecunit > ','

Related information

SeeFor information about

STTune - Tuning Servo Tool on page 818Tuning of servo tool parameters

Application manual - Additional axes and stand
alone controller

Tuning of servo tool parameters

822 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.287 STTuneReset - Resetting Servo tool tuning
Servo Tool Control

1.288 SupSyncSensorOff - Stop synchronized sensor supervision

Usage
SupSyncSensorOff is used to stop supervision of the robot movement and
synchronized sensor movement.

Basic example
Basic example of the instruction SupSyncSensorOff is illustrated below.

Example
SupSyncSensorOff SSYNC1;

The sensor is no longer supervised.

Arguments
SupSyncSensorOff MechUnit

MechUnit

Mechanical unit
Data type: mecunit
The name of the mechanical unit.

Syntax
SupSyncSensorOff

[MechUnit ':='] < variable (VAR) of mecunit> ';'

Related information

SeeFor information about

SupSyncSensorOn - Start synchronized sensor supervi-
sion on page 824

Start synchronized sensor super-
vision

SyncToSensor - Sync to sensor on page 844Sync to sensor

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 823
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.288 SupSyncSensorOff - Stop synchronized sensor supervision

Machine Synchronization

1.289 SupSyncSensorOn - Start synchronized sensor supervision

Usage
SupSyncSensorOn is used to start the supervision between robot movement and
a synchronized sensor movement.

Basic example
Basic example of the instruction SupSyncSensorOn is illustrated below.

Example
SupSyncSensorOn Ssync1, 150, 100, 50

The mechanical unit Ssync1 is supervised when the sensor is positioned between
50 and 150. The supervision is terminated if the distance between the robot and
sensor is smaller than 100.

Arguments
SupSyncSensorOn MechUnit MaxSyncSup SafetyDist MinSyncSup

[\SafetyDelay]

MechUnit

Mechanical unit
Data type: mecunit
The name of the mechanical unit.

MaxSyncSup

Maximal Synchronized supervised position
Data type: num
The robot will supervise the sensor until the sensor passes the max sync position.
When the point is passed the supervision is stopped. The unit is mm.

SafetyDist

Safety distance
Data type: num
Safetydist is the limit of the difference between expected machine position and
the real machine position. It must be negative, i.e. the model should always be
moving in advance of the real machine. In the case of decreasingmachine positions
the limit must be negative corresponding to maximum negative position difference
(and minimum advance distance). In the case of increasing machine positions the
limit must be positive corresponding to minimum positive position difference (and
minimum advance distance).
The robot will trigger an alarm if the distance between robot and sensor is smaller
then the Safety distance. When the alarm is triggered supervision is stopped.
The unit is mm.

MinSyncSup

Minimal synchronized supervised position
Data type: num

Continues on next page
824 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.289 SupSyncSensorOn - Start synchronized sensor supervision
Machine Synchronization

The robot will start the supervision when the sensor is in the window defined from
MinSyncSup position to MaxSyncSup position. The unit is mm.

[\SafetyDelay]

Safety delay
Data type: num
SafetyDelay is used to adjust the delay between the programmed position of the
robot and the sensor supervised position. The unit is in seconds.

Limitations
If the SupSynSensorOn is used before the instruction WaitSensor is finished the
robot will stop.

Syntax
SupSyncSensorOn

[MechUnit ':='] <variable (VAR) of mecunit> ','

[MaxSyncSup ':='] < expression (IN) of num > ','

[SafetyDist ':='] < expression (IN) of num > ','

[MinSyncSup ':='] < expression (IN) of num >

[\SafetyDelay ':='] < expression (IN) of num > ';'

Related information

SeeFor information about

SupSyncSensorOff - Stop synchronized sensor supervi-
sion on page 823

Stop synchronized sensor super-
vision

SyncToSensor - Sync to sensor on page 844Sync to sensor

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 825
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.289 SupSyncSensorOn - Start synchronized sensor supervision

Machine Synchronization
Continued

1.290 SyncMoveOff - End coordinated synchronized movements

Usage
SyncMoveOff is used to end a sequence of synchronizedmovements and, in most
cases, coordinated movements. First, all involved program tasks will wait to
synchronize in a stop point, and then the motion planners for the involved program
tasks are set to independent mode.
The instruction SyncMoveOff can only be used in aMultiMove system with option
Coordinated Robots and only in program tasks defined as Motion Task.

WARNING

To reach safe synchronization functionality every meeting point (parameter
SyncID) must have a unique name. The name of the meeting point must also
be the same for all the program tasks that should meet.

Basic examples
The following example illustrates the instruction SyncMoveOff:
See also More examples on page 827.

Example 1
!Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

...

SyncMoveOn sync1, task_list;

...

SyncMoveOff sync2;

...

!Program example in task T_ROB2

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

...

SyncMoveOn sync1, task_list;

...

SyncMoveOff sync2;

...

The program task that first reaches SyncMoveOff with identity sync2 waits until
the other tasks reach SyncMoveOff with the same identity sync2. At that
synchronization point sync2, the motion planners for the involved program tasks

Continues on next page
826 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.290 SyncMoveOff - End coordinated synchronized movements
RW-MRS Synchronized

are set to independent mode. After that, both task T_ROB1 and T_ROB2 continue
their execution.

Arguments
SyncMoveOff SyncID [\TimeOut]

SyncID

Synchronization Identity
Data type: syncident
Variables that specify the name of the unsynchronization (meeting) point. Data
type syncident is a non-value type. It is only used as an identifier for naming
the unsynchronization point.
The variable must be defined and have an equal name in all cooperated program
tasks. It is recommended to always define the variable global in each task (VAR
syncident ...).

[\TimeOut]

Data type: num
The max. time to wait for the other program tasks to reach the unsynchronization
point. The time-out is defined in seconds (resolution 0,001s).
If this time runs out before all program tasks have reached the unsynchronization
point then the error handler will be called, if there is one, with the error code
ERR_SYNCMOVEOFF. If there is no error handler then the execution will be stopped.
If this argument is omitted then the program task will wait forever.

Program execution
The program task that first reaches SyncMoveOff waits until all other specified
tasks reach SyncMoveOff with the same SyncID identity. At that SyncID
unsynchronization point the motion planner for the involved program tasks is set
to independent mode. After that, involved program tasks continue their execution.
The motion planner for the involved program tasks are set to unsynchronized
mode. This means the following:

• All RAPID program tasks and all movements from these tasks are working
independently of each other again.

• Anymove instructionmust not bemarkedwith any ID number. See instruction
MoveL.

It is possible to exclude program tasks for testing purpose from FlexPendant -
Task Selection Panel. The instructions SyncMoveOn and SyncMoveOff will still
work with the reduced number of program tasks, even for only one program task.

More examples
More examples of how to use the instruction SyncMoveOff are illustrated below.

Example of simple synchronized movement
!Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 827
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.290 SyncMoveOff - End coordinated synchronized movements

RW-MRS Synchronized
Continued

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, tcp1;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, tcp1;

syncmove;

...

ENDPROC

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, tcp1 \WObj:= rob2_obj;

MoveL * \ID:=20, v100, fine, tcp1 \WObj:= rob2_obj;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

!Program example in task T_ROB2

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, obj2;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, obj2;

syncmove;

...

ENDPROC

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, obj2;

MoveL * \ID:=20, v100, fine, obj2 ;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

First program tasks T_ROB1 and T_ROB2 are waiting at WaitSyncTaskwith identity
sync1 for each other, programmed with corner path for the preceding movements
for saving cycle time.
Then the program tasks are waiting at SyncMoveOn with identity sync2 for each
other, programmed with a necessary stop point for the preceding movements.

Continues on next page
828 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.290 SyncMoveOff - End coordinated synchronized movements
RW-MRS Synchronized
Continued

After that, themotion planner for the involved program tasks is set to synchronized
mode.
After that, T_ROB2 is moving the obj2 to ID point 10 and 20 in world coordinate
system while T_ROB1 is moving the tcp1 to ID point 10 and 20 on the moving
object obj2.
Then the program tasks are waiting at SyncMoveOff with identity sync3 for each
other, programmed with a necessary stop point for the preceding movements.
After that, the motion planner for the involved program tasks is set to independent
mode.

Example with error recovery
!Program example with use of time-out function

VAR syncident sync3;

...

SyncMoveOff sync3 \TimeOut := 60;

...

ERROR

IF ERRNO = ERR_SYNCMOVEOFF THEN

RETRY;

ENDIF

The program taskwaits for an instruction SyncMoveOff and for some other program
task to reach the same synchronization point sync3. After waiting 60 seconds, the
error handler is called with ERRNO equal to ERR_SYNCMOVEOFF. Then the instruction
SyncMoveOff is called again for an additional wait of 60 seconds.

Example with semi coordinated and coordinated movement
!Example with semicoordinated and synchronized movement

!Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

PERS wobjdata rob2_obj:= [FALSE,FALSE,"ROB_2",
[[0,0,0],[1,0,0,0]],[[155.241,-51.5938,57.6297],
[0.493981,0.506191,-0.501597,0.49815]]];

VAR syncident sync0;

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

VAR syncident sync4;

PROC main()

...

WaitSyncTask sync0, task_list;

MoveL p1_90, v100, fine, tcp1 \WObj:= rob2_obj;

WaitSyncTask sync1, task_list;

SyncMoveOn sync2, task_list;

MoveL p1_100 \ID:=10, v100, fine, tcp1 \WObj:= rob2_obj;

SyncMoveOff sync3;

!Wait until the movement has been finished in T_ROB2

WaitSyncTask sync3, task_list;

!Now a semicoordinated movement can be performed

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 829
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.290 SyncMoveOff - End coordinated synchronized movements

RW-MRS Synchronized
Continued

MoveL p1_120, v100, z10, tcp1 \WObj:= rob2_obj;

MoveL p1_130, v100, fine, tcp1 \WObj:= rob2_obj;

WaitSyncTask sync4, task_list;

...

ENDPROC

!Program example in task T_ROB2

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync0;

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

VAR syncident sync4;

PROC main()

...

MoveL p_fine, v1000, fine, tcp2;

WaitSyncTask sync0, task_list;

!Wait until the movement in T_ROB1 task is finished

WaitSyncTask sync1, task_list;

SyncMoveOn sync2, task_list;

MoveL p2_100 \ID:=10, v100, fine, tcp2;

SyncMoveOff sync3;

!The path has been removed at SyncMoveOff

!Perform a movement to wanted position for the object to

!make the position available for other tasks

MoveL p2_100, v100, fine, tcp2;

WaitSyncTask sync3, task_list;

WaitSyncTask sync4, task_list;

MoveL p2_110, v100, z10, tcp2;

...

ENDPROC

When switching between semicoordinated to synchronized movement, a
WaitSyncTask is needed (when using identity sync1).
When switching between synchronized to semicoordinated movement, the task
that move the work object (rob2_obj) needs to move to the desired position. After
that a WaitSyncTask is needed (identity sync3) before the semicoordinated
movement can be performed.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Time-out from SyncMoveOff.ERR_SYNCMOVEOFF

Limitations
The SyncMoveOff instruction can only be executed if all involved robots stand
still in a stop point.

Continues on next page
830 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.290 SyncMoveOff - End coordinated synchronized movements
RW-MRS Synchronized
Continued

If this instruction is preceded by a move instruction then that move instruction
must be programmed with a stop point (zonedata fine), not a fly-by point.
Otherwise restart after power failure will not be possible.
SyncMoveOff cannot be executed in a RAPID routine connected to any of the
following special system events: PowerOn, Stop, QStop, Restart, Reset, or Step.

Syntax
SyncMoveOff

[SyncID ':='] < variable (VAR) of syncident>

['\'TimeOut' :=' < expression (IN) of num>] ';'

Related information

SeeFor information about

tasks - RAPID program tasks on page 1739Specify cooperated program tasks

syncident - Identity for synchronization point
on page 1735

Identity for synchronization point

SyncMoveOn - Start coordinated synchron-
ized movements on page 832

Start coordinated synchronized movements

SyncMoveUndo - Set independent move-
ments on page 842

Set independent movements

IsSyncMoveOn - Test if in synchronized
movement mode on page 1327

Test if in synchronized mode

Application manual - MultiMoveMultiMove system with option Coordinated
robots

Technical reference manual - RAPID Instructions, Functions and Data types 831
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.290 SyncMoveOff - End coordinated synchronized movements

RW-MRS Synchronized
Continued

1.291 SyncMoveOn - Start coordinated synchronized movements

Usage
SyncMoveOn is used to start a sequence of synchronized movements and in most
cases, coordinated movements. First, all involved program tasks will wait to
synchronize in a stop point and then the motion planner for the involved program
tasks is set to synchronized mode.
The instruction SyncMoveOn can only be used in a MultiMove system with option
Coordinated Robots and only in program tasks defined as Motion Task.

WARNING

To reach safe synchronization functionality every meeting point (parameter
SyncID) must have a unique name. The name of the meeting point must also
be the same for all the program tasks that should meet in the meeting point.

Basic examples
The following example illustrates the instruction SyncMoveOn:
See also More examples on page 834.

Example 1
!Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

...

SyncMoveOn sync1, task_list;

...

SyncMoveOff sync2;

...

!Program example in task T_ROB2

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

...

SyncMoveOn sync1, task_list;

...

SyncMoveOff sync2;

...

The program task that first reaches SyncMoveOn with identity sync1 waits until
the other task reaches its SyncMoveOn with the same identity sync1. At that
synchronization point, sync1, the motion planner for the involved program tasks
is set to synchronized mode. After that, both task T_ROB1 and T_ROB2 continue

Continues on next page
832 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.291 SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent

their execution, synchronized until they reach SyncMoveOffwith the same identity
sync2.

Arguments
SyncMoveOn SyncID TaskList [\TimeOut]

SyncID

Synchronization Identity
Data type:syncident
Variable that specifies the name of the synchronization (meeting) point. Data type
syncident is a non-value type that is only used as an identifier for naming the
synchronization point.
The variable must be defined and have an equal name in all cooperated program
tasks. It is recommended to always define the variable global in each task (VAR
syncident ...).

TaskList

Data type:tasks
Persistent variable that in a task list (array) specifies the name (string) of the
program tasks that should meet in the synchronization point with name according
argument SyncID.
The persistent variable must be defined and have equal name and equal contents
in all cooperated program tasks. It is recommended to always define the variable
global in the system (PERS tasks ...).

[\TimeOut]

Data type: num
The max. time to wait for the other program tasks to reach the synchronization
point. The time-out is defined in seconds (resolution 0.001s).
If this time runs out before all program tasks have reached the synchronization
point then the error handler will be called, if there is one, with the error code
ERR_SYNCMOVEON. If there is no error handler then the execution will be stopped.
If this argument is omitted then the program task will wait for ever.

Program execution
The program task that first reaches SyncMoveOn waits until all other specified
tasks reach their SyncMoveOn with the same SyncID identity. At that SyncID
synchronization point the motion planner for the involved program tasks is set to
synchronized mode. After that, involved program tasks continue their execution.
The motion planner for the involved program tasks is set to synchronized mode.
This means the following:

• Each movement instruction in any program task in the TaskList is working
synchronous with movement instructions in other program tasks in the
TaskList.

• All cooperated movement instructions are planned and interpolated in the
same Motion Planner.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 833
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.291 SyncMoveOn - Start coordinated synchronized movements

RW-MRS Independent
Continued

• All movements start and end at the same time. The movement that takes the
longest time will be the speed master with reduced speed in relation to the
work object for the other movements.

• All cooperated move instruction must be marked with the same ID number.
See instruction MoveL.

It is possible to exclude program tasks for testing purpose from FlexPendant -
Task Selection Panel. The instruction SyncMoveOn will still work with the reduced
number of program tasks even for only one program task.

More examples
More examples of how to use the instruction SyncMoveOn are illustrated below.

Example 1
!Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, tcp1;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, tcp1;

syncmove;

...

ENDPROC

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, tcp1 \WOBJ:= rob2_obj;

MoveL * \ID:=20, v100, fine, tcp1 \WOBJ:= rob2_obj;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

!Program example in task T_ROB2

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, obj2;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, obj2;

syncmove;

...

ENDPROC

Continues on next page
834 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.291 SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent
Continued

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, obj2;

MoveL * \ID:=20, v100, fine, obj2;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

First, program tasks T_ROB1 and T_ROB2 are waiting at WaitSyncTaskwith identity
sync1 for each other. They are programmed with corner path for the preceding
movements for saving cycle time.
Then the program tasks are waiting at SyncMoveOn with identity sync2 for each
other. They are programmed with a necessary stop point for the preceding
movements. After that the motion planner for the involved program tasks is set to
synchronized mode.
After that, T_ROB2 is moving the obj2 to ID point 10 and 20 in world coordinate
system while T_ROB1 is moving the tcp1 to ID point 10 and 20 on the moving
object obj2.

Example 2
!Program example with use of time-out function

VAR syncident sync3;

...

SyncMoveOn sync3, task_list \TimeOut :=60;

...

ERROR

IF ERRNO = ERR_SYNCMOVEON THEN

RETRY;

ENDIF

The program task waits for instruction SyncMoveOn for the program task T_ROB2
to reach the same synchronization point sync3. After waiting 60 seconds, the error
handler is called with ERRNO equal to ERR_SYNCMOVEON. Then the instruction
SyncMoveOn is called again for an additional wait of 60 seconds.

Example 3- Program example with three tasks
!Program example in task T_ROB1

PERS tasks task_list1 {2} :=[["T_ROB1"], ["T_ROB2"]];

PERS tasks task_list2 {3} :=[["T_ROB1"], ["T_ROB2"], ["T_ROB3"]];

VAR syncident sync1;

...

VAR syncident sync5;

...

SyncMoveOn sync1, task_list1;

...

SyncMoveOff sync2;

WaitSyncTask sync3, task_list2;

SyncMoveOn sync4, task_list2;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 835
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.291 SyncMoveOn - Start coordinated synchronized movements

RW-MRS Independent
Continued

...

SyncMoveOff sync5;

...

!Program example in task T_ROB2

PERS tasks task_list1 {2} := [["T_ROB1"], ["T_ROB2"]];

PERS tasks task_list2 {3} := [["T_ROB1"], ["T_ROB2"], ["T_ROB3"]];

VAR syncident sync1;

...

VAR syncident sync5;

...

SyncMoveOn sync1, task_list1;

...

SyncMoveOff sync2;

WaitSyncTask sync3, task_list2;

SyncMoveOn sync4, task_list2;

...

SyncMoveOff sync5;

...

!Program example in task T_ROB3

PERS tasks task_list2 {3} := [["T_ROB1"], ["T_ROB2"], ["T_ROB3"]];

VAR syncident sync3;

VAR syncident sync4;

VAR syncident sync5;

...

WaitSyncTask sync3, task_list2;

SyncMoveOn sync4, task_list2;

...

SyncMoveOff sync5;

...

In this example, at first, program task T_ROB1 and T_ROB2 aremoving synchronized
and T_ROB3 is moving independent. Further on in the program all three tasks are
moving synchronized. To prevent the instruction of SyncMoveOn to be executed
in T_ROB3 before the first synchronization of T_ROB1 and T_ROB2 have ended, the
instruction WaitSyncTask is used.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Time-out from SyncMoveOn.ERR_SYNCMOVEON

Continues on next page
836 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.291 SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent
Continued

Limitations
The SyncMoveOn instruction can only be executed if all involved robots stand still
in a stop point.
Only one coordinated synchronized movement group can be active at the same
time.
If this instruction is preceded by a move instruction then that move instruction
must be programmed with a stop point (zonedata fine), not a fly-by point.
Otherwise restart after power failure will not be possible.
SyncMoveOn cannot be executed in a RAPID routine connected to any of the
following special system events: PowerOn, Stop, QStop, Restart, Reset, or Step.

Syntax
SyncMoveOn

[SyncID ':='] < variable (VAR) of syncident> ','

[TaskList ':='] < persistent array {*} (PERS) of tasks> ','

['\' TimeOut ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

tasks - RAPID program tasks on page 1739Specify cooperated program tasks

syncident - Identity for synchronization point
on page 1735

Identity for synchronization point

SyncMoveOff - End coordinated synchronized
movements on page 826

End coordinated synchronized movements

SyncMoveUndo - Set independent move-
ments on page 842

Set independent movements

IsSyncMoveOn - Test if in synchronized
movement mode on page 1327

Test if in synchronized mode

Application manual - MultiMoveMultiMove system with option Coordinated
Robots

WaitSyncTask -Wait at synchronization point
for other program tasks on page 1044

Wait for synchronized tasks

Technical reference manual - RAPID Instructions, Functions and Data types 837
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.291 SyncMoveOn - Start coordinated synchronized movements

RW-MRS Independent
Continued

1.292 SyncMoveResume - Set synchronized coordinated movements

Usage
SyncMoveResume is used to go back to synchronized movements from
independent movement mode. The instruction can only be used on StorePath
level, e.g. after a StorePath \KeepSync has been executed and the system is
in independent motion mode after SyncMoveSuspend has been executed. To be
able to use the instruction the system must have been in synchronized motion
mode before executing the StorePath and SyncMoveSuspend instruction.
The instruction SyncMoveResume can only be used in a MultiMove system with
optionsCoordinated Robots and Path Recovery and only in program tasks defined
as Motion Task.

Basic examples
The following example illustrates the instruction SyncMoveResume:

Example 1
ERROR

StorePath \KeepSync;

! Save position

p11 := CRobT(\Tool:=tool2);

! Move in synchronized motion mode

MoveL p12\ID:=111, v50, fine, tool2;

SyncMoveSuspend;

! Move in independent mode somewhere, e.g. to a cleaning station

p13 := CRobT();

MoveL p14, v100, fine, tool2;

! Do something at cleaning station

MoveL p13, v100, fine, tool2;

SyncMoveResume;

! Move in synchronized motion mode back to start position p11

MoveL p11\ID:=112, v50, fine, tool2;

RestoPath;

StartMove;

RETRY;

Some kind of recoverable error occurs. The system is kept in synchronized mode,
and a synchronized movement is done to a point, e.g. moving backwards on path.
After that, an independent movement is done to a cleaning station. Then the robot
is moved back to the point where the error occurred and the program continues
where it was interrupted by the error.

Program execution
SyncMoveResume forces resume of synchronized mode when system is in
independent movement mode on StorePath level.
SyncMoveResume is required in all tasks that were executing in synchronized
movement before entering independent movement mode. If one Motion task
executes a SyncMoveResume then that task will wait until all tasks that earlier were

Continues on next page
838 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.292 SyncMoveResume - Set synchronized coordinated movements
Path Recovery

in synchronized movement mode execute a SyncMoveResume instruction. After
that, involved program tasks continue their execution.

Limitations
The SyncMoveResume can only be used to go back to synchronized movement
mode and can only be used on StorePath level.
If this instruction is preceded by a move instruction then that move instruction
must be programmed with a stop point (zonedata fine), not a fly-by point.
Otherwise restart after power failure will not be possible.
SyncMoveResume cannot be executed in a RAPID routine connected to any of the
following special system events: PowerOn, Stop, QStop, Restart,Reset, or Step.

Syntax
SyncMoveResume ';'

Related information

SeeFor information about

tasks - RAPID program tasks on page 1739Specify cooperated program tasks

SyncMoveOn - Start coordinated synchronized
movements on page 832

Start coordinated synchronized move-
ments

SyncMoveOff - End coordinated synchronized
movements on page 826

End coordinated synchronized move-
ments

SyncMoveOn - Start coordinated synchronized
movements on page 832

Test if in synchronized mode

StorePath - Stores the path when an interrupt oc-
curs on page 816

Stores the path

RestoPath - Restores the path after an interrupt
on page 610

Restores the path

SyncMoveSuspend -Set independent-semicoordin-
ated movements on page 840

Suspends synchronized movements

Technical reference manual - RAPID Instructions, Functions and Data types 839
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.292 SyncMoveResume - Set synchronized coordinated movements

Path Recovery
Continued

1.293 SyncMoveSuspend - Set independent-semicoordinated movements

Usage
SyncMoveSuspend is used to suspend synchronized movements mode and set
the system to independent-semicoordinatedmovement mode. The instruction can
only be used on StorePath level, e.g. after a StorePath or StorePath
\KeepSync has been executed and the system is in synchronized movement
mode.
The instruction SyncMoveSuspend can only be used in a MultiMove System with
optionsCoordinated Robots and Path Recovery and only in program tasks defined
as Motion Task.

Basic examples
The following example illustrates the instruction SyncMoveSuspend:

Example 1
ERROR

StorePath \KeepSync;

! Save position

p11 := CRobT(\Tool:=tool2);

! Move in synchronized motion mode

MoveL p12\ID:=111, v50, fine, tool2;

SyncMoveSuspend;

! Move in independent mode somewhere, e.g. to a cleaning station

p13 := CRobT();

MoveL p14, v100, fine, tool2;

! Do something at cleaning station

MoveL p13, v100, fine, tool2;

SyncMoveResume;

! Move in synchronized motion mode back to start position p11

MoveL p11\ID:=112, v50, fine, tool2;

RestoPath;

StartMove;

RETRY;

Some kind of recoverable error occurs. The system is kept in synchronized mode,
and a synchronized movement is done to a point, e.g. moving backwards on path.
After that, an independent movement is done to a cleaning station. Then the robot
is moved back to the point where the error occurred and the program continues
where it was interrupted by the error.

Program execution
SyncMoveSuspend forces reset of synchronizedmovements and sets the system
to independent-semicoordinated movement mode.
SyncMoveSuspend is required in all synchronized Motion tasks to set the system
in independent-semicoordinated movement mode. If one Motion tasks executes
a SyncMoveSuspend then that task waits until the other tasks have executed a
SyncMoveSuspend instruction.

Continues on next page
840 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.293 SyncMoveSuspend - Set independent-semicoordinated movements
Path Recovery

After execution of SyncMoveSuspend in all involved tasks, the system is in
semicoordinated mode if it further uses a coordinated work object. Otherwise, it
is in independent mode. If in semicoordinated mode, it is recommended to always
start with a movement in the mechanical unit that controls the user frame before
WaitSyncTask in all involved tasks.

Limitations
The SyncMoveSuspend instruction suspends synchronized mode only on
StorePath level. After returning from StorePath level, the system is set to the
mode that it was in before the StorePath.
If this instruction is preceded by a move instruction then that move instruction
must be programmed with a stop point (zonedata fine), not a fly-by point.
Otherwise restart after power failure will not be possible.
SyncMoveSuspend cannot be executed in a RAPID routine connected to any of
the following special system events: PowerOn, Stop, QStop, Restart,Reset, or
Step.

Syntax
SyncMoveSuspend ';'

Related information

SeeFor information about

tasks - RAPID program tasks on page 1739Specify cooperated program tasks

SyncMoveOn - Start coordinated synchronized
movements on page 832

Start coordinated synchronized move-
ments

SyncMoveOff - End coordinated synchronized
movements on page 826

End coordinated synchronized move-
ments

IsSyncMoveOn - Test if in synchronizedmovement
mode on page 1327

Test if in synchronized mode

StorePath - Stores the path when an interrupt oc-
curs on page 816

Stores the path

RestoPath - Restores the path after an interrupt
on page 610

Restores the path

SyncMoveResume - Set synchronized coordinated
movements on page 838

Resume synchronized movements

Technical reference manual - RAPID Instructions, Functions and Data types 841
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.293 SyncMoveSuspend - Set independent-semicoordinated movements

Path Recovery
Continued

1.294 SyncMoveUndo - Set independent movements

Usage
SyncMoveUndo is used to force a reset of synchronized coordinated movements
and set the system to independent movement mode.
The instruction SyncMoveUndo can only be used in aMultiMove systemwith option
Coordinated Robots and only in program tasks defined as Motion Task.

Basic examples
The following example illustrates the instruction SyncMoveUndo:

Example 1
Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, tcp1;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, tcp1;

syncmove;

...

ENDPROC

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, tcp1 \WOBJ:= rob2_obj;

MoveL * \ID:=20, v100, fine, tcp1 \WOBJ:= rob2_obj;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

If the program is stopped while the execution is inside the procedure syncmove
and the program pointer is moved out of the procedure syncmove then all
instruction inside the UNDO handler is executed. In this example, the instruction
SyncMoveUndo is executed and the system is set to independent movement mode.

Program execution
Force reset of synchronized coordinated movements and set the system to
independent movement mode.
It is enough to execute SyncMoveUndo in one program task to set the whole system
to the independent movement mode. The instruction can be executed several times
without any error if the system is already in independent movement mode.

Continues on next page
842 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.294 SyncMoveUndo - Set independent movements
RobotWare - OS

The system is set to the default independent movement mode also
• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Syntax
SyncMoveUndo ';'

Related information

SeeFor information about

tasks - RAPID program tasks on page 1739Specify cooperated program tasks

syncident - Identity for synchronization point on
page 1735

Identity for synchronization point

SyncMoveOn - Start coordinated synchronized
movements on page 832

Start coordinated synchronized move-
ments

SyncMoveOff - End coordinated synchronized
movements on page 826

End coordinated synchronized move-
ments

IsSyncMoveOn - Test if in synchronized move-
ment mode on page 1327

Test if in synchronized mode

Technical reference manual - RAPID Instructions, Functions and Data types 843
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.294 SyncMoveUndo - Set independent movements

RobotWare - OS
Continued

1.295 SyncToSensor - Sync to sensor

Usage
SyncToSensor is used to start or stop synchronization of robot movement to
sensor movement.

Basic examples
Basic examples of the instruction SyncToSensor are illustrated below.

Example 1
WaitSensor Ssync1;

MoveL *, v1000, z10, tool, \WObj:=wobj0;

SyncToSensor Ssync1\On;

MoveL *, v1000, z20, tool, \WObj:=wobj0;

MoveL *, v1000, z20, tool, \WObj:=wobj0;

SyncToSensor Ssync1\Off;

Arguments
SyncToSensor MechUnit [\MaxSync] [\On] | [\Off]

MechUnit

Mechanical Unit
Data type: mecunit
Themoving mechanical unit to which the robot position in the instruction is related.

[\MaxSync]

Data type: num
The robot will move synchronized with sensor until the sensor passes the MaxSync
position. After this the robot will move unsynchronized at programmed speed. If
optional parameter MaxSync is not defined the robot will move synchronized until
the instruction SyncToSensor Ssync1\Off is executed.

[\On]

Data type: switch
The robot moves synchronized with the sensor after an instruction using the
argument \On.

[\Off]

Data type: switch
The robot moves unsynchronized with the sensor after an instruction using the
argument \Off.

Program execution
SyncToSensor Ssync1 \On means that the robot starts to move synchronized
with sensor Ssync1. So the robot passes at the taught robtarget at the same
time as the sensor passes the external position stored in the robtarget.
SyncToSensor Ssync1 \Off means that the robot stops moving synchronized
with the sensor.

Continues on next page
844 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.295 SyncToSensor - Sync to sensor
Machine Synchronization

Limitations
If the instruction SyncToSensor Ssync1 \On is issued while the sensor has not
been connected via WaitSensor then the robot will stop.

Syntax
SyncToSensor

[MechUnit ':='] < variable (VAR) of mecunit >

[\MaxSync] ['\' On] | ['\' Off] ';'

Related information

SeeFor information about

SupSyncSensorOn - Start synchronized sensor supervi-
sion on page 824

Start synchronized sensor super-
vision

SyncToSensor - Sync to sensor on page 844Sync to sensor

WaitSensor -Wait for connection on sensor on page1041Wait for connection on sensor

DropSensor - Drop object on sensor on page 176Drop object on sensor

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 845
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.295 SyncToSensor - Sync to sensor

Machine Synchronization
Continued

1.296 SystemStopAction - Stop the robot system

Usage
SystemStopAction can be used to stop the robot system in different ways
depending how serious the error or problem is.

Basic examples
The following examples illustrate the instruction SystemStopAction:

Example 1
SystemStopAction \Stop;

This will stop program execution and robot movements in all motion tasks. No
specific action is needed to be done before restarting the program execution.

Example 2
SystemStopAction \StopBlock;

This will stop program execution and robot movements in all motion tasks. All
program pointers must be moved before the program execution can be restarted.

Example 3
SystemStopAction \Halt;

This will result in motors off, stop program execution, and robot movements in all
motion tasks. Motors on must be done before the program execution can be
restarted.

Arguments
SystemStopAction [\Stop] [\StopBlock] [\Halt]

[\Stop]

Data type: switch
\Stop is used to stop program execution and robot movements in all motion tasks.
No specific action is needed to be done before restart of the program execution.

[\StopBlock]

Data type: switch
\StopBlock is used stop program execution and robot movements in all motion
tasks. All program pointers must be moved before the program execution can be
restarted.

[\Halt]

Data type: switch
\Halt will result in motors off state, stop of program execution and robot
movements in all motion tasks. Motors on must be done before the program
execution can be restarted.

Limitations
If the robot is performing a circular movement during a SystemStopAction
\StopBlock then the program pointer and the robot have to be moved to the
beginning of the circular movement before the program execution is restarted.

Continues on next page
846 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.296 SystemStopAction - Stop the robot system
RobotWare - OS

Program execution
SystemStopAction is used to stop the robot system in different ways depending
how serious the error or problem is. The program execution is stopped in the
executing task if the task is a normal task.
If executing the SystemStopAction in a static or semistatic task, the program
execution will stop for all normal tasks but continue for that task. See more about
declaration of tasks in documentation for System Parameters.

Syntax
SystemStopAction

['\'Stop]

| ['\'StopBlock]

| ['\'Halt]';'

Related information

SeeFor information about

Stop - Stops program execution on page805Stop program execution

EXIT - Terminates program execution on
page 239

Terminate program execution

StopMove - Stops robot movement on
page 810

Only stop robot movements

ErrLog - Write an error message on page229Write some error message

Technical reference manual - RAPID Instructions, Functions and Data types 847
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.296 SystemStopAction - Stop the robot system

RobotWare - OS
Continued

1.297 TEST - Depending on the value of an expression ...

Usage
TEST is used when different instructions are to be executed depending on the
value of an expression or data.
If there are not too many alternatives then the IF..ELSE instruction can also be
used.

Basic examples
The following example illustrates the instruction TEST:

Example 1
TEST reg1

CASE 1,2,3 :

routine1;

CASE 4 :

routine2;

DEFAULT :

TPWrite "Illegal choice";

Stop;

ENDTEST

Different instructions are executed depending on the value of reg1. If the value is
1, 2, or 3, then routine1 is executed. If the value is 4, then routine2 is executed.
Otherwise, an error message is printed and execution stops.

Arguments
TEST Test data {CASE Test value {, Test value} : ...} [DEFAULT:

...] ENDTEST

Test data

Data type: All
The data or expression with which the test value will be compared.

Test value

Data type: Same as test data
The value which the test data must have for the associated instructions to be
executed.

Program execution
The test data is compared with the test values in the first CASE condition. If the
comparison is true then the associated instructions are executed. After that, program
execution continues with the instruction following ENDTEST.
If the first CASE condition is not satisfied then other CASE conditions are tested
and so on. If none of the conditions are satisfied then the instructions associated
with DEFAULT are executed (if this is present).

Syntax
TEST <expression>

Continues on next page
848 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.297 TEST - Depending on the value of an expression ...
RobotWare - OS

{ CASE <test value> { ',' <test value> } ':'

<statement list> }

[DEFAULT ':'

<statement list>]

ENDTEST

Related information

SeeFor information about

Technical reference manual - RAPID Instructions,
Functions and Data types

Expressions

Technical reference manual - RAPID Instructions, Functions and Data types 849
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.297 TEST - Depending on the value of an expression ...

RobotWare - OS
Continued

1.298 TestSignDefine - Define test signal

Usage
TestSignDefine is used to define one test signal for the robot motion system.
A test signal continuouslymirrors some specifiedmotion data stream. For example,
torque reference for some specified axis. The actual value at a certain time can be
read in RAPID with the function TestSignRead.
Only test signals for external axes can be reached. Test signals are also available
on request for the robot axes and for not predefined test signals for external axes.

Basic examples
The following example illustrates the instruction TestSignDefine:

Example 1
TestSignDefine 1, resolver_angle, Orbit, 2, 0.1;

Test signal resolver_angle connected to channel 1 will give the value of the
resolver angle for external axis 2 on the orbit manipulator, sampled at 100 ms
rate.

Arguments
TestSignDefine Channel SignalId MechUnit Axis SampleTime

Channel

Data type: num
The channel numbers 1-12 to be used for the test signal. The same number must
be used in the function TestSignRead for reading the actual value of the test
signal.

SignalId

Data type: testsignal
The name or number of the test signal. See predefined constants described in data
type testsignal.

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Axis

Data type: num
The axis number within the mechanical unit.

SampleTime

Data type: num
Sample time in seconds.

Continues on next page
850 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.298 TestSignDefine - Define test signal
RobotWare - OS

For sample time < 0.004 s, the function TestSignRead returns the mean value of
the latest available internal samples as shown in the table below.

Result from TestSignReadSample Time in seconds

Mean value of the latest 8 samples generated each 0.5 ms0

Mean value of the latest 4 samples generated each 1 ms0.001

Mean value of the latest 2 samples generated each 2 ms0.002

Momentary value generated at specified sample timeGreater or equal to 0.004

Momentary value generated at specified sample time 100 ms0.1

Program execution
The definition of test signal is activated and the robot system starts the sampling
of the test signal.
The sampling of the test signal is active until:

• A new TestSignDefine instruction for the actual channel is executed.
• All test signals are deactivated with execution of instruction TestSignReset.
• All test signals are deactivated at a Restart of the system.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

There is an error in the parameter Axis.ERR_AXIS_PAR

There is an error in the parameter MechUnit.ERR_UNIT_PAR

Syntax
TestSignDefine

[Channel ':='] < expression (IN) of num>' ,'

[SignalId' :='] < expression (IN) of testsignal> ','

[MechUnit' :='] < variable (VAR) of mecunit> ','

[Axis ':='] < expression (IN) of num> ','

[SampleTime' :='] < expression (IN) of num > ';'

Related information

SeeFor information about

testsignal - Test signal on page 1741Test signal

TestSignRead -Read test signal valueonpage1485Read test signal

TestSignReset - Reset all test signal definitions
on page 852

Reset test signals

Technical reference manual - RAPID Instructions, Functions and Data types 851
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.298 TestSignDefine - Define test signal

RobotWare - OS
Continued

1.299 TestSignReset - Reset all test signal definitions

Usage
TestSignReset is used to deactivate all previously defined test signals.

Basic examples
The following example illustrates the instruction TestSignReset:

Example 1
TestSignReset;

Deactivate all previously defined test signals.

Program execution
The definitions of all test signals are deactivated, and the robot system stops the
sampling of any test signals.
The sampling of defined test signals is active until:

• A Restart of the system
• Execution of this instruction TestSignReset

Syntax
TestSignReset';'

Related information

SeeFor information about

testsignal - Test signal on page 1741Test signal

TestSignDefine - Define test signal on page 850Define test signal

TestSignRead -Read test signal valueonpage1485Read test signal

852 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.299 TestSignReset - Reset all test signal definitions
RobotWare - OS

1.300 TextTabInstall - Installing a text table

Usage
TextTabInstall is used to install a text table in the system.

Basic examples
The following example illustrates the instruction TextTabInstall:

Example 1
! System Module with Event Routine to be executed at event

! POWER ON, RESET or START

PROC install_text()

IF TextTabFreeToUse("text_table_name") THEN

TextTabInstall "HOME:/text_file.eng";

ENDIF

ENDPROC

The first time the event routine install_text is executed the function
TextTabFreeToUse returns TRUE, and the text file text_file.eng is installed
in the system. After that, the installed text strings can be fetched from the system
to RAPID by the functions TextTabGet and TextGet.
The next time the event routine install_text is executed, the function
TextTabFreeToUse returns FALSE, and the installation is not repeated.

Arguments
TextTabInstall File

File

Data type: string
The file path and the file name to the file that contains text strings to be installed
in the system.

Limitations
Limitations for installation of text tables (text resources) in the system:

• It is not possible to install the same text table more than once in the system.
• It is not possible to uninstall (free) a single text table from the system. The

only way to uninstall text tables from the system is to restart the controller
using the restart mode Reset system. All text tables (both system and user
defined) will then be uninstalled.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The file in the TextTabInstall instruction cannot be
opened.

ERR_FILEOPEN

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 853
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.300 TextTabInstall - Installing a text table

RobotWare - OS

Syntax
TextTabInstall

[File ':='] < expression (IN) of string >';'

Related information

SeeFor information about

TextTabFreeToUse - Test whether text table is free on
page 1489

Test whether text table is free

Technical reference manual manual - RAPID kernelFormat of text files

TextTabGet - Get text table number on page 1491Get text table number

TextGet - Get text from system text tables on page1487Get text from system text tables

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Application manual - Controller software IRC5Advanced RAPID

854 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.300 TextTabInstall - Installing a text table
RobotWare - OS
Continued

1.301 TPErase - Erases text printed on the FlexPendant

Usage
TPErase (FlexPendant Erase) is used to clear the display of the FlexPendant.

Basic examples
The following example illustrates the instruction TPErase:

Example 1
TPErase;

TPWrite "Execution started";

The FlexPendant display is cleared before Execution started is written.

Program execution
The FlexPendant display is completely cleared of all text. The next time text is
written it will be entered on the uppermost line of the display.

Syntax
TPErase;

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWriting on the FlexPendant

Technical reference manual - RAPID Instructions, Functions and Data types 855
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.301 TPErase - Erases text printed on the FlexPendant

RobotWare - OS

1.302 TPReadDnum - Reads a number from the FlexPendant

Usage
TPReadDnum (FlexPendant Read Numerical) is used to read a number from the
FlexPendant

Basic examples
The following example illustrates the instruction TPReadDnum:

Example 1
VAR dnum value;

TPReadDnum value, "How many units should be produced?";

The text How many units should be produced? is written on the FlexPendant
display. Program execution waits until a number has been input from the numeric
keyboard on the FlexPendant. That number is stored in value.

Arguments
TPReadDnum TPAnswer TPText [\MaxTime][\DIBreak] [\DIPassive]

[\DOBreak] [\DOPassive] [\PersBoolBreak] [\PersBoolPassive]
[\BreakFlag]

TPAnswer

Data type: dnum
The variable for which the number input via the FlexPendant is returned.

TPText

Data type: string
The information text to be written on the FlexPendant (a maximum of 80 characters
with 40 characters row).

[\MaxTime]
Data type: num
The maximum amount of time that program execution waits. If no number is input
within this time, the program continues to execute in the error handler unless the
BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to
test whether or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital signal that may interrupt the operator dialog. If no number is input when
the signal is set to 1 (or is already 1), the program continues to execute in the error
handler unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK
can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive

Continues on next page
856 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.302 TPReadDnum - Reads a number from the FlexPendant
RobotWare - OS

Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital signal that support termination request from other tasks. If no button
is selected when the signal is set to 1 (or is already 1), the program continues to
execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak
is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 857
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.302 TPReadDnum - Reads a number from the FlexPendant

RobotWare - OS
Continued

will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

Program execution
The information text is always written on a new line. If the display is full of text,
this body of text is moved up one line first. There can be up to 7 lines above the
new text written.
Program execution waits until a number is typed on the numeric keyboard (followed
by Enter or OK) or the instruction is interrupted by a time out or signal action..
Reference to TPReadFK about description of concurrent TPReadFK or TPReadDnum
request on FlexPendant from same or other program tasks.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Time-out (parameter \MaxTime) before input from the op-
erator.

ERR_TP_MAXTIME

A read instruction from FlexPendant was interrupted by a
digital input.

ERR_TP_DIBREAK

A digital input was set (parameter \DIBreak) before input
from the operator.

A read instruction from FlexPendant was interrupted by a
digital output.

ERR_TP_DOBREAK

A digital output was set(parameter \DOBreak) before input
from the operator.

No client to interact with when using a read instruction from
FlexPendant.

ERR_TP_NO_CLIENT

A read instruction from FlexPendant was interrupted by a
persistent boolean.

ERR_TP_PERSBOOLBREAK

A persistent boolean was changed (parameter
\PersBoolBreak) before input from the operator.

Syntax
TPReadDnum

[TPAnswer':='] <var or pers (INOUT) of dnum>','

[TPText':='] <expression (IN) of string>

['\'MaxTime':=' <expression (IN) of num>]

['\'DIBreak':=' <variable (VAR) of signaldi>]

['\'DIPassive]

['\'DOBreak':=' <variable (VAR) of signaldo>]

['\'DOPassive]

['\'PersBoolBreak ':=' <persistent (PERS) of bool>]

['\'PersBoolPassive]

['\'BreakFlag':=' <var or pers (INOUT) of errnum>] ';'

Continues on next page
858 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.302 TPReadDnum - Reads a number from the FlexPendant
RobotWare - OS
Continued

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWriting to and reading from the FlexPend-
ant

Operating manual - IRC5 with FlexPendantEntering a number on the FlexPendant

TPReadFK - Reads function keys on page 860Examples of how to use the arguments
MaxTime, DIBreak and BreakFlag

TPErase - Erases text printed on the FlexPend-
ant on page 855

Clean up the Operator window

Technical reference manual - RAPID Instructions, Functions and Data types 859
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.302 TPReadDnum - Reads a number from the FlexPendant

RobotWare - OS
Continued

1.303 TPReadFK - Reads function keys

Usage
TPReadFK (FlexPendant Read Function Key) is used to write text on the functions
keys and to find out which key is pressed.

Basic examples
The following example illustrates the instruction TPReadFK:
See also More examples on page 862.

Example 1
TPReadFK reg1, "More?", stEmpty, stEmpty, stEmpty, "Yes", "No";

The text More? is written on the FlexPendant display and the function keys 4 and
5 are activated by means of the text strings Yes and No respectively (see figure
below). Program execution waits until one of the function keys 4 or 5 is pressed.
In other words, reg1 will be assigned 4 or 5 depending on which of the keys are
pressed.
The figure shows that the operator can put in information via the function keys.

xx0500002345

Arguments
TPReadFK TPAnswer TPText TPFK1 TPFK2 TPFK3 TPFK4 TPFK5 [\MaxTime]

[\DIBreak] [\DIPassive] [\DOBreak] [\DOPassive]
[\PersBoolBreak] [\PersBoolPassive] [\BreakFlag]

TPAnswer

Data type: num
The variable for which, depending on which key is pressed, the numeric value 1..5
is returned. If the function key 1 is pressed then 1 is returned, and so on.

TPText

Data type: string
The information text to be written on the display (a maximum of 80 characters, with
40 characters/row).

TPFKx

Function key text
Data type: string
The text to be written on the appropriate function key (a maximum of 45 characters).
TPFK1 is the left-most key.

Continues on next page
860 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.303 TPReadFK - Reads function keys
RobotWare - OS

Function keys without text are specified by the predefined string constant stEmpty
with value empty string (“”).

[\MaxTime]

Data type: num
The maximum amount of time in seconds that program execution waits. If no
function key is pressed within this time then the program continues to execute in
the error handler unless the BreakFlag is used (see below). The constant
ERR_TP_MAXTIME can be used to test whether or not the maximum time has
elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital signal that may interrupt the operator dialog. If no function key is pressed
when the signal is set to 1 (or is already 1) then the program continues to execute
in the error handler unless the BreakFlag is used (see below). The constant
ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital signal that supports termination request from other tasks. If no button
is selected when the signal is set to 1 (or is already 1) then the program continues
to execute in the error handler unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak
is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 861
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.303 TPReadFK - Reads function keys

RobotWare - OS
Continued

Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler
will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

Program execution
The information text is always written on a new line. If the display is full of text then
this body of text is moved up one line first. There can be up to 7 lines above the
new written text.
Text is written on the appropriate function keys.
Program execution waits until one of the activated function keys are pressed.
Description of concurrent TPReadFK or TPReadNum request on FlexPendant (TP
request) from the same or other program tasks:

• New TP request from other program tasks will not take focus (new put in
queue)

• New TP request from TRAP in the same program task will take focus (old
put in queue)

• Program stop take focus (old put in queue)
• New TP request in program stop state takes focus (old put in queue)

More examples
More examples of how to use the instruction TPReadFK are illustrated below.

Example 1
VAR errnum errvar;

...

TPReadFK reg1, "Go to service position?", stEmpty, stEmpty, stEmpty,
"Yes","No"

Continues on next page
862 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.303 TPReadFK - Reads function keys
RobotWare - OS
Continued

\MaxTime:= 600

\DIBreak:= di5\BreakFlag:= errvar;

IF reg1 = 4 OR errvar = ERR_TP_DIBREAK THEN

MoveL service, v500, fine, tool1;

Stop;

ENDIF

IF errvar = ERR_TP_MAXTIME EXIT;

The robot is moved to the service position if the forth function key ("Yes") is
pressed or if the input 5 is activated. If no answer is given within 10 minutes then
the execution is terminated.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Time-out (parameter \MaxTime) before input from the op-
erator.

ERR_TP_MAXTIME

A read instruction from FlexPendant was interrupted by a
digital input.

ERR_TP_DIBREAK

A digital input was set (parameter \DIBreak) before input
from the operator.

A read instruction from FlexPendant was interrupted by a
digital output.

ERR_TP_DOBREAK

A digital output was set(parameter \DOBreak) before input
from the operator.

No client to interact with when using a read instruction from
FlexPendant.

ERR_TP_NO_CLIENT

A read instruction from FlexPendant was interrupted by a
persistent boolean.

ERR_TP_PERSBOOLBREAK

A persistent boolean was changed (parameter
\PersBoolBreak) before input from the operator.

Limitations
Avoid using too low values for the timeout parameter \MaxTime when TPReadFK
is frequently executed, for example in a loop. It can result in an unpredictable
behavior of the system performance, like slowing the FlexPendant response.

Predefined data
CONST string stEmpty := "";

The predefined constant stEmpty can be used for Function Keys without text.

Syntax
TPReadFK

[TPAnswer ':='] <var or pers (INOUT) of num>','

[TPText ':='] <expression (IN) of string>','

[TPFK1 ':='] <expression (IN) of string>','

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 863
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.303 TPReadFK - Reads function keys

RobotWare - OS
Continued

[TPFK2 ':='] <expression (IN) of string>','

[TPFK3 ':='] <expression (IN) of string>','

[TPFK4 ':='] <expression (IN) of string>','

[TPFK5 ':='] <expression (IN) of string>

['\' MaxTime ':=' <expression (IN) of num>]

['\' DIBreak ':=' <variable (VAR) of signaldi>]

['\' DIPassive]

['\' DOBreak ':=' <variable (VAR) of signaldo>]

['\' DOPassive]

['\' PersBoolBreak ':=' <persistent (PERS) of bool>]

['\' PersBoolPassive]

['\' BreakFlag ':=' <var or pers (INOUT) of errnum>]';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWriting to and reading from the FlexPend-
ant

Operating manual - IRC5 with FlexPendantReplying via the FlexPendant

TPErase - Erases text printed on the FlexPend-
ant on page 855

Clean up the Operator window

864 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.303 TPReadFK - Reads function keys
RobotWare - OS
Continued

1.304 TPReadNum - Reads a number from the FlexPendant

Usage
TPReadNum (FlexPendant Read Numerical) is used to read a number from the
FlexPendant.

Basic examples
The following example illustrates the instruction TPReadNum:
See also More examples on page 867.

Example 1
TPReadNum reg1, "How many units should be produced?";

The text How many units should be produced? is written on the FlexPendant
display. Program execution waits until a number has been input from the numeric
keyboard on the FlexPendant. That number is stored in reg1.

Arguments
TPReadNum TPAnswer TPText [\MaxTime][\DIBreak] [\DIPassive]

[\DOBreak] [\DOPassive] [\PersBoolBreak] [\PersBoolPassive]
[\BreakFlag]

TPAnswer

Data type: num
The variable for which the number input via the FlexPendant is returned.

TPText

Data type: string
The information text to be written on the FlexPendant (a maximum of 80 characters
with 40 characters per row).

[\MaxTime]
Data type: num
The maximum amount of time that program execution waits. If no number is input
within this time, the program continues to execute in the error handler unless the
BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to
test whether or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital signal that may interrupt the operator dialog. If no number is input when
the signal is set to 1 (or is already 1), the program continues to execute in the error
handler unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK
can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 865
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.304 TPReadNum - Reads a number from the FlexPendant

RobotWare - OS

This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital signal that supports termination request from other tasks. If no button
is selected when the signal is set to 1 (or is already 1), the program continues to
execute in the error handler unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak
is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler

Continues on next page
866 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.304 TPReadNum - Reads a number from the FlexPendant
RobotWare - OS
Continued

will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

Program execution
The information text is always written on a new line. If the display is full of text,
this body of text is moved up one line first. There can be up to 7 lines above the
new text written.
Program execution waits until a number is typed on the numeric keyboard (followed
by Enter or OK) or the instruction is interrupted by a time out or signal action.
Reference to TPReadFK about description of concurrent TPReadFK or TPReadNum
request on FlexPendant from same or other program tasks.

More examples
More examples of how to use the instruction TPReadNum are illustrated below.

Example 1
TPReadNum reg1, "How many units should be produced?";

FOR i FROM 1 TO reg1 DO

produce_part;

ENDFOR

The text How many units should be produced? is written on the FlexPendant
display. The routine produce_part is then repeated the number of times that is
input via the FlexPendant.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Time-out (parameter \MaxTime) before input from the op-
erator.

ERR_TP_MAXTIME

A read instruction from FlexPendant was interrupted by a
digital input.

ERR_TP_DIBREAK

A digital input was set (parameter \DIBreak) before input
from the operator.

A read instruction from FlexPendant was interrupted by a
digital output.

ERR_TP_DOBREAK

A digital output was set(parameter \DOBreak) before input
from the operator.

No client to interact with when using a read instruction from
FlexPendant.

ERR_TP_NO_CLIENT

A read instruction from FlexPendant was interrupted by a
persistent boolean.

ERR_TP_PERSBOOLBREAK

A persistent boolean was changed (parameter
\PersBoolBreak) before input from the operator.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 867
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.304 TPReadNum - Reads a number from the FlexPendant

RobotWare - OS
Continued

Syntax
TPReadNum

[TPAnswer':='] <var or pers (INOUT) of num>','

[TPText':='] <expression (IN) of string>

['\'MaxTime':=' <expression (IN) of num>]

['\'DIBreak':=' <variable (VAR) of signaldi>]

['\'DIPassive]

['\'DOBreak':=' <variable (VAR) of signaldo>]

['\'DOPassive]

['\'PersBoolBreak ':=' <persistent (PERS) of bool>]

['\'PersBoolPassive]

['\'BreakFlag':=' <var or pers (INOUT) of errnum>] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWriting to and reading from the FlexPend-
ant

Operating manual - IRC5 with FlexPendantEntering a number on the FlexPendant

TPReadFK - Reads function keys on page 860Examples of how to use the arguments
MaxTime, DIBreak and BreakFlag

TPErase - Erases text printed on the FlexPend-
ant on page 855

Clean up the Operator window

868 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.304 TPReadNum - Reads a number from the FlexPendant
RobotWare - OS
Continued

1.305 TPShow - Switch window on the FlexPendant

Usage
TPShow (FlexPendant Show) is used to select FlexPendant window from RAPID.

Basic examples
The following example illustrates the instruction TPShow:

Example 1
TPShow TP_LATEST;

The latest used FlexPendant Window before the current FlexPendant window will
be active after execution of this instruction.

Arguments
TPShow Window

Window

Data type: tpnum
The window TP_LATEST will show the latest used FlexPendant window before
current FlexPendant window.

Predefined data
CONST tpnum TP_LATEST := 2;

Program execution
The selected FlexPendant window will be activated.

Syntax
TPShow

[Window':='] <expression (IN) of tpnum> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewCommunicating using the FlexPendant

tpnum - FlexPendant window number on
page 1749

FlexPendant Window number

TPErase - Erases text printed on the FlexPend-
ant on page 855

Clean up the Operator window

Technical reference manual - RAPID Instructions, Functions and Data types 869
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.305 TPShow - Switch window on the FlexPendant

RobotWare - OS

1.306 TPWrite - Writes on the FlexPendant

Usage
TPWrite (FlexPendant Write) is used to write text on the FlexPendant. The value
of certain data can be written as well as text.

Basic examples
The following examples illustrate the instruction TPWrite:

Example 1
TPWrite "Execution started";

The text Execution started is written on the FlexPendant.

Example 2
TPWrite "No of produced parts="\Num:=reg1;

If, for example, reg1 holds the value 5 then the text No of produced parts=5
is written on the FlexPendant.

Example 3
VAR string my_robot;

...

my_robot := RobName();

IF my_robot="" THEN

TPWrite "This task does not control any TCP robot";

ELSE

TPWrite "This task controls TCP robot with name "+ my_robot;

ENDIF

Write to FlexPendant the name of the TCP robot which is controlled from this
program task. If no TCP robot is controlled, write that the task controls no robot.

Arguments
TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient] | [\Dnum]

String

Data type: string
The text string to be written (a maximum of 80 characters, with 40 characters/row).

[\Num]

Numeric
Data type: num
The data whose numeric value is to be written after the text string.

[\Bool]

Boolean
Data type: bool
The data whose logical value is to be written after the text string.

[\Pos]

Position

Continues on next page
870 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.306 TPWrite - Writes on the FlexPendant
RobotWare - OS

Data type: pos
The data whose position is to be written after the text string.

[\Orient]

Orientation
Data type: orient
The data whose orientation is to be written after the text string.

[\Dnum]

Numeric
Data type: dnum
The data whose numeric value is to be written after the text string.

Program execution
Text written on the FlexPendant always begins on a new line. When the display is
full of text (11 lines) then this text is moved up one line first.
If one of the arguments \Num, \Dnum, \Bool, \Pos, or \Orient is used then
its value is first converted to a text string before it is added to the first string. The
conversion from value to text string takes place as follows:

Text stringValueArgument

"23"23\Num

"1.14137"1.141367\Num

"TRUE"TRUE\Bool

"[1817.3,905.17,879.11]"[1817.3,905.17,879.11]\Pos

"[0.96593,0,0.25882,0]"[0.96593,0,0.25882,0]\Orient

"4294967295"4294967295\Dnum

The value is converted to a string with standard RAPID format. This means, in
principle, 6 significant digits. If the decimal part is less than 0.000005 or greater
than 0.999995 then the number is rounded to an integer.

Limitations
The arguments \Num, \Dnum, \Bool, \Pos, and \Orient aremutually exclusive
and thus cannot be used simultaneously in the same instruction.

Syntax
TPWrite

[TPText':='] <expression (IN) of string>

['\'Num':=' <expression (IN) of num>]

| ['\'Bool':=' <expression (IN) of bool>]

| ['\'Pos':=' <expression (IN) of pos>]

| ['\'Orient':=' <expression (IN) of orient>]

| ['\'Dnum':=' <expression (IN) of dnum>]’;’

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 871
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.306 TPWrite - Writes on the FlexPendant

RobotWare - OS
Continued

Related information

SeeFor information about

Technical reference manual - RAPID OverviewClearing and reading the FlexPendant

TPErase - Erases text printed on the FlexPendant
on page 855

Clean up the Operator window

872 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.306 TPWrite - Writes on the FlexPendant
RobotWare - OS
Continued

1.307 TriggC - Circular robot movement with events

Usage
TriggC (Trigg Circular) is used to set output signals and/or run interrupt routines
at fixed positions at the same time that the robot is moving on a circular path.
One or more (max. 25) events can be defined using the instructions TriggIO,
TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, or TriggRampAO and
afterwards these definitions are referred to in the instruction TriggC.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggC:
See also More examples on page 877.

Example 1
VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, 1;

MoveL p1, v500, z50, gun1;

TriggC p2, p3, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint of
the corner path of the point p1.
The figure shows an example of fixed position I/O event.

xx0500002267

Arguments
TriggC [\Conc] CirPoint ToPoint [\ID] Speed [\T] Trigg_1 |

TriggArray [\T2] [\T3] [\T4] [\T5] [\T6] [\T7] [\T8] Zone
[\Inpos] Tool [\WObj] [\Corr] [\TLoad]

[\Conc]

Concurrent
Data type:switch
Subsequent instructions are executed while the robot is moving. The argument is
usually not used but can be used to avoid unwanted stops caused by overloaded
CPUwhen using fly-by points. This is useful when the programmed points are very
close together at high speeds. The argument is also useful when, for example,
communicating with external equipment and synchronization between the external

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 873
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.307 TriggC - Circular robot movement with events

RobotWare - OS

equipment and robot movement is not required. It can also be used to tune the
execution of the robot path, to avoid warning 50024 Corner path failure, or error
50082 Deceleration limit.
When using the argument \Conc, the number of movement instructions in
succession is limited to 5. In a program section that includes
StorePath-RestoPath, movement instructionswith the argument \Conc are not
permitted.
If this argument is omitted and the ToPoint is not a stop point then the subsequent
instruction is executed some time before the robot has reached the programmed
zone.
This argument cannot be used in coordinated synchronized movement in a
MultiMove system.

CirPoint

Data type: robtarget
The circle point of the robot. See the instruction MoveC for a more detailed
description of circular movement. The circle point is defined as a named position
or stored directly in the instruction (marked with an * in the instruction).

ToPoint

Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the tool reorientation, and the external axes.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Trigg_1

Data type: triggdata

Continues on next page
874 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.307 TriggC - Circular robot movement with events
RobotWare - OS
Continued

Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

TriggArray

Trigg Data Array Parameter
Data type: triggdata
Array variable that refers to trigger conditions and trigger activity defined earlier
in the program using the instructions TriggIO, TriggEquip, TriggInt,
TriggSpeed, TriggCheckIO or TriggRampAO.
The limitation is 25 elements in the array and 1 to 25 defined trigger conditions
must be defined.
It is not possible to use the optional arguments T2, T3, T4, T5, T6, T7 or T8 at the
same time as the TriggArray argument is used.

[\T2]

Trigg 2
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

[\T3]

Trigg 3
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

[\T4]

Trigg 4
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

[\T5]

Trigg 5
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggCheck,
TriggSpeed or TriggRampAO.

[\T6]

Trigg 6
Data type: triggdata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 875
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.307 TriggC - Circular robot movement with events

RobotWare - OS
Continued

Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

[\T7]

Trigg 7
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

[\T8]

Trigg 8
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

Zone

Data type: zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

In position
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified for a linear movement relative
to the work object to be performed.

[\Corr]

Correction

Continues on next page
876 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.307 TriggC - Circular robot movement with events
RobotWare - OS
Continued

Data type: switch
Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position if this argument is present.
The RobotWare option Path Offset is required when using this argument.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveC for information about circular movement.
As the trigger conditions are fulfilled when the robot is positioned closer and closer
to the end point, the defined trigger activities are carried out. The trigger conditions
are fulfilled either at a certain distance before the end point of the instruction, or
at a certain distance after the start point of the instruction, or at a certain point in
time (limited to a short time) before the end point of the instruction.
During stepping the execution forward, the I/O activities are carried out but the
interrupt routines are not run. During stepping the execution backward, no trigger
activities at all are carried out.

More examples
More examples of how to use the instruction TriggC are illustrated below.

Example 1
VAR intnum intno1;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 877
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.307 TriggC - Circular robot movement with events

RobotWare - OS
Continued

VAR triggdata trigg1;

...

PROC main()

...

CONNECT intno1 WITH trap1;

TriggInt trigg1, 0.1 \Time, intno1;

...

TriggC p1, p2, v500, trigg1, fine, gun1;

TriggC p3, p4, v500, trigg1, fine, gun1;

...

IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position 0.1 s before
the point p2 or p4 respectively.

Example 2
VAR num Distance:=0;

VAR triggdata trigg_array{25};

VAR signaldo myaliassignaldo;

VAR string signalname;

...

PROC main()

...

FOR i FROM 1 TO 25 DO

signalname:="do";

signalname:=signalname+ValToStr(i);

AliasIO signalname, myaliassignaldo;

TriggEquip trigg_array{i}, Distance \Start, 0
\DOp:=myaliassignaldo, SetValue:=1;

Distance:=Distance+10;

ENDFOR

TriggC p1, p2, v500, trigg_array, z30, tool2;

MoveC p3, p4, v500, z30, tool2;

...

The digital output signals do1 to do25 is set during the movement to p2.The
distance between the signal settings is 10 mm.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed ScaleValue argument for the specified
analog output signal AOp in some of the connected
TriggSpeed instructions result in out of limit for the analog
signal together with the programmed Speed in this instruc-
tion.

ERR_AO_LIM

The programmed DipLag argument in some of the connec-
ted TriggSpeed instructions is too big in relation to the
used Event Preset Time in System Parameters.

ERR_DIPLAG_LIM

Continues on next page
878 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.307 TriggC - Circular robot movement with events
RobotWare - OS
Continued

Cause of errorName

There is no contact with the I/O device when entering in-
struction and the used triggdata depends on a running I/O
device, i.e. a signal is used in the triggdata.

ERR_NORUNUNIT

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Limitations
General limitations according to instruction MoveC.
If the current start point deviates from the usual point so that the total positioning
length of the instruction TriggC is shorter than usual then it may happen that
several or all of the trigger conditions are fulfilled immediately and at the same
position. In such cases, the sequence in which the trigger activities are carried out
will be undefined. The program logic in the user program may not be based on a
normal sequence of trigger activities for an “incomplete movement”.

WARNING

The instruction TriggC should never be started from the beginning with the
robot in position after the circle point. Otherwise, the robot will not take the
programmed path (positioning around the circular path in another direction
compared to that which is programmed).

Syntax
TriggC

['\' Conc ',']

[CirPoint' :='] < expression (IN) of robtarget > ','

[ToPoint' :='] < expression (IN) of robtarget > ','

['\' ID ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ','

[Trigg_1 ':='] < variable (VAR) of triggdata > |

[TriggArray ':='] < array variable {*} (VAR) of triggdata >

['\' T2 ':=' < variable (VAR) of triggdata >]

['\' T3 ':=' < variable (VAR) of triggdata >]

['\' T4 ':=' < variable (VAR) of triggdata >]

['\' T5 ':=' < variable (VAR) of triggdata >]

['\' T6 ':=' < variable (VAR) of triggdata >]

['\' T7 ':=' < variable (VAR) of triggdata >]

['\' T8 ':=' < variable (VAR) of triggdata >] ','

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos’ :=' < expression (IN) of stoppointdata >]','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj' :=' < persistent (PERS) of wobjdata >]

['\' Corr]

['\' TLoad’ :=' < persistent (PERS) of loaddata >] ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 879
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.307 TriggC - Circular robot movement with events

RobotWare - OS
Continued

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Linear movement with triggers

TriggJ - Axis-wise robot movements with events on
page 909

Joint movement with triggers

MoveC - Moves the robot circularly on page 402Move the robot circularly

TriggIO - Define a fixed position or time I/O event
near a stop point on page 903

Definition of triggers

TriggEquip - Define a fixed position and time I/O event
on the path on page 892
TriggInt - Defines a position related interrupt on
page 898
TriggCheckIO - Defines I/O check at a fixed position
on page 882
TriggRampAO - Define a fixed position rampAOevent
on the path on page 940
TriggSpeed - Defines TCP speed proportional analog
output with fixed position-time scale event on page947

triggdata - Positioning events, trigg on page 1752Handling triggdata
TriggDataReset - Reset the content in a triggdata
variable on page 890
TriggDataCopy - Copy the content in a triggdata
variable on page 888
TriggDataValid - Check if the content in a triggdata
variable is valid on page 1493

CorrWrite - Writes to a correction generator on
page 168

Writes to a corrections entry

Technical reference manual - RAPID OverviewCircular movement

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

stoppointdata - Stop point data on page 1722Definition of stop point data

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on page266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification ser-
vice routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated mode
without payload.
(Topic I/O, Type System Input, Action
values, SimMode)

Continues on next page
880 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.307 TriggC - Circular robot movement with events
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID,Action values,ModalPayLoad-
Mode)

Application manual - Controller software IRC5Path Offset

Technical reference manual - RAPID Instructions, Functions and Data types 881
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.307 TriggC - Circular robot movement with events

RobotWare - OS
Continued

1.308 TriggCheckIO - Defines I/O check at a fixed position

Usage
TriggCheckIO is used to define conditions for testing the value of a digital, a
group of digital, or an analog input or output signal at a fixed position along the
robot’s movement path. If the condition is fulfilled then there will be no specific
action. But if it is not then an interrupt routine will be run after the robot has
optionally stopped on path as fast as possible.
To obtain a fixed position I/O check, TriggCheckIO compensates for the lag in
the control system (lag between servo and robot).
The data defined is used for implementation in one or more subsequent TriggL,
TriggC, or TriggJ instructions.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggCheckIO:
See also More examples on page 885.

Example 1
VAR triggdata checkgrip;

VAR intnum intno1;

PROC main()

CONNECT intno1 WITH trap1;

TriggCheckIO checkgrip, 100, airok, EQ, 1, intno1;

TriggL p1, v500, checkgrip, z50, grip1;

The digital input signal airok is checked to have the value 1 when the TCP is
100 mm before the point p1. If it is set then normal execution of the program
continues. If it is not set then the interrupt routine trap1 is run.
The figure shows an example of fixed position I/O check.

xx0500002254

Arguments
TriggCheckIO TriggData Distance [\Start] | [\Next] | [\Time] Signal

Relation CheckValue | CheckDvalue [\StopMove] Interrupt
[\Inhib] [\Mode]

Continues on next page
882 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.308 TriggCheckIO - Defines I/O check at a fixed position
RobotWare - OS

TriggData

Data type: triggdata
Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Distance

Data type: num
Defines the position on the path where the I/O check shall occur.
Specified as the distance inmm (positive value) from the end point of themovement
path (applicable if the argument \Start or \Time is not set).
See Program execution on page 884 for further details.

[\Start]

Data type: switch
Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Next]

Data type: switch
Used when the distance for the argument Distance is forward towards the next
programmed point. If the Distance is longer than the distance to the next fine
point, the event will be executed at the fine point.

[\Time]

Data type: switch
Used when the value specified for the argument Distance is in fact a time in
seconds (positive value) instead of a distance.
Fixed position I/O in time can only be used for short times (< 0.5 s) before the robot
reaches the end point of the instruction. See the section Limitations for more details.

Signal

Data type: signalxx
The name of the signal that will be tested. May be any type of I/O signal.

Relation

Data type: opnum
Defines how to compare the actual value of the signal with the one defined by the
argument CheckValue. See opnum data type for the list of the predefined constants
to be used.

CheckValue

Data type: num
Value to which the actual value of the input or output signal is to be compared
(within the allowed range for the current signal). If the signal is a digital signal, it
must be an integer value.
If the signal is a digital group signal, the permitted value is dependent on the
number of signals in the group. Max value that can be used in the CheckValue

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 883
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.308 TriggCheckIO - Defines I/O check at a fixed position

RobotWare - OS
Continued

argument is 8388608, and that is the value a 23 bit digital group signal can have
as maximum value (see ranges for num).

CheckDvalue

Data type: dnum
Value to which the actual value of the input or output signal is to be compared
(within the allowed range for the current signal). If the signal is a digital signal, it
must be an integer value.
If the signal is a digital group signal, the permitted value is dependent on the
number of signals in the group. The maximal amout of signal bits a digital group
signal can have is 32. With a dnum variable it is possible to cover the value range
0-4294967295, which is the value range a 32 bits digital signal can have.

[\StopMove]

Data type: switch
Specifies that if the condition is not fulfilled then the robot will stop on path as
quickly as possible before the interrupt routine is run.

Interrupt

Data type: intnum
Variable used to identify the interrupt routine to run.

[\Inhib]

Inhibit
Data type: bool
The name of a persistent variable flag for inhibiting the execution of the interrupt
routine.
If this optional argument is used and the actual value of the specified flag is TRUE
at the position-time for I/O check, the check will not be performed.

[\Mode]

Data type: triggmode
Is used to specify different action modes when defining triggers.

Program execution
When running the instruction TriggCheckIO, the trigger condition is stored in a
specified variable for the argument TriggData.
Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed,
the following are applicable with regard to the definitions in TriggCheckIO:
The table describes distance specified in the argument Distance:

The straight line distanceLinear movement

The circle arc lengthCircular movement

The approximate arc length along the path (to
obtain adequate accuracy, the distance should
not exceed one half of the arc length).

Non-linear movement

Continues on next page
884 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.308 TriggCheckIO - Defines I/O check at a fixed position
RobotWare - OS
Continued

The figure shows fixed position I/O check on a corner path.

xx0500002256

The fixed position I/O check will be done when the start point (end point) is passed
if the specified distance from the end point (start point) is not within the length of
movement of the current instruction (TriggL...).
When the TCP of the robot is at specified place on the path, the following I/O check
will be done by the system:

• Read the value of the I/O signal.
• Compare the read value with CheckValue according specified Relation.
• If the comparison is TRUE then nothing more is done.
• If the comparison is FALSE then following is done:
• If optional parameter \StopMove is present then the robot is stopped on the

path as quickly as possible.
• Generate and execute the specified TRAP routine.

More examples
More examples of how to use the instruction TriggCheckIO are illustrated below.

Example 1
VAR triggdata checkgate;

VAR intnum gateclosed;

PROC main()

CONNECT gateclosed WITH waitgate;

TriggCheckIO checkgate,150, gatedi, EQ, 1 \StopMove, gateclosed;

TriggL p1, v600, checkgate, z50, grip1;

...

TRAP waitgate

! Block movement

StopMove;

! log some information

...

! Wait until signal is set

WaitDI gatedi,1;

! Unlock block, and resume movement

StartMove;

ENDTRAP

The gate for the next workpiece operation is checked to be open (digital input
signal gatedi is checked to have the value 1) when the TCP is 150 mm before

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 885
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.308 TriggCheckIO - Defines I/O check at a fixed position

RobotWare - OS
Continued

the point p1. If it is open then the robot will move on to p1 and continue. If it is not
open then the robot is stopped on path and the interrupt routine waitgate is run.
This interrupt blocks futher movements, log some information and typically waits
for the conditions to be OK to execute a StartMove instruction to restart the
interrupted path.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed CheckValue or CheckDvalue argument
for the specified analog output signal Signal is outside
limits.

ERR_AO_LIM

The programmed CheckValue or CheckDvalue argument
for the specified digital group output signal Signal is out-
side limits.

ERR_GO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Limitations
I/O checks with distance (without the argument \Time) is intended for flying points
(corner path). I/O checks with distance, using stop points, results in worse accuracy
than specified below.
I/O checks with time (with the argument \Time) is intended for stop points. I/O
checks with time, using flying points, results in worse accuracy than specified
below.
I/O checks with time can only be specified from the end point of the movement.
This time cannot exceed the current braking time of the robot, which is max. approx.
0.5 s (typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250
ms). If the specified time is greater that the current braking time then the I/O check
will be generated anyway but not until braking is started (later than specified). The
whole of the movement time for the current movement can be utilized during small
and fast movements.
Typical absolute accuracy values for testing of digital inputs +/- 5 ms. Typical repeat
accuracy values for testing of digital inputs +/- 2 ms.

Syntax
TriggCheckIO

[TriggData ':='] < variable (VAR) of triggdata> ','

[Distance' :='] < expression (IN) of num>

['\' Start] | ['\' Next] | ['\' Time] ','

[Signal ':='] < variable (VAR) of anytype> ','

[Relation' :='] < expression (IN) of opnum> ','

[CheckValue' :='] < expression (IN) of num>

| [CheckDvalue' :='] < expression (IN) of dnum>

['\' StopMove] ','

[Interrupt' :='] < variable(VAR) of intnum>

Continues on next page
886 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.308 TriggCheckIO - Defines I/O check at a fixed position
RobotWare - OS
Continued

['\' Inhib' :=' < persistent (PERS) of bool>]

['\' Mode' :=' < expression (IN) of triggmode>] ';'

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Use of triggers

TriggC - Circular robot movement with events on
page 873
TriggJ - Axis-wise robot movements with events on
page 909

TriggIO - Define a fixed position or time I/O event
near a stop point on page 903

Definition of position-time I/O event

TriggEquip - Define a fixed position and time I/O event
on the path on page 892

TriggInt - Defines a position related interrupt on
page 898

Definition of position related inter-
rupts

triggdata - Positioning events, trigg on page 1752Storage of trigg data

triggmode - Trigg action mode on page 1758Defining different trigg action modes

opnum - Comparison operator on page 1669Definition of comparison operators

Technical reference manual - RAPID Instructions, Functions and Data types 887
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.308 TriggCheckIO - Defines I/O check at a fixed position

RobotWare - OS
Continued

1.309 TriggDataCopy - Copy the content in a triggdata variable

Usage
TriggDataCopy is used to copy the content in a triggdata variable.

Basic examples
The following example illustrates the instruction TriggDataCopy.

Example 1
VAR triggdata trigg_array{25};

...

PROC MyTriggProcL(robtarget myrobt, \VAR triggdata T1 \VAR triggdata
T2 \VAR triggdata T3)

VAR num triggcnt:=2;

! Reset entire trigg_array array before using it

FOR i FROM 1 TO 25 DO

TriggDataReset trigg_array{i};

ENDFOR

TriggEquip trigg_array{1}, 10 \Start, 0 \DOp:=do1, SetValue:=1;

TriggEquip trigg_array{2}, 40 \Start, 0 \DOp:=do2, SetValue:=1;

! Check if optional argument is present,

! and if any trigger condition has been setup in T1

IF Present(T1) AND TriggDataValid(T1) THEN

! Copy actual trigger condition to trigg_array

TriggDataCopy T1, trigg_array{triggcnt};

Incr triggcnt;

ENDIF

IF Present(T2) AND TriggDataValid(T2) THEN

Incr triggcnt;

TriggDataCopy T2, trigg_array{triggcnt};

ENDIF

IF Present(T3) AND TriggDataValid(T3) THEN

Incr triggcnt;

TriggDataCopy T3, trigg_array{triggcnt};

ENDIF

TriggL p1, v500, trigg_array, z30, tool2;

...

The procedure MyTriggProcL above uses the TriggDataCopy instruction to
copy the triggdata optional arguments to right place in the triggdata array
that is used in the TriggL instruction.

Arguments
TriggDataCopy Source Destination

Source

Data type: triggdata
The triggdata variable to copy from.

Destination

Data type: triggdata

Continues on next page
888 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.309 TriggDataCopy - Copy the content in a triggdata variable
RobotWare - OS

The triggdata variable to copy to.

Program execution
The TriggDataCopy instruction is used to copy data from one triggdata variable
to another triggdata variable. This instruction can be useful when working with
triggdata array variables.

Syntax
TriggDataCopy

[Source ':='] < variable (VAR) of triggdata > ','

[Destination ':='] < variable (VAR) of triggdata > ';'

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Linear movement with triggers

TriggJ - Axis-wise robot movements with events on
page 909

Joint movement with triggers

TriggC - Circular robot movement with events on
page 873

Circular movement with triggers

TriggIO - Define a fixed position or time I/O event
near a stop point on page 903

Definition of triggers

TriggEquip - Define a fixed position and time I/O event
on the path on page 892
TriggInt - Defines a position related interrupt on
page 898
TriggCheckIO - Defines I/O check at a fixed position
on page 882
TriggRampAO - Define a fixed position rampAOevent
on the path on page 940
TriggSpeed - Defines TCP speed proportional analog
output with fixed position-time scale event on page947

triggdata - Positioning events, trigg on page 1752Handling triggdata
TriggDataReset - Reset the content in a triggdata
variable on page 890
TriggDataValid - Check if the content in a triggdata
variable is valid on page 1493

Technical reference manual - RAPID Instructions, Functions and Data types 889
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.309 TriggDataCopy - Copy the content in a triggdata variable

RobotWare - OS
Continued

1.310 TriggDataReset - Reset the content in a triggdata variable

Usage
TriggDataReset is used to reset the content in a triggdata variable.

Basic examples
The following example illustrates the instruction TriggDataReset.

Example 1
VAR triggdata trigg_array{25};

...

PROC MyTriggProcL(robtarget myrobt, \VAR triggdata T1 \VAR triggdata
T2 \VAR triggdata T3)

VAR num triggcnt:=2;

! Reset entire trigg_array array before using it

FOR i FROM 1 TO 25 DO

TriggDataReset trigg_array{i};

ENDFOR

TriggEquip trigg_array{1}, 10 \Start, 0 \DOp:=do1, SetValue:=1;

TriggEquip trigg_array{2}, 40 \Start, 0 \DOp:=do2, SetValue:=1;

! Check if optional argument is present,

! and if any trigger condition has been setup in T1

IF Present(T1) AND TriggDataValid(T1) THEN

! Copy actual trigger condition to trigg_array

TriggDataCopy trigg_array{triggcnt}, T1;

Incr triggcnt;

ENDIF

IF Present(T2) AND TriggDataValid(T2) THEN

Incr triggcnt;

TriggDataCopy trigg_array{triggcnt}, T2;

ENDIF

IF Present(T3) AND TriggDataValid(T3) THEN

Incr triggcnt;

TriggDataCopy trigg_array{triggcnt}, T3;

ENDIF

TriggL p1, v500, trigg_array, z30, tool2;

...

The procedure MyTriggProcL above uses the TriggDataReset instruction to
reset the triggdata array before it is used.

Arguments
TriggDataReset TriggData

TriggData

Data type: triggdata
The triggdata variable to reset.

Continues on next page
890 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.310 TriggDataReset - Reset the content in a triggdata variable
RobotWare - OS

Program execution
The TriggDataReset instruction is used to remove any trigger condition previosly
used in a triggdata variable. This instruction can be useful when working with
triggdata array variables.

Syntax
TriggDataReset

[TriggData ':='] < variable (VAR) of triggdata > ';'

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Linear movement with triggers

TriggJ - Axis-wise robot movements with events on
page 909

Joint movement with triggers

TriggC - Circular robot movement with events on
page 873

Circular movement with triggers

TriggIO - Define a fixed position or time I/O event
near a stop point on page 903

Definition of triggers

TriggEquip - Define a fixed position and time I/O event
on the path on page 892
TriggInt - Defines a position related interrupt on
page 898
TriggCheckIO - Defines I/O check at a fixed position
on page 882
TriggRampAO - Define a fixed position rampAOevent
on the path on page 940
TriggSpeed - Defines TCP speed proportional analog
output with fixed position-time scale event on page947

triggdata - Positioning events, trigg on page 1752Handling triggdata
TriggDataCopy - Copy the content in a triggdata
variable on page 888
TriggDataValid - Check if the content in a triggdata
variable is valid on page 1493

Technical reference manual - RAPID Instructions, Functions and Data types 891
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.310 TriggDataReset - Reset the content in a triggdata variable

RobotWare - OS
Continued

1.311 TriggEquip - Define a fixed position and time I/O event on the path

Usage
TriggEquip (Trigg Equipment) is used to define conditions and actions for setting
a digital, a group of digital, or an analog output signal at a fixed position along the
robot’s movement path with possibility to do time compensation for the lag in the
external equipment.
TriggIO (not TriggEquip) should always be used if there is need for good
accuracy of the I/O settings near a stop point.
The data defined is used for implementation in one or more subsequent TriggL,
TriggC, or TriggJ instructions.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggEquip:
See also More examples on page 896.

Example 1
VAR triggdata gunon;

...

TriggEquip gunon, 10, 0.1 \DOp:=gun, 1;

TriggL p1, v500, gunon, z50, gun1;

The tool gun1 starts to open when its TCP is 0,1 s before the fictitious point p2
(10 mm before point p1). The gun is full open when TCP reach point p2.
The figure shows an example of a fixed position time I/O event.

xx0500002260

Arguments
TriggEquip TriggData Distance [\Start] | [\Next] EquipLag [\DOp]

| [\GOp]| [\AOp] | [\ProcID] SetValue | SetDvalue [\Inhib]
[\InhibSetValue] [\Mode]

TriggData

Data type: triggdata
Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Continues on next page
892 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.311 TriggEquip - Define a fixed position and time I/O event on the path
RobotWare - OS

Distance

Data type: num
Defines the position on the path where the I/O equipment event shall occur.
Specified as the distance inmm (positive value) from the end point of themovement
path towards the start point (applicable if the arguments \Start and \Next are
not set).
See Program execution on page 895 for further details.

[\Start]

Data type: switch
Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Next]

Data type: switch
Used when the distance for the argument Distance is forward towards the next
programmed point. If the Distance is longer than the distance to the next fine
point, the event will be executed at the fine point.

EquipLag

Equipment Lag
Data type: num
Specify the lag for the external equipment in s.
For compensation of external equipment lag, use a positive argument value. Positive
argument value means that the I/O signal is set by the robot system at a specified
time before the TCP physically reaches the specified distance in relation to the
movement start or end point.
Negative argument value means that the I/O signal is set by the robot system at a
specified time after that the TCP has physically passed the specified distance in
relation to the movement start or end point.
The figure shows use of argument EquipLag.

Distance

/Next

Distance

Distance

/Start

EquipLag

Start point Corner point

xx0500002262

[\DOp]

Digital Output

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 893
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.311 TriggEquip - Define a fixed position and time I/O event on the path

RobotWare - OS
Continued

Data type: signaldo
The name of the signal when a digital output signal shall be changed.

[\GOp]

Group Output
Data type: signalgo
The name of the signal when a group of digital output signals shall be changed.

[\AOp]

Analog Output
Data type: signalao
The name of the signal when a analog output signal shall be changed.

[\ProcID]

Process Identity
Data type: num
Not implemented for customer use.
(The identity of the IPM process to receive the event. The selector is specified in
the argument SetValue.)

SetValue

Data type: num
The desired value of the signal (within the allowed range for the current signal). If
the signal is a digital signal, it must be an integer value. If the signal is a digital
group signal, the permitted value is dependent on the number of signals in the
group. Max value that can be used in the SetValue argument is 8388608, and that
is the value a 23 bit digital group signal can have as maximum value (see ranges
for num).

SetDvalue

Data type: dnum
The desired value of the signal (within the allowed range for the current signal). If
the signal is a digital signal, it must be an integer value. If the signal is a digital
group signal, the permitted value is dependent on the number of signals in the
group. The maximal amout of signal bits a digital group signal can have is 32. With
a dnum variable it is possible to cover the value range 0-4294967295, which is the
value range a 32 bits digital signal can have.

[\Inhib]

Inhibit
Data type: bool
The name of a persistent variable flag for inhibiting the setting of the signal at
runtime.
If this optional argument is used and the actual value of the specified flag is TRUE
at the position-time for setting of the signal then the specified signal (DOp, GOp or
AOp) will be set to 0 instead of a specified value.

Continues on next page
894 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.311 TriggEquip - Define a fixed position and time I/O event on the path
RobotWare - OS
Continued

[\InhibSetValue]

InhibitSetValue
Data type: bool, num or dnum
The name of a persistent variable of the data type bool, num or dnum or any alias
of those three base data types.
This optional argument can only be used together with optional argument Inhib.
If this optional argument is used and the value of the persistent variable flag used
in optional argument Inhib is TRUE at the position-time for setting the signal, the
value of the persistent variable used in optional argument InhibSetValue is read
and the value is used for setting of the DOp, GOp or AOp signal.
If using a boolean persistent variable, the value TRUE is translated to value 1, and
FALSE is translated to value 0.

[\Mode]

Data type: triggmode
Is used to specify different action modes when defining triggers.

Program execution
When running the instruction TriggEquip, the trigger condition is stored in the
specified variable for the argument TriggData.
Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed
then the following are applicable with regard to the definitions in TriggEquip:
The table describes the distance specified in the argument Distance:

The straight line distanceLinear movement

The circle arc lengthCircular movement

The approximate arc length along the path (to
obtain adequate accuracy, the distance should
not exceed one half of the arc length).

Non-linear movement

The figure shows fixed position time I/O on a corner path.

xx0500002263

The position-time related event will be generated when the start point (end point)
is passed if the specified distance from the end point (start point) is not within the
length of movement of the current instruction (TriggL...). With use of argument
EquipLag with negative time (delay), the I/O signal can be set after the end point.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 895
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.311 TriggEquip - Define a fixed position and time I/O event on the path

RobotWare - OS
Continued

More examples
More examples of how to use the instruction TriggEquip are illustrated below.

Example 1
VAR triggdata glueflow;

...

TriggEquip glueflow, 1 \Start, 0.05 \AOp:=glue, 5.3;

MoveJ p1, v1000, z50, tool1;

TriggL p2, v500, glueflow, z50, tool1;

The analog output signal glue is set to the value 5.3 when the TCP passes a
point located 1 mm after the start point p1 with compensation for equipment lag
0.05 s.

Example 2
...

TriggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the TCP
passes a point located 1 mm after the start point p2.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed SetValue argument for the specified
analog output signal AOp is out of limit.

ERR_AO_LIM

The programmed SetValue or SetDvalue argument for
the specified digital group output signal GOp is out of limit.

ERR_GO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Limitations
I/O events with distance is intended for flying points (corner path). Using stop
points will result in worse accuracy than specified below.
Regarding the accuracy for I/O events with distance and using flying points, the
following is applicable when setting a digital output at a specified distance from
the start point or end point in the instruction TriggL or TriggC:

• The accuracy specified below is valid when using a positive EquipLag that
is less than 40 ms, which is equivalent to the lag in the robot servo without
changing the system parameterEvent Preset Time. The lag can vary between
different robot types, for example it is lower for IRB 140.

• The accuracy specified below is valid when using a positive EquipLag that
is less than the configured Event Preset Time in the system parameters.

• The accuracy specified below is not valid when using a positive EquipLag
that is larger than the configuredEvent Preset Time in the system parameters.
In this case, an approximatemethod is used in which the dynamic limitations

Continues on next page
896 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.311 TriggEquip - Define a fixed position and time I/O event on the path
RobotWare - OS
Continued

of the robot are not taken into consideration. Then SingArea \Wristmust
be used to achieve an acceptable accuracy.

• The accuracy specified below is valid when using a negative EquipLag.
The typical absolute accuracy values for setting digital outputs is: ±5 ms.
The typical repeat accuracy values for setting digital outputs is: ±2 ms.

Syntax
TriggEquip

[TriggData ':='] < variable (VAR) of triggdata> ','

[Distance' :='] < expression (IN) of num>

['\' Start] | ['\' Next] ','

[EquipLag' :='] < expression (IN) of num>

['\' DOp' :=' < variable (VAR) of signaldo>]

| ['\' GOp' :=' < variable (VAR) of signalgo>]

| ['\' AOp' :=' < variable (VAR) of signalao>]

| ['\' ProcID' :=' < expression (IN) of num>] ','

[SetValue' :='] < expression (IN) of num>

| [SetDvalue' :='] < expression (IN) of dnum> ','

['\' Inhib' :=' < persistent (PERS) of bool>]

['\' InhibSetValue' :=' < persistent (PERS) of anytype>]

['\' Mode' :=' < expression (IN) of triggmode>] ';'

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Use of triggers

TriggC - Circular robot movement with events on
page 873
TriggJ - Axis-wise robot movements with events
on page 909

TriggIO - Define a fixed position or time I/O event
near a stop point on page 903

Definition of other triggs

TriggInt - Defines a position related interrupt on
page 898

TriggCheckIO - Defines I/O check at a fixed posi-
tion on page 882

Define I/O check at a fixed position

triggdata - Positioning events, trigg on page 1752Storage of trigg data

triggmode - Trigg action mode on page 1758Defining different trigg action modes

SetDO - Changes the value of a digital output sig-
nal on page 695

Set of I/O

SetGO - Changes the value of a group of digital
output signals on page 698
SetAO - Changes the value of an analog output
signal on page 686

Technical reference manual - System parametersConfiguration of Event preset time

Technical reference manual - RAPID Instructions, Functions and Data types 897
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.311 TriggEquip - Define a fixed position and time I/O event on the path

RobotWare - OS
Continued

1.312 TriggInt - Defines a position related interrupt

Usage
TriggInt is used to define conditions and actions for running an interrupt routine
at a specified position on the robot’s movement path.
The data defined is used for implementation in one or more subsequent TriggL,
TriggC, or TriggJ instructions.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
System, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggInt:

Example 1
VAR intnum intno1;

VAR triggdata trigg1;

...

PROC main()

CONNECT intno1 WITH trap1;

TriggInt trigg1, 5, intno1;

...

TriggL p1, v500, trigg1, z50, gun1;

TriggL p2, v500, trigg1, z50, gun1;

...

IDelete intno1;

The interrupt routine trap1 is run when the TCP is at a position 5mm before the
point p1 or p2 respectively.
The figure shows an example of position related interrupt.

xx0500002251

Arguments
TriggInt TriggData Distance [\Start] | [\Next] | [\Time] Interrupt

[\Inhib] [\Mode]

TriggData

Data type: triggdata
Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Continues on next page
898 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.312 TriggInt - Defines a position related interrupt
RobotWare - OS

Distance

Data type: num
Defines the position on the path where the interrupt shall be generated.
Specified as the distance inmm (positive value) from the end point of themovement
path (applicable if the argument \Start or \Time is not set).
See Program execution on page 899 for further details.

[\Start]

Data type: switch
Used when the distance for the argument Distance starts at themovement’s start
point instead of the end point.

[\Next]

Data type: switch
Used when the distance for the argument Distance is forward towards the next
programmed point. If the Distance is longer than the distance to the next fine
point, the event will be executed at the fine point.

[\Time]

Data type: switch
Used when the value specified for the argument Distance is in fact a time in
seconds (positive value) instead of a distance.
Position related interrupts in time can only be used for short times (< 0.5 s) before
the robot reaches the end point of the instruction. See the section Limitations for
more details.

Interrupt

Data type: intnum
Variable used to identify an interrupt.

[\Inhib]

Inhibit
Data type: bool
The name of a persistent variable flag for inhibiting the execution of the interrupt
routine.
If this optional argument is used and the actual value of the specified flag is TRUE
at the position-time for interrupt execution, the interrupt will not be executed.

[\Mode]

Data type: triggmode
Is used to specify different action modes when defining triggers.

Program execution
When running the instruction TriggInt, data is stored in a specified variable for
the argument TriggData and the interrupt that is specified in the variable for the
argument Interrupt is activated.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 899
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.312 TriggInt - Defines a position related interrupt

RobotWare - OS
Continued

Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed,
the following are applicable with regard to the definitions in TriggInt:
The table describes the distance specified in the argument Distance:

The straight line distanceLinear movement

The circle arc lengthCircular movement

The approximate arc length along the path (to
obtain adequate accuracy, the distance should
not exceed one half of the arc length).

Non-linear movement

The figure shows position related interrupt on a corner path.

xx0500002253

The position related interrupt will be generated when the start point (end point) is
passed if the specified distance from the end point (start point) is not within the
length of movement of the current instruction (TriggL...).
The interrupt is considered to be a safe interrupt. A safe interrupt cannot be put in
sleep with instruction ISleep. The safe interrupt event will be queued at program
stop and stepwise execution, and when starting in continuous mode again, the
interrupt will be executed. The only time a safe interrupt will be thrown is when the
interrupt queue is full. Then an error will be reported. The interrupt will not survive
program reset, e.g. PP to main.

More examples
More examples of how to use the instruction TriggInt are illustrated below.

Example 1
This example describes programming of the instructions that interact to generate
position related interrupts:

VAR intnum intno2;

VAR triggdata trigg2;

• Declaration of the variables intno2 and trigg2 (shall not be initiated).
CONNECT intno2 WITH trap2;

• Allocation of interrupt numbers that are stored in the variable intno2.
• The interrupt number is coupled to the interrupt routine trap2.
TriggInt trigg2, 0, intno2;

• The interrupt number in the variable intno2 is flagged as used.
• The interrupt is activated.
• Defined trigger conditions and interrupt numbers are stored in the variable

trigg2

Continues on next page
900 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.312 TriggInt - Defines a position related interrupt
RobotWare - OS
Continued

TriggL p1, v500, trigg2, z50, gun1;

• The robot is moved to the point p1.
• When the TCP reaches the point p1 an interrupt is generated, and the interrupt

routine trap2 is run.
TriggL p2, v500, trigg2, z50, gun1;

• The robot is moved to the point p2.
• When the TCP reaches the point p2, an interrupt is generated and the interrupt

routine trap2 is run once more.
IDelete intno2;

• The interrupt number in the variable intno2 is de-allocated.

Limitations
Interrupt events with distance (without the argument\Time) are intended for flying
points (corner path). Interrupt events with distance, using stop points results in
worse accuracy than specified below.
Interrupt events with time (with the argument\Time) are intended for stop points.
Interrupt events with time, using flying points, result in worse accuracy than
specified below. I/O events with time can only be specified from the end point of
themovement. This time cannot exceed the current braking time of the robot, which
is max. approx. 0.5 s (typical values at speed 500 mm/s for IRB2400 150 ms and
for IRB6400 250 ms). If the specified time is greater that the current braking time
then the event will be generated anyhow but not until braking is started (later than
specified). The whole of the movement time for the current movement can be
utilized during small and fast movements.
Typical absolute accuracy values for generation of interrupts +/- 5 ms. Typical
repeat accuracy values for generation of interrupts +/- 2 ms. Normally there is a
delay of 2 to 30 ms between interrupt generation and response depending on the
type of movement being performed at the time of the interrupt. (Ref. to RAPID
reference manual - RAPID overview, section Basic characteristics - Interrupts).
To obtain the best accuracy when setting an output at a fixed position along the
robot’s path, use the instructions TriggIO or TriggEquip in preference to the
instructions TriggInt with SetDO/SetGO/SetAO in an interrupt routine.

Syntax
TriggInt

[TriggData ':='] < variable (VAR) of triggdata> ','

[Distance' :='] < expression (IN) of num>

['\' Start] | ['\' Next] | ['\' Time] ','

[Interrupt' :='] < variable (VAR) of intnum>

['\' Inhib' :=' < persistent (PERS) of bool>]

['\' Mode' :=' < expression (IN) of triggmode>] ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 901
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.312 TriggInt - Defines a position related interrupt

RobotWare - OS
Continued

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Use of triggers

TriggC - Circular robot movement with events on
page 873
TriggJ - Axis-wise robot movements with events on
page 909

TriggIO - Define a fixed position or time I/O event
near a stop point on page 903

Definition of position fix I/O

TriggEquip - Define a fixed position and time I/O
event on the path on page 892

TriggCheckIO - Defines I/O check at a fixed position
on page 882

Define I/O check at a fixed position

triggdata - Positioning events, trigg on page 1752Storage of trigg data

triggmode - Trigg action mode on page 1758Defining different trigg action modes

Technical reference manual - RAPID OverviewInterrupts

902 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.312 TriggInt - Defines a position related interrupt
RobotWare - OS
Continued

1.313 TriggIO - Define a fixed position or time I/O event near a stop point

Usage
TriggIO is used to define conditions and actions for setting a digital, a group of
digital, or an analog output signal at a fixed position along the robot’s movement
path.
TriggIO (not TriggEquip) should always be used if needed for good accuracy
of the I/O settings near a stop point.
To obtain a fixed position I/O event, TriggIO compensates for the lag in the control
system (lag between robot and servo) but not for any lag in the external equipment.
For compensation of both lags use TriggEquip.
The data defined is used for implementation in one or more subsequent TriggL,
TriggC, or TriggJ instructions.
This instruction can only be used in the main T_ROB1 task or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggIO:
See also More examples on page 906.

Example 1
VAR triggdata gunon;

...

TriggIO gunon, 0.2\Time\DOp:=gun, 1;

TriggL p1, v500, gunon, fine, gun1;

The digital output signal gun is set to the value 1 when the TCP is 0,2 seconds
before the point p1.
The figure shows an example of fixed position I/O event.

xx0500002247

Arguments
TriggIO TriggData Distance [\Start] | [\Time] [\DOp] | [\GOp]|

[\AOp] | [\ProcID] SetValue | SetDvalue [\DODelay] [\Inhib]
[\InhibSetValue] [\Mode]

TriggData

Data type: triggdata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 903
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.313 TriggIO - Define a fixed position or time I/O event near a stop point

RobotWare - OS

Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Distance

Data type: num
Defines the position on the path where the I/O event shall occur.
Specified as the distance inmm (positive value) from the end point of themovement
path (applicable if the argument \Start or \Time is not set).
See the sections Program execution on page 906, and Limitations on page 907 for
further details.

[\Start]

Data type: switch
Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Time]

Data type: switch
Used when the value specified for the argument Distance is in fact a time in
seconds (positive value) instead of a distance.
Fixed position I/O in time can only be used for short times (< 0.5 s) before the robot
reaches the end point of the instruction. See the section Limitations for more details.

[\DOp]

Digital Output
Data type: signaldo
The name of the signal when a digital output signal shall be changed.

[\GOp]

Group Output
Data type: signalgo
The name of the signal when a group of digital output signals shall be changed.

[\AOp]

Analog Output
Data type: signalao
The name of the signal when a analog output signal shall be changed.

[\ProcID]

Process Identity
Data type: num
Not implemented for customer use.
(The identity of the IPM process to receive the event. The selector is specified in
the argument SetValue.)

SetValue

Data type: num

Continues on next page
904 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.313 TriggIO - Define a fixed position or time I/O event near a stop point
RobotWare - OS
Continued

The desired value of the signal (within the allowed range for the current signal). If
the signal is a digital signal, it must be an integer value. If the signal is a digital
group signal, the permitted value is dependent on the number of signals in the
group. Max value that can be used in the SetValue argument is 8388608, and that
is the value a 23 bit digital group signal can have as maximum value (see ranges
for num).

SetDvalue

Data type: dnum
The desired value of the signal (within the allowed range for the current signal). If
the signal is a digital signal, it must be an integer value. If the signal is a digital
group signal, the permitted value is dependent on the number of signals in the
group. The maximal amout of signal bits a digital group signal can have is 32. With
a dnum variable it is possible to cover the value range 0-4294967295, which is the
value range a 32 bits digital signal can have.

[\DODelay]

Digital Output Delay
Data type: num
Time delay in seconds (positive value) for a digital, group, or analog output signal.
Only used to delay setting of output signals after the robot has reached the specified
position. There will be no delay if the argument is omitted.
The delay is not synchronized with the movement.

[\Inhib]

Inhibit
Data type: bool
The name of a persistent variable flag for inhibiting the setting of the signal at
runtime.
If this optional argument is used and the actual value of the specified flag is TRUE
at the position-time for setting of the signal then the specified signal (DOp, GOp or
AOp) will be set to 0 instead of a specified value.

[\InhibSetValue]

InhibitSetValue
Data type: bool, num or dnum
The name of a persistent variable of the data type bool, num or dnum or any alias
of those three base data types.
This optional argument can only be used together with optional argument Inhib.
If this optional argument is used and the value of the persistent variable flag used
in optional argument Inhib is TRUE at the position-time for setting the signal, the
value of the persistent variable used in optional argument InhibSetValue is read
and the value is used for setting of the DOp, GOp or AOp signal.
If using a boolean persistent variable, the value TRUE is translated to value 1, and
FALSE is translated to value 0.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 905
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.313 TriggIO - Define a fixed position or time I/O event near a stop point

RobotWare - OS
Continued

[\Mode]

Data type: triggmode
Is used to specify different action modes when defining triggers.

Program execution
When running the instruction TriggIO, the trigger condition is stored in a specified
variable in the argument TriggData.
Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed,
the following are applicable with regard to the definitions in TriggIO:
The following table describes the distance specified in the argument Distance:

The straight line distanceLinear movement

The circle arc lengthCircular movement

The approximate arc length along the path (to
obtain adequate accuracy, the distance should
not exceed one half of the arc length).

Non-linear movement

The figure shows fixed position I/O on a corner path.

xx0500002248

The fixed position I/O will be generated when the start point (end point) is passed
if the specified distance from the end point (start point) is not within the length of
movement of the current instruction (Trigg...).

More examples
More examples of how to use the instruction TriggIO are illustrated below.

Example 1
VAR triggdata glueflow;

TriggIO glueflow, 1 \Start \AOp:=glue, 5.3;

MoveJ p1, v1000, z50, tool1;

TriggL p2, v500, glueflow, z50, tool1;

The analog output signal glue is set to the value 5.3 when the work point (TCP)
passes a point located 1 mm after the start point p1.

Example 2
...

TriggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the work
point (TCP) passes a point located 1 mm after the start point p2.

Continues on next page
906 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.313 TriggIO - Define a fixed position or time I/O event near a stop point
RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed SetValue argument for the specified
analog output signal AOp is out of limit.

ERR_AO_LIM

The programmed SetValue or SetDvalue argument for
the specified digital group output signal GOp is out of limit.

ERR_GO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Limitations
I/O events with distance (without the argument \Time) is intended for flying points
(corner path). I/O events with distance=0, using stop points, will delay the trigg
until the robot has reached the point with accuracy +/-24 ms.
I/O events with time (with the argument \Time) are intended for stop points. I/O
events with time, using flying points result in worse accuracy than specified below.
I/O events with time can only be specified from the end point of the movement.
This time cannot exceed the current braking time of the robot, which is max. approx.
0.5 s (typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250
ms). If the specified time is greater than the current braking time then the event
will be generated anyway but not until braking is started (later than specified). The
whole of the movement time for the current movement can be utilized during small
and fast movements.
Typical absolute accuracy values for set of digital outputs +/- 5 ms. Typical repeat
accuracy values for set of digital outputs +/- 2 ms.

Syntax
TriggIO

[TriggData ':='] < variable (VAR) of triggdata> ','

[Distance' :='] < expression (IN) of num>

['\' Start] | ['\' Time]

['\' DOp' :=' < variable (VAR) of signaldo>]

| ['\' GOp' :=' < variable (VAR) of signalgo>]

| ['\' AOp' :=' < variable (VAR) of signalao>]

| ['\' ProcID' :=' < expression (IN) of num>] ','

[SetValue' :='] < expression (IN) of num>

| [SetDvalue' :='] < expression (IN) of dnum>

['\' DODelay' :=' < expression (IN) of num>]

['\' Inhib' :=' < persistent (PERS) of bool>]

['\' InhibSetValue' :=' < persistent (PERS) of anytype>]

['\' Mode' :=' < expression (IN) of triggmode>] ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 907
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.313 TriggIO - Define a fixed position or time I/O event near a stop point

RobotWare - OS
Continued

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Use of triggers

TriggC - Circular robot movement with events on
page 873
TriggJ - Axis-wise robot movements with events
on page 909

TriggEquip - Define a fixed position and time I/O
event on the path on page 892

Definition of position-time I/O event

TriggInt - Defines a position related interrupt on
page 898

Definition of position related interrupts

triggdata - Positioning events, trigg on page1752Storage of trigg data

triggmode - Trigg action mode on page 1758Defining different trigg action modes

TriggCheckIO - Defines I/O check at a fixed posi-
tion on page 882

Define I/O check at a fixed position

SetDO - Changes the value of a digital output
signal on page 695

Set of I/O

SetGO - Changes the value of a group of digital
output signals on page 698
SetAO - Changes the value of an analog output
signal on page 686

908 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.313 TriggIO - Define a fixed position or time I/O event near a stop point
RobotWare - OS
Continued

1.314 TriggJ - Axis-wise robot movements with events

Usage
TriggJ (TriggJoint) is used to set output signals and/or run interrupt routines at
roughly fixed positions at the same time that the robot is moving quickly from one
point to another when that movement does not have be in a straight line.
One or more (max. 25) events can be defined using the instructions TriggIO,
TriggEquip, TriggInt, TriggCheckIO , TriggSpeed, or TriggRampAO and
afterwards these definitions are referred to in the instruction TriggJ.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggJ:
See also More examples on page 913.

Example 1
VAR triggdata gunon;

...

TriggIO gunon, 0 \Start \DOp:=gun, 1;

MoveL p1, v500, z50, gun1;

TriggJ p2, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint of
the corner path of the point p1.
The figure shows an example of fixed position I/O event.

xx0500002272

Arguments
TriggJ [\Conc] ToPoint [\ID] Speed [\T] Trigg_1 | TriggArray [\T2

] [\T3] [\T4] [\T5] [\T6] [\T7] [\T8] Zone [\Inpos] Tool
[\WObj] [\TLoad]

[\Conc]

Concurrent
Data type:switch
Subsequent instructions are executed while the robot is moving. The argument
can be used to avoid unwanted stops caused by overloaded CPUwhen using fly-by
points. This is useful when the programmed points are very close together at high
speeds.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 909
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.314 TriggJ - Axis-wise robot movements with events

RobotWare - OS

The argument is also useful when, for example, communicating with external
equipment and synchronization between the external equipment and robot
movement is not required. It can also be used to tune the execution of the robot
path, to avoid warning 50024 Corner path failure or error 50082 Deceleration limit.
Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.
If this argument is omitted then the subsequent instruction is executed after the
robot has reached the specified stop point or 100 ms before the specified zone.
This argument cannot be used in coordinated synchronized movement in a
MultiMove System.

ToPoint

Data type:robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the tool reorientation, and the external axes.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Trigg_1

Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO
, TriggSpeed or TriggRampAO.

TriggArray

Trigg Data Array Parameter
Data type: triggdata

Continues on next page
910 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.314 TriggJ - Axis-wise robot movements with events
RobotWare - OS
Continued

Array variable that refers to trigger conditions and trigger activity defined earlier
in the program using the instructions TriggIO, TriggEquip, TriggInt,
TriggSpeed, TriggCheckIO or TriggRampAO.
The limitation is 25 elements in the array and 1 to 25 defined trigger conditions
must be defined.
It is not possible to use the optional arguments T2, T3, T4, T5, T6, T7 or T8 at the
same time as the TriggArray argument is used.

[\T2]

Trigg 2
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO
, TriggSpeed or TriggRampAO.

[\T3]

Trigg 3
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO
, TriggSpeed or TriggRampAO.

[\T4]

Trigg 4
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO
, TriggSpeed or TriggRampAO.

[\T5]

Trigg 5
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

[\T6]

Trigg 6
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

[\T7]

Trigg 7
Data type: triggdata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 911
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.314 TriggJ - Axis-wise robot movements with events

RobotWare - OS
Continued

Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

[\T8]

Trigg 8
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
programusing the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO,
TriggSpeed or TriggRampAO.

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

In position
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified for a joint movement relative
to the work object to be performed.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.

Continues on next page
912 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.314 TriggJ - Axis-wise robot movements with events
RobotWare - OS
Continued

To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveJ for information about joint movement.
As the trigger conditions are fulfilled when the robot is positioned closer and closer
to the end point, the defined trigger activities are carried out. The trigger conditions
are fulfilled either at a certain distance before the end point of the instruction, or
at a certain distance after the start point of the instruction, or at a certain point in
time (limited to a short time) before the end point of the instruction.
During the stepping execution forward, the I/O activities are carried out but the
interrupt routines are not run. During stepping the execution backwards, no trigger
activities at all are carried out.

More examples
More examples of how to use the instruction TriggJ are illustrated below.

Example 1
VAR intnum intno1;

VAR triggdata trigg1;

...

PROC main()

CONNECT intno1 WITH trap1;

TriggInt trigg1, 0.1 \Time, intno1;

...

TriggJ p1, v500, trigg1, fine, gun1;

TriggJ p2, v500, trigg1, fine, gun1;

...

IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position 0.1 s before
the stop point p1 or p2 respectively.

Example 2
VAR num Distance:=0;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 913
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.314 TriggJ - Axis-wise robot movements with events

RobotWare - OS
Continued

VAR triggdata trigg_array{25};

VAR signaldo myaliassignaldo;

VAR string signalname;

...

PROC main()

...

FOR i FROM 1 TO 25 DO

signalname:="do";

signalname:=signalname+ValToStr(i);

AliasIO signalname, myaliassignaldo;

TriggEquip trigg_array{i}, Distance \Start, 0
\DOp:=myaliassignaldo, SetValue:=1;

Distance:=Distance+10;

ENDFOR

TriggJ p1, v500, trigg_array, z30, tool2;

MoveJ p2, v500, z30, tool2;

...

The digital output signals do1 to do25 is set during the movement to p1.The
distance between the signal settings is 10 mm.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed ScaleValue argument for the specified
analog output signal AOp in some of the connected
TriggSpeed instructions result in out of limit for the analog
signal together with the programmed Speed in this instruc-
tion.

ERR_AO_LIM

The programmed DipLag argument in some of the connec-
ted TriggSpeed instructions is too big in relation to the
used Event Preset Time in System Parameters.

ERR_DIPLAG_LIM

There is no contact with the I/O device when entering in-
struction and the used triggdata depends on a running I/O
device, i.e. a signal is used in the triggdata.

ERR_NORUNUNIT

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Limitations
If the current start point deviates from the usual so that the total positioning length
of the instruction TriggJ is shorter than usual (e.g. at the start of TriggJ with the
robot position at the end point), it may happen that several or all of the trigger
conditions are fulfilled immediately and at the same position. In such cases, the
sequence in which the trigger activities are carried will be undefined. The program
logic in the user program may not be based on a normal sequence of trigger
activities for an “incomplete movement”.

Syntax
TriggJ

['\' Conc ',']

Continues on next page
914 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.314 TriggJ - Axis-wise robot movements with events
RobotWare - OS
Continued

[ToPoint' :='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >]','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >]','

[Trigg_1 ':='] < variable (VAR) of triggdata > |

[TriggArray ':='] < array variable {*} (VAR) of triggdata >

['\' T2 ':=' < variable (VAR) of triggdata >]

['\' T3 ':=' < variable (VAR) of triggdata >]

['\' T4 ':=' < variable (VAR) of triggdata >]

['\' T5 ':=' < variable (VAR) of triggdata >]

['\' T6 ':=' < variable (VAR) of triggdata >]

['\' T7 ':=' < variable (VAR) of triggdata >]

['\' T8 ':=' < variable (VAR) of triggdata >] ','

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos ':=' < expression (IN) of stoppointdata >]','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj' :='< persistent (PERS) of wobjdata >]

['\' TLoad' :=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Linear movement with triggers

TriggC - Circular robot movement with events on
page 873

Circular movement with triggers

TriggIO - Define a fixed position or time I/O event near
a stop point on page 903

Definition of triggers

TriggEquip - Define a fixed position and time I/O event
on the path on page 892
TriggRampAO - Define a fixed position ramp AO event
on the path on page 940
TriggInt - Defines a position related interrupt on
page 898
TriggCheckIO - Defines I/O check at a fixed position
on page 882

triggdata - Positioning events, trigg on page 1752Handling triggdata
TriggDataReset - Reset the content in a triggdata
variable on page 890
TriggDataCopy - Copy the content in a triggdata vari-
able on page 888
TriggDataValid - Check if the content in a triggdata
variable is valid on page 1493

MoveJ - Moves the robot by joint movement on
page 433

Moves the robot by joint movement

Technical reference manual - RAPID OverviewJoint movement

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

stoppointdata - Stop point data on page 1722Definition of stop point data

tooldata - Tool data on page 1743Definition of tools

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 915
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.314 TriggJ - Axis-wise robot movements with events

RobotWare - OS
Continued

SeeFor information about

wobjdata - Work object data on page 1770Definition of work object

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

MoveL - Moves the robot linearly on page 457Example of how to use TLoad, Total
Load.

GripLoad - Defines the payload for a robot on page266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification
service routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulatedmode
without payload.
(Topic I/O, Type System Input, Ac-
tion values, SimMode)

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General
RAPID, Action values, ModalPay-
LoadMode)

916 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.314 TriggJ - Axis-wise robot movements with events
RobotWare - OS
Continued

1.315 TriggL - Linear robot movements with events

Usage
TriggL (Trigg Linear) is used to set output signals and/or run interrupt routines
at fixed positions at the same time that the robot is making a linear movement.
One or more (max. 25) events can be defined using the instructions TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO, or TriggRampAO.
Afterwards these definitions are referred to in the instruction TriggL.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggL:
See also More examples on page 921.

Example 1
VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, 1;

MoveJ p1, v500, z50, gun1;

TriggL p2, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint of
the corner path of the point p1.
The figure shows an example of fixed position I/O event.

xx0500002291

Arguments
TriggL [\Conc] ToPoint [\ID] Speed [\T] Trigg_1 | TriggArray [\T2]

[\T3] [\T4] [\T5] [\T6] [\T7] [\T8] Zone [\Inpos] Tool [\WObj]
[\Corr] [\TLoad]

[\Conc]

Concurrent
Data type:switch
Subsequent instructions are executed while the robot is moving. The argument
can be used to avoid unwanted stops, caused by overloaded CPU, when using
fly-by points. This is useful when the programmed points are very close together
at high speeds.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 917
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.315 TriggL - Linear robot movements with events

RobotWare - OS

The argument is also useful when, for example, communicating with external
equipment and synchronization between the external equipment and robot
movement is not required. It can also be used to tune the execution of the robot
path, to avoid warning 50024 Corner path failure or error 50082 Deceleration limit.
Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.
If this argument is omitted and the ToPoint is not a stop point then the subsequent
instruction is executed some time before the robot has reached the programmed
zone.
This argument cannot be used in a coordinated synchronized movement in a
MultiMove System.

ToPoint

Data type:robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the external axes, and of the tool reorientation.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Trigg_1

Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed,
TriggCheckIO or TriggRampAO.

TriggArray

Trigg Data Array Parameter
Data type: triggdata

Continues on next page
918 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.315 TriggL - Linear robot movements with events
RobotWare - OS
Continued

Array variable that refers to trigger conditions and trigger activity defined earlier
in the program using the instructions TriggIO, TriggEquip, TriggInt,
TriggSpeed, TriggCheckIO or TriggRampAO.
The limitation is 25 elements in the array and 1 to 25 defined trigger conditions
must be defined.
It is not possible to use the optional arguments T2, T3, T4, T5, T6, T7 or T8 at the
same time as the TriggArray argument is used.

[\T2]

Trigg 2
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed,
TriggCheckIO or TriggRampAO.

[\T3]

Trigg 3
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed,
TriggCheckIO or TriggRampAO.

[\T4]

Trigg 4
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed,
TriggCheckIO or TriggRampAO.

[\T5]

Trigg 5
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed,
TriggCheckIO or TriggRampAO.

[\T6]

Trigg 6
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed,
TriggCheckIO or TriggRampAO.

[\T7]

Trigg 7
Data type: triggdata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 919
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.315 TriggL - Linear robot movements with events

RobotWare - OS
Continued

Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed,
TriggCheckIO or TriggRampAO.

[\T8]

Trigg 8
Data type: triggdata
Variable that refers to trigger conditions and trigger activity defined earlier in the
program using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed,
TriggCheckIO or TriggRampAO.

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

In position
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified for a linear movement relative
to the work object to be performed.

[\Corr]

Correction
Data type: switch
Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position if this argument is present.
The RobotWare option Path Offset is required when using this argument.

[\TLoad]

Total load

Continues on next page
920 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.315 TriggL - Linear robot movements with events
RobotWare - OS
Continued

Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveL for information about linear movement.
As the trigger conditions are fulfilled when the robot is positioned closer and closer
to the end point, the defined trigger activities are carried out. The trigger conditions
are fulfilled either at a certain distance before the end point of the instruction, or
at a certain distance after the start point of the instruction, or at a certain point in
time (limited to a short time) before the end point of the instruction.
During stepping the execution forward, the I/O activities are carried out but the
interrupt routines are not run. During stepping the execution backwards, no trigger
activities at all are carried out.

More examples
More examples of how to use the instruction TriggL are illustrated below.

Example 1
VAR intnum intno1;

VAR triggdata trigg1;

...

PROC main()

CONNECT intno1 WITH trap1;

TriggInt trigg1, 0.1 \Time, intno1;

...

TriggL p1, v500, trigg1, fine, gun1;

TriggL p2, v500, trigg1, fine, gun1;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 921
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.315 TriggL - Linear robot movements with events

RobotWare - OS
Continued

...

IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position 0.1 s before
the point p1 or p2 respectively.

Example 2
VAR num Distance:=0;

VAR triggdata trigg_array{25};

VAR signaldo myaliassignaldo;

VAR string signalname;

...

PROC main()

...

FOR i FROM 1 TO 25 DO

signalname:="do";

signalname:=signalname+ValToStr(i);

AliasIO signalname, myaliassignaldo;

TriggEquip trigg_array{i}, Distance \Start, 0
\DOp:=myaliassignaldo, SetValue:=1;

Distance:=Distance+10;

ENDFOR

TriggL p1, v500, trigg_array, z30, tool2;

MoveL p2, v500, z30, tool2;

...

The digital output signals do1 to do25 is set during the movement to p1.The
distance between the signal settings is 10 mm.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed ScaleValue argument for the specified
analog output signal AOp in some of the connected
TriggSpeed instructions result in out of limit for the analog
signal together with the programmed Speed in this instruc-
tion.

ERR_AO_LIM

The programmed DipLag argument in some of the connec-
ted TriggSpeed instructions is too big in relation to the
used Event Preset Time in System Parameters.

ERR_DIPLAG_LIM

There is no contact with the I/O device when entering in-
struction and the used triggdata depends on a running I/O
device, i.e. a signal is used in the triggdata.

ERR_NORUNUNIT

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Continues on next page
922 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.315 TriggL - Linear robot movements with events
RobotWare - OS
Continued

Limitations
If the current start point deviates from the usual so that the total positioning length
of the instruction TriggL is shorter than usual (e.g. at the start of TriggL with the
robot position at the end point) it may happen that several or all of the trigger
conditions are fulfilled immediately and at the same position. In such cases, the
sequence in which the trigger activities are carried out will be undefined. The
program logic in the user program may not be based on a normal sequence of
trigger activities for an “incomplete movement”.

Syntax
TriggL

['\' Conc ',']

[ToPoint' :='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >]','

[Trigg_1 ':='] < variable (VAR) of triggdata > |

[TriggArray ':='] < array variable {*} (VAR) of triggdata >

['\' T2 ':=' < variable (VAR) of triggdata >]

['\' T3 ':=' < variable (VAR) of triggdata >]

['\' T4 ':=' < variable (VAR) of triggdata >]

['\' T5 ':=' < variable (VAR) of triggdata >]

['\' T6 ':=' < variable (VAR) of triggdata >]

['\' T7 ':=' < variable (VAR) of triggdata >]

['\' T8 ':=' < variable (VAR) of triggdata >] ','

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos' :=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj' :=' < persistent (PERS) of wobjdata >]

['\' Corr]

['\' TLoad' :=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

TriggC - Circular robot movement with events on
page 873

Circular movement with triggers

TriggJ - Axis-wise robot movements with events on
page 909

Joint movement with triggers

TriggIO - Define a fixed position or time I/O event near
a stop point on page 903

Definition of triggers

TriggEquip - Define a fixed position and time I/O event
on the path on page 892
TriggInt - Defines a position related interrupt on page898
TriggCheckIO - Defines I/O check at a fixed position
on page 882
TriggRampAO - Define a fixed position ramp AO event
on the path on page 940
TriggSpeed - Defines TCP speed proportional analog
output with fixed position-time scale event on page947

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 923
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.315 TriggL - Linear robot movements with events

RobotWare - OS
Continued

SeeFor information about

triggdata - Positioning events, trigg on page 1752Handling triggdata
TriggDataReset - Reset the content in a triggdata vari-
able on page 890
TriggDataCopy - Copy the content in a triggdata vari-
able on page 888
TriggDataValid - Check if the content in a triggdata
variable is valid on page 1493

CorrWrite -Writes to a correction generator on page168Writes to a corrections entry

Technical reference manual - RAPID OverviewLinear movement

loaddata - Load data on page 1650Definition of load

speeddata - Speed data on page 1718Definition of velocity

stoppointdata - Stop point data on page 1722Definition of stop point data

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

zonedata - Zone data on page 1778Definition of zone data

Technical reference manual - RAPID OverviewMotion in general

MoveL - Moves the robot linearly on page 457Example of how to use TLoad,
Total Load.

GripLoad - Defines the payload for a robot on page266Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification
service routine

Technical reference manual - System parametersSystem input signal SimMode for
running the robot in simulated
mode without payload.
(Topic I/O, Type System Input, Ac-
tion values, SimMode)

Technical reference manual - System parametersSystem parameterModalPayLoad-
Mode for activating and deactivat-
ing payload.
(Topic Controller, Type General
RAPID, Action values, ModalPay-
LoadMode)

Application manual - Controller software IRC5Path Offset

924 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.315 TriggL - Linear robot movements with events
RobotWare - OS
Continued

1.316 TriggJIOs - Joint robot movements with I/O events

Usage
TriggJIOs (Trigg Joint I/O) is used to set output signals at fixed positions at the
same time that the robot is making a joint movement.
The TriggJIOs instruction is optimized to give good accuracy when using
movements with zones (compare with TriggEquip/TriggL).
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggJIOs:
See also More examples on page 936.

Example 1
VAR triggios gunon{1};

gunon{1}.used:=TRUE;

gunon{1}.distance:=3;

gunon{1}.start:=TRUE;

gunon{1}.signalname:="gun";

gunon{1}.equiplag:=0;

gunon{1}.setvalue:=1;

MoveJ p1, v500, z50, gun1;

TriggJIOs p2, v500, \TriggData1:=gunon, z50, gun1;

MoveL p3, v500, z50, gun1;

The signal gun is set when the TCP is 3 mm after point p1.
The RAPID code and figure shows an example of a fixed position I/O event.

TriggJIOs p2, v500, \TriggData1:=gunon, z50, gun1;

p1
p2

A

xx1500000304

A The output signal gun is set to 1 when the robot’s TCP is here.

Arguments
TriggJIOs [\Conc] ToPoint [\ID] Speed [\T] [\TriggData1]

[\TriggData2] [\TriggData3] Zone [\Inpos] Tool [\WObj]
[\TLoad]

[\Conc]

Concurrent
Data type:switch

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 925
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.316 TriggJIOs - Joint robot movements with I/O events

RobotWare - OS

Subsequent instructions are executed while the robot is moving. The argument
can be used to avoid unwanted stops, caused by overloaded CPU, when using
fly-by points. This is useful when the programmed points are very close together
at high speeds.
The argument is also useful when, for example, communicating with external
equipment and synchronization between the external equipment and robot
movement is not required. It can also be used to tune the execution of the robot
path, to avoid warning 50024 Corner path failure or error 50082 Deceleration limit.
Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.
If this argument is omitted and the ToPoint is not a stop point then the subsequent
instruction is executed some time before the robot has reached the programmed
zone.
This argument cannot be used in a coordinated synchronized movement in a
MultiMove System.

ToPoint

Data type:robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the external axes, and of the tool reorientation.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

[\TriggData1]

Data type: array of triggios
Variable (array) that refers to trigger conditions and trigger activity. When using
this argument, it is possible to set analog output signals, digital output signals and

Continues on next page
926 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.316 TriggJIOs - Joint robot movements with I/O events
RobotWare - OS
Continued

digital group output signals. If using a digital group output signal there is a limitation
on 23 signals in the group.

[\TriggData2]

Data type: array of triggstrgo
Variable (array) that refers to trigger conditions and trigger activity. When using
this argument, it is possible to set digital group output signals that consists of 32
signals in the group and can have amaximum set value of 4294967295. Only digital
group output signals can be used.

[\TriggData3]

Data type: array of triggiosdnum
Variable (array) that refers to trigger conditions and trigger activity. When using
this argument, it is possible to set analog output signals, digital output signals and
digital group output signals that consists of 32 signals in the group and can have
a maximum set value of 4294967295.

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

In position
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified for a linear movement relative
to the work object to be performed.

[\TLoad]

Total load
Data type: loaddata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 927
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.316 TriggJIOs - Joint robot movements with I/O events

RobotWare - OS
Continued

The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveJ for information about joint movement, MoveJ - Moves
the robot by joint movement on page 433.
With the instruction TriggJIOs it is possible to setup 1-50 different trigger activities
on I/O signals along a path from A to B. The signals that can be used are digital
output signals, digital group output signals and analog output signals. The trigger
conditions are fulfilled either at a certain distance before the end point of the
instruction, or at a certain distance after the start point of the instruction.
The instruction requires use of either TriggData1, TriggData2, or TriggData3
argument or all three of them. Use of any of the triggs is optional though. To inhibit
use of a trigg the component used can be set to FALSE in the array element of
the data types triggios/triggstrgo/triggiosdnum. If no array element is in
use, then the TriggJIOs instruction will behave as a MoveJ, and no I/O activities
will be carried out.
If stepping the program forward, the I/O activities are carried out. During stepping
the execution backwards, no I/O activities at all are carried out.
If setting component EquipLag in TriggData1, TriggData2 or TriggData3
argument to a negative time (delay), the I/O signal can be set after the destination
point (ToPoint).
If using the argument TriggData2 or TriggData3 it is possible to use values up
to 4294967295, which is the maximum value a group of digital signals can have
(32 signals in a group signal is max for the system).

Continues on next page
928 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.316 TriggJIOs - Joint robot movements with I/O events
RobotWare - OS
Continued

More examples
More examples of how to use the instruction TriggJIOs are illustrated below.

Example 1
VAR triggios mytriggios{3}:= [[TRUE, 3, TRUE, 0, "go1", 55, 0],

[TRUE, 15, TRUE, 0, "ao1", 10, 0], [TRUE, 3, FALSE, 0, "do1",
1, 0]];

...

MoveL p1, v500, z50, gun1;

TriggJIOs p2, v500, \TriggData1:=mytriggios, z50, gun1;

MoveL p3, v500, z50, gun1;

The digital group output signal go1 will be set to value 55 3 mm from p1. Analog
output signal will be set to value 10 15 mm from p1. Digital output signal do1 will
be set 3 mm from ToPoint p2.

Example 2
VAR triggios mytriggios{3}:= [[TRUE, 3, TRUE, 0, "go1", 55, 0],

[TRUE, 15, TRUE, 0, "ao1", 10, 0], [TRUE, 3, FALSE, 0, "do1",
1, 0]];

VAR triggstrgo mytriggstrgo{3}:= [[TRUE, 3, TRUE, 0, "go2", "1",
0], [TRUE, 15, TRUE, 0, "go2", "800000", 0], [TRUE, 4, FALSE,
0, "go2", "4294967295", 0]];

VAR triggiosdnum mytriggiosdnum{3}:= [[TRUE, 10, TRUE, 0, "go3",
4294967295, 0], [TRUE, 10, TRUE, 0, "ao2", 5, 0], [TRUE, 10,
TRUE, 0, "do2", 1, 0]];

...

MoveL p1, v500, z50, gun1;

TriggJIOs p2, v500, \TriggData1:=mytriggios \TriggData2:=
mytriggstrgo \TriggData3:=mytriggiosdnum, z50, gun1;

MoveL p3, v500, z50, gun1;

The digital group output signal go1 will be set to value 55 3 mm from p1. Analog
output signal ao1 will be set to value 10 15 mm from p1. Digital output signal do1
will be set 3 mm from ToPointp2. Those position events is setup by variable
mytriggios. The variable mytriggstrgo sets up position events to occur 3 and
15 mm from p1. First the signal go2 is set to 1, then it is set to 800000. The signal
will be set to value 4294967295 4 mm from the ToPoint p2. This is the maximum
value for a 32 bits digital output signal. The variable mytriggiosdnum sets up
three position events to occur 10 mm from p1. First the signal go3 is set to
4294967295, then ao2 is set to 5 and last do2 is set to 1.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

There is no contact with the I/O device.ERR_NORUNUNIT

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 929
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.316 TriggJIOs - Joint robot movements with I/O events

RobotWare - OS
Continued

Cause of errorName

The programmed setvalue argument for the specified di-
gital group output signal signalname is outside limits.
(Declared in TriggData1, TriggData2 or TriggData3).

ERR_GO_LIM

The programmed setvalue argument for the specified
analog output signal signalname is outside limits. (De-
clared in TriggData1 or TriggData3).

ERR_AO_LIM

Limitations
If the current start point deviates from the usual so that the total positioning length
of the instruction TriggJIOs is shorter than usual (e.g. at the start of TriggJIOs
with the robot position at the end point) it may happen that several or all of the
trigger conditions are fulfilled immediately and at the same position. In such cases,
the sequence in which the trigger activities are carried out will be undefined. The
program logic in the user program may not be based on a normal sequence of
trigger activities for an “incomplete movement”.
The limitation of the number of triggs in the instruction TriggJIOs is 50 for each
programmed instruction. If triggs happen at a closer distance, the system might
not handle it. That depends on how the movement is done, TCP speed used and
how close the triggs are programmed. Those limitations exists, but it is hard to
predict when those problems will occur.

Limitations regarding accuracy
I/O events with distance is intended for flying points (corner path). Using stop
points will result in worse accuracy than specified below.
Regarding the accuracy for I/O events with distance and using flying points, the
following is applicable when setting a digital output at a specified distance from
the start point or end point in the instruction TriggLIOs or TriggCIOs:

• The accuracy specified below is valid when using a positive equiplag I that
is less than 40 ms, which is equivalent to the lag in the robot servo, without
changing the system parameterEvent Preset Time. The lag can vary between
different robot types, for example it is lower for IRB 140.

• The accuracy specified below is valid when using a positive equiplag that
is less than the configured Event Preset Time in the system parameters.

• The accuracy specified below is not valid when using a positive equiplag
that is larger than the configuredEvent Preset Time in the system parameters.
In this case, an approximatemethod is used in which the dynamic limitations
of the robot are not taken into consideration. Then SingArea \Wristmust
be used to achieve an acceptable accuracy.

• The accuracy specified below is valid when using a negative equiplag.
I equiplag is a dataobject of data type triggios

The typical absolute accuracy values for setting digital outputs is: ±5 ms.
The typical repeat accuracy values for setting digital outputs is: ±2 ms.

Syntax
TriggJIOs

['\' Conc ',']

Continues on next page
930 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.316 TriggJIOs - Joint robot movements with I/O events
RobotWare - OS
Continued

[ToPoint ':='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >] ','

['\' TriggData1 ':='] < array {*} (VAR) of triggios >

['\' TriggData2 ':='] < array {*} (VAR) of triggstrgo >

['\' TriggData3 ':='] < array {*} (VAR) of triggiosdnum >

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos ':=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj ':=' < persistent (PERS) of wobjdata >]

['\' TLoad ':=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

TriggLIOs - Linear robot movements with I/O
events on page 932

Linear robot movements with I/O events

triggios - Positioningevents, trigg onpage1753Storage of trigg conditions and trigger activity

triggstrgo - Positioning events, trigg on
page 1761

Storage of trigg conditions and trigger activity
for digital signal group consisting of 32 sig-
nals

triggiosdnum - Positioning events, trigg on
page 1756

Storage of trigg conditions and trigger activity

Technical reference manual - System para-
meters

Allocation of event objects

Technical reference manual - RAPID Over-
view

Linear movement

Technical reference manual - RAPID Over-
view

Motion in general

loaddata - Load data on page 1650Definition of load

MoveL - Moves the robot linearly on page457Example of how to use TLoad, Total Load.

GripLoad - Defines the payload for a robot
on page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification service
routine

Technical reference manual - System para-
meters

System input signal SimMode for running the
robot in simulated mode without payload.
(Topic I/O, Type System Input, Action values,
SimMode)

Technical reference manual - System para-
meters

System parameter ModalPayLoadMode for
activating and deactivating payload.
(Topic Controller, Type General RAPID, Ac-
tion values, ModalPayLoadMode)

Applicationmanual - Controller software IRC5Path Offset

Technical reference manual - RAPID Instructions, Functions and Data types 931
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.316 TriggJIOs - Joint robot movements with I/O events

RobotWare - OS
Continued

1.317 TriggLIOs - Linear robot movements with I/O events

Usage
TriggLIOs (Trigg Linear I/O) is used to set output signals at fixed positions at
the same time that the robot is making a linear movement.
The TriggLIOs instruction is optimized to give good accuracy when using
movements with zones (compare with TriggEquip/TriggL).
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggLIOs:
See also More examples on page 936.

Example 1
VAR triggios gunon{1};

gunon{1}.used:=TRUE;

gunon{1}.distance:=3;

gunon{1}.start:=TRUE;

gunon{1}.signalname:="gun";

gunon{1}.equiplag:=0;

gunon{1}.setvalue:=1;

MoveJ p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData1:=gunon, z50, gun1;

MoveL p3, v500, z50, gun1;

The signal gun is set when the TCP is 3 mm after point p1.
The figure shows an example of a fixed position I/O event.

en0800000157

Arguments
TriggLIOs [\Conc] ToPoint [\ID] Speed [\T] [\TriggData1]

[\TriggData2] [\TriggData3] Zone [\Inpos] Tool [\WObj] [\Corr]
[\TLoad]

[\Conc]

Concurrent
Data type:switch

Continues on next page
932 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.317 TriggLIOs - Linear robot movements with I/O events
RobotWare - OS

Subsequent instructions are executed while the robot is moving. The argument
can be used to avoid unwanted stops, caused by overloaded CPU, when using
fly-by points. This is useful when the programmed points are very close together
at high speeds.
The argument is also useful when, for example, communicating with external
equipment and synchronization between the external equipment and robot
movement is not required. It can also be used to tune the execution of the robot
path, to avoid warning 50024 Corner path failure or error 50082 Deceleration limit.
Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.
If this argument is omitted and the ToPoint is not a stop point then the subsequent
instruction is executed some time before the robot has reached the programmed
zone.
This argument cannot be used in a coordinated synchronized movement in a
MultiMove System.

ToPoint

Data type:robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

[\ID]

Synchronization id
Data type: identno
The argument [\ID] is mandatory in the MultiMove systems, if the movement
is synchronized or coordinated synchronized. This argument is not allowed in any
other case. The specified id number must be the same in all the cooperating
program tasks. By using the id number the movements are not mixed up at the
runtime.

Speed

Data type: speeddata
The speed data that applies to movements. Speed data defines the velocity of the
tool center point, the external axes, and of the tool reorientation.

[\T]

Time
Data type: num
This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

[\TriggData1]

Data type: array of triggios
Variable (array) that refers to trigger conditions and trigger activity. When using
this argument, it is possible to set analog output signals, digital output signals and

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 933
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.317 TriggLIOs - Linear robot movements with I/O events

RobotWare - OS
Continued

digital group output signals. If using a digital group output signal there is a limitation
on 23 signals in the group.

[\TriggData2]

Data type: array of triggstrgo
Variable (array) that refers to trigger conditions and trigger activity. When using
this argument, it is possible to set digital group output signals that consists of 32
signals in the group and can have amaximum set value of 4294967295. Only digital
group output signals can be used.

[\TriggData3]

Data type: array of triggiosdnum
Variable (array) that refers to trigger conditions and trigger activity. When using
this argument, it is possible to set analog output signals, digital output signals and
digital group output signals that consists of 32 signals in the group and can have
a maximum set value of 4294967295.

Zone

Data type:zonedata
Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Inpos]

In position
Data type: stoppointdata
This argument is used to specify the convergence criteria for the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool

Data type: tooldata
The tool in use when the robot moves. The tool center point is the point that is
moved to the specified destination position.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position in the instruction
is related.
This argument can be omitted and if so then the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used then this argument must be specified for a linear movement relative
to the work object to be performed.

[\Corr]

Correction
Data type: switch

Continues on next page
934 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.317 TriggLIOs - Linear robot movements with I/O events
RobotWare - OS
Continued

Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position if this argument is present.
The RobotWare option Path Offset is required when using this argument.

[\TLoad]

Total load
Data type: loaddata
The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.
If the \TLoad argument is set to load0, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead.
To be able to use the \TLoad argument it is necessary to set the value of the
system parameter ModalPayLoadMode to 0. If ModalPayLoadMode is set to 0, it
is no longer possible to use the instruction GripLoad.
The total load can be identified with the service routine LoadIdentify. If the system
parameter ModalPayLoadMode is set to 0, the operator has the possibility to copy
the loaddata from the tool to an existing or new loaddata persistent variable
when running the service routine.
It is possible to test run the program without any payload by using a digital input
signal connected to the system input SimMode (Simulated Mode). If the digital
input signal is set to 1, the loaddata in the optional argument \TLoad is not
considered, and the loaddata in the current tooldata is used instead.

Note

The default functionality to handle payload is to use the instruction GripLoad.
Therefore the default value of the system parameter ModalPayLoadMode is 1.

Program execution
See the instruction MoveL for information about linear movement.
With the instruction TriggLIOs it is possible to setup 1-50 different trigger activities
on I/O signals along a path from A to B. The signals that can be used are digital
output signals, digital group output signals and analog output signals. The trigger
conditions are fulfilled either at a certain distance before the end point of the
instruction, or at a certain distance after the start point of the instruction.
The instruction requires use of either TriggData1, TriggData2 or TriggData3
argument or all three of them. Use of any of the triggs is optional though. To inhibit
use of a trigg the component used can be set to FALSE in the array element of
the data types triggios/triggstrgo/triggiosdnum. If no array element is in
use, then the TriggLIOs instruction will behave as a MoveL, and no I/O activities
will be carried out.
If stepping the program forward, the I/O activities are carried out. During stepping
the execution backwards, no I/O activities at all are carried out.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 935
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.317 TriggLIOs - Linear robot movements with I/O events

RobotWare - OS
Continued

If setting component EquipLag in TriggData1, TriggData2 or TriggData3
argument to a negative time (delay), the I/O signal can be set after the destination
point (ToPoint).
If using the argument TriggData2 or TriggData3 it is possible to use values up
to 4294967295, which is the maximum value a group of digital signals can have
(32 signals in a group signal is max for the system).

More examples
More examples of how to use the instruction TriggLIOs are illustrated below.

Example 1
VAR triggios mytriggios{3}:= [[TRUE, 3, TRUE, 0, "go1", 55, 0],

[TRUE, 15, TRUE, 0, "ao1", 10, 0], [TRUE, 3, FALSE, 0, "do1",
1, 0]];

...

MoveL p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData1:=mytriggios, z50, gun1;

MoveL p3, v500, z50, gun1;

The digital group output signal go1 will be set to value 55 3 mm from p1. Analog
output signal will be set to value 10 15 mm from p1. Digital output signal do1 will
be set 3 mm from ToPoint p2.

Example 2
VAR triggios mytriggios{3}:= [[TRUE, 3, TRUE, 0, "go1", 55, 0],

[TRUE, 15, TRUE, 0, "ao1", 10, 0], [TRUE, 3, FALSE, 0, "do1",
1, 0]];

VAR triggstrgo mytriggstrgo{3}:= [[TRUE, 3, TRUE, 0, "go2", "1",
0], [TRUE, 15, TRUE, 0, "go2", "800000", 0], [TRUE, 4, FALSE,
0, "go2", "4294967295", 0]];

VAR triggiosdnum mytriggiosdnum{3}:= [[TRUE, 10, TRUE, 0, "go3",
4294967295, 0], [TRUE, 10, TRUE, 0, "ao2", 5, 0], [TRUE, 10,
TRUE, 0, "do2", 1, 0]];

...

MoveL p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData1:=mytriggios \TriggData2:=
mytriggstrgo \TriggData3:=mytriggiosdnum, z50, gun1;

MoveL p3, v500, z50, gun1;

The digital group output signal go1 will be set to value 55 3 mm from p1. Analog
output signal ao1 will be set to value 10 15 mm from p1. Digital output signal do1
will be set 3 mm from ToPointp2. Those position events is setup by variable
mytriggios. The variable mytriggstrgo sets up position events to occur 3 and
15 mm from p1. First the signal go2 is set to 1, then it is set to 800000. The signal
will be set to value 4294967295 4 mm from the ToPoint p2. This is the maximum
value for a 32 bits digital output signal. The variable mytriggiosdnum sets up
three position events to occur 10 mm from p1. First the signal go3 is set to
4294967295, then ao2 is set to 5 and last do2 is set to 1.

Continues on next page
936 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.317 TriggLIOs - Linear robot movements with I/O events
RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

There is no contact with the I/O device.ERR_NORUNUNIT

The programmed setvalue argument for the specified di-
gital group output signal signalname is outside limits.
(Declared in TriggData1, TriggData2 or TriggData3).

ERR_GO_LIM

The programmed setvalue argument for the specified
analog output signal signalname is outside limits. (De-
clared in TriggData1 or TriggData3).

ERR_AO_LIM

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Limitations
If the current start point deviates from the usual so that the total positioning length
of the instruction TriggLIOs is shorter than usual (e.g. at the start of TriggLIOs
with the robot position at the end point) it may happen that several or all of the
trigger conditions are fulfilled immediately and at the same position. In such cases,
the sequence in which the trigger activities are carried out will be undefined. The
program logic in the user program may not be based on a normal sequence of
trigger activities for an “incomplete movement”.
The limitation of the number of triggs in the instruction TriggLIOs is 50 for each
programmed instruction. If triggs happen at a closer distance, the system might
not handle it. That depends on how the movement is done, TCP speed used and
how close the triggs are programmed. Those limitations exists, but it is hard to
predict when those problems will occur.

Limitations regarding accuracy
I/O events with distance is intended for flying points (corner path). Using stop
points will result in worse accuracy than specified below.
Regarding the accuracy for I/O events with distance and using flying points, the
following is applicable when setting a digital output at a specified distance from
the start point or end point in the instruction TriggLIOs or TriggCIOs:

• The accuracy specified below is valid when using a positive equiplag I that
is less than 40 ms, which is equivalent to the lag in the robot servo, without
changing the system parameterEvent Preset Time. The lag can vary between
different robot types, for example it is lower for IRB 140.

• The accuracy specified below is valid when using a positive equiplag that
is less than the configured Event Preset Time in the system parameters.

• The accuracy specified below is not valid when using a positive equiplag
that is larger than the configuredEvent Preset Time in the system parameters.
In this case, an approximatemethod is used in which the dynamic limitations
of the robot are not taken into consideration. Then SingArea \Wristmust
be used to achieve an acceptable accuracy.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 937
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.317 TriggLIOs - Linear robot movements with I/O events

RobotWare - OS
Continued

• The accuracy specified below is valid when using a negative equiplag.
I equiplag is a dataobject of data type triggios

The typical absolute accuracy values for setting digital outputs is: ±5 ms.
The typical repeat accuracy values for setting digital outputs is: ±2 ms.

Syntax
TriggLIOs

['\' Conc ',']

[ToPoint' :='] < expression (IN) of robtarget >

['\' ID ':=' < expression (IN) of identno >] ','

[Speed ':='] < expression (IN) of speeddata >

['\' T ':=' < expression (IN) of num >]','

['\' TriggData1' :='] < array {*} (VAR) of triggios >

['\' TriggData2' :='] < array {*} (VAR) of triggstrgo >

['\' TriggData3' :='] < array {*} (VAR) of triggiosdnum >

[Zone ':='] < expression (IN) of zonedata >

['\' Inpos' :=' < expression (IN) of stoppointdata >] ','

[Tool ':='] < persistent (PERS) of tooldata >

['\' WObj' :=' < persistent (PERS) of wobjdata >]

['\' Corr]

['\' TLoad' :=' < persistent (PERS) of loaddata >] ';'

Related information

SeeFor information about

TriggJIOs - Joint robot movements with I/O
events on page 925

Joint robot movements with I/O events

triggios - Positioningevents, trigg onpage1753Storage of trigg conditions and trigger activity

triggstrgo - Positioning events, trigg on
page 1761

Storage of trigg conditions and trigger activity
for digital signal group consisting of 32 sig-
nals

triggiosdnum - Positioning events, trigg on
page 1756

Storage of trigg conditions and trigger activity

Technical reference manual - System para-
meters, section TopicMotion - Motion planner
- Number of Internal Event Objects

Allocation of event objects

Technical referencemanual - RAPID overviewLinear movement

Technical referencemanual - RAPID overviewMotion in general

loaddata - Load data on page 1650Definition of load

MoveL - Moves the robot linearly on page457Example of how to use TLoad, Total Load.

GripLoad - Defines the payload for a robot
on page 266

Defining the payload for a robot

Operating manual - IRC5 with FlexPendantLoadIdentify, load identification service
routine

Technical reference manual - System para-
meters

System input signal SimMode for running the
robot in simulated mode without payload.
(Topic I/O, Type System Input, Action values,
SimMode)

Continues on next page
938 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.317 TriggLIOs - Linear robot movements with I/O events
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - System para-
meters

System parameter ModalPayLoadMode for
activating and deactivating payload.
(Topic Controller, Type General RAPID, Ac-
tion values, ModalPayLoadMode)

Applicationmanual - Controller software IRC5Path Offset

Technical reference manual - RAPID Instructions, Functions and Data types 939
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.317 TriggLIOs - Linear robot movements with I/O events

RobotWare - OS
Continued

1.318 TriggRampAO - Define a fixed position ramp AO event on the path

Usage
TriggRampAO(Trigg Ramp Analog Output) is used to define conditions and actions
for ramping up or down analog output signal value at a fixed position along the
robot's movement path with possibility to do time compensation for the lag in the
external equipment.
The data defined is used for implementation in one or more subsequent TriggL,
TriggC, or TriggJ instructions. Beside these instructions, TriggRampAO can
also be used in CapL or CapC instructions.
The type of trig actions connected to the same TriggL/C/J instruction can be
TriggRampAO or any of TriggIO, TriggEquip, TriggSpeed, TriggInt, or
TriggCheckIO instructions. Any type of combination is allowed except that only
one TriggSpeed action on the same signal in the same TriggL/C/J instruction
is allowed.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TriggRampAO:
See also More examples on page 944.

Example 1
VAR triggdata ramp_up;

...

TriggRampAO ramp_up, 0 \Start, 0.1, aolaser1, 8, 15;

MoveL p1, v200, z10, gun1;

TriggL p2, v200, ramp_up, z10, gun1;

The analog signal aolaser1 will start ramping up its logical value from current
value to the new value 8, when the TCP of the tool gun1 is 0.1 s before the center
of the corner path at p1. The whole ramp-up will be done while the robot moves
15 mm.

Example 2
VAR triggdata ramp_down;

...

TriggRampAO ramp_down, 15, 0.1, aolaser1, 2, 10;

MoveL p3, v200, z10, gun1;

TriggL p4, v200, ramp_down, z10, gun1;

The analog signal aolaser1 will start ramping down its logical value from current
value to the new value 2, when the TCP of the tool gun1 is 15 mm plus 0.1 s before
the centre of the corner path at p4. The whole ramp-down will be done while the
robot moves 10 mm.

Arguments
TriggRampAO TriggData Distance [\Start] | [\Next] EquipLag AOutput

SetValue RampLength [\Time] [\Inhib] [\InhibSetValue] [\Mode]

Continues on next page
940 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.318 TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS

xx0600003433

Parameter DistanceD

Parameter RampLengthRL

Current analog signal ValueCV

Parameter SetValue for the analog signal valueSV

ToPoint for preceding move instructionP1

ToPoint for actual TrigL/C/J instructionP2

TriggData

Data type: triggdata
Variable for storing of the triggdata returned from this instruction. These
triggdata can then be used in the subsequent TriggL, TriggC , TriggJ, CapL,
or CapC instructions.

Distance

Data type: num
Defines the distance from the centre of the corner path where the ramp of the
analog output shall start.
Specified as the distance in mm (positive value) from the end point (ToPoint) of
the movement path (applicable if the argument \Start is not set).
See Program execution on page 943 for further details.

[\Start]

Data type: switch
Used when the distance for the argument Distance is related to the movement
start point (preceding ToPoint) instead of the end point.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 941
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.318 TriggRampAO - Define a fixed position ramp AO event on the path

RobotWare - OS
Continued

[\Next]

Data type: switch
Used when the distance for the argument Distance is forward towards the next
programmed point. If the Distance is longer than the distance to the next fine
point, the event will be executed at the fine point.

EquipLag

Equipment Lag
Data type: num
Specify the lag for the external equipment in s.
For compensation of external equipment lag, use positive argument value. Positive
argument value means that the start of the ramping of the AO signal is done by the
robot system at a specified time before the TCP physically reaches the specified
distance point in relation to the movement start or end point.
Negative argument value means that starting the ramping of the AO signal is done
by the robot system at a specified time after that the TCP has physically passed
the specified distance point in relation to the movement start or end point.
The figure shows use of argument EquipLag.

xx0500002262

AOutput

Analog Output
Data type: signalao
The name of the analog output signal.

SetValue

Data type: num
The value to which the analog output signal should be ramped up or down to (must
be within the allowed logical range value for the signal). The ramping is started
with the current value of the analog output signal.

RampLength

Data type: num
The ramping length in mm along the TCP movement path.

Continues on next page
942 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.318 TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS
Continued

[\Time]

Data type: switch
If used, then the RampLength specifies the ramp time in s instead of ramping
length.
Must be used, if subsequent TriggL, TriggC, or TriggJ specifies that the total
movement should be done on time (argument \T) instead of speed.

[\Inhib]

Inhibit
Data type: bool
The name of a persistent variable flag for inhibiting the setting of the signal at
runtime.
If this optional argument is used and the actual value of the specified flag is TRUE
at the position-time for start ramping the I/O signal then the specified signal
(AOutput) will be set to 0.

[\InhibSetValue]

InhibitSetValue
Data type: bool, num or dnum
The name of a persistent variable of the data type bool, num or dnum or any alias
of those three base data types.
This optional argument can only be used together with optional argument Inhib.
If this optional argument is used and the value of the persistent variable flag used
in optional argument Inhib is TRUE at the position-time for setting the signal, the
value of the persistent variable used in optional argument InhibSetValue is read
and the value is used for setting of the AOutput signal.
If using a boolean persistent variable, the value TRUE is translated to value 1, and
FALSE is translated to value 0.

[\Mode]

Data type: triggmode
Is used to specify different action modes when defining triggers.

Program execution
When running the instruction TriggRampAO, the trigger condition is stored in the
specified variable for the argument TriggData.
Afterwards, when one of the instructions TriggL, TriggC or TriggJ is executed,
the following are applicable with regard to the definitions in TriggRampAO:
The table describes the distance specified in the argument Distance:

The straight line distanceLinear movement

The circle arc lengthCircular movement

The approximate arc length along the path (to
obtain adequate accuracy, the distance should
not exceed one half of the arc length).

Non-linear movement

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 943
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.318 TriggRampAO - Define a fixed position ramp AO event on the path

RobotWare - OS
Continued

The figure shows ramping of AO in a corner path.

xx0600003439

Program execution characteristics of TriggRampAO connected to any TriggL/C/J:
• The ramping of the AO is started when the robot reaches the specified

Distance point on the robot path (with compensation for the specified
EquipLag)

• The ramping function will be performed during a time period calculated from
specified RampLength and the programmed TCP speed. The calculation
takes into cosideration VelSet, manual speed override, and max. 250 mm/s
in MAN mode but not any other speed limitations.

• Updating of the AO signal value from start (current read) value to specified
SetValue will be done each 10 ms resulting in a staircase form. If the
calculated ramp time or specified ramp time is greater than 0.5 s then the
ramping frequency will slow down:

- <= 0.5 s gives max. 50 step each 10 ms
- <= 1 s gives max. 50 steps each 20 ms
- <= 1.5 s gives max. 50 steps each 30 ms and so on

The TriggRampAO action is also done in FWD step but not in BWD step mode.
At any type of stop (ProgStop, Emergency Stop…) if the ramping function is active
for the occasion:

• if ramping up, the AO is set to an old value momentarily.
• if ramping down, the AO is set to the new SetValue momentarily.

More examples
More examples of how to use the instruction TriggRampAO are illustrated below.

Example 1
VAR triggdata ramp_up;

VAR triggdata ramp_down;

...

TriggRampAO ramp_up, 0 \Start, 0.1, aolaser1, 8, 15;

TriggRampAO ramp_down, 15, 0.1, aolaser1, 2, 10;

MoveL p1, v200, z10, gun1;

TriggL p2, v200, ramp_up, \T2:=ramp_down, z10, gun1;

In this example both the ramp-up and ramp-down of the AO is done in the same
TriggL instruction on the same movement path. It works without any interference
of the AO settings if the movement path is long enough.

Continues on next page
944 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.318 TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS
Continued

The analog signal aolaser1will start ramping up its logical value from the current
value to the new value 8 when the TCP of the tool gun1 is 0.1 s before the center
of the corner path at p1. The whole ramp-up will be done while the robot moves
15 mm.
The analog signal aolaser1 will start ramping down its logical value from the
current value 8 to the new value 2 when the TCP of the tool gun1 is 15 mm plus
0.1 s before the centre of the corner path at p2. The whole ramp-up will be done
while the robot moves 10 mm.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed SetValue argument for the specified
analog output signal AOutput is out of limit.

ERR_AO_LIM

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Limitations
The analog output signal value will not be compensated for lower TCP-speed in
corner path or during other acceleration or deceleration phases (the AO is not TCP
speed proportional).
Only the start point of the AO ramping will be done at the specified position on the
path. The ramping up or down will be done with “dead calculation”, with high
accuracy:

• At constant speed the deviation for the end of the AO ramping compared with
the specified will be low.

• During acceleration or deceleration phases, such as near stop points, the
deviation will be higher.

• Recommendation: use corner paths before ramp up and after ramp down.
If use of two or several TriggRampAO on the same analog output signal and
connected to the same TriggL/C/J instrucion and both or several RampLength
are located on the same part of the robot path then the AO settings will interact
with each other.
The position (+/- time) related ramp AO event will start when the previous ToPoint
is passed if the specified Distance from the actual ToPoint is not within the
length of movement for the current TriggL/C/J instruction. The position (+/-
time) related ramp AO event will start when the actual ToPoint is passed if the
specified Distance from the previous ToPoint is not within the length of
movement for the current TriggL/C/J instruction (with argument \Start).
No support for restart of the ramping AO function after any type of stop (ProgStop,
Emergency Stop …).
At Power Fail Restart the TriggL/C/J instruction is started from the beginning of
the current Power Fail position.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 945
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.318 TriggRampAO - Define a fixed position ramp AO event on the path

RobotWare - OS
Continued

Syntax
TriggRampAO

[TriggData ':='] < variable (VAR) of triggdata > ','

[Distance ':='] < expression (IN) of num >

['\' Start] | ['\' Next] ','

[EquipLag ':='] < expression (IN) of num > ','

[AOutput ':='] < variable (VAR) of signalao> ','

[SetValue ':='] < expression (IN) of num> ','

[RampLength ':='] < expression (IN) of num> ','

['\' Time]

['\' Inhib' :=' < persistent (PERS) of bool>]

['\' InhibSetValue' :=' < persistent (PERS) of anytype>]

['\' Mode' :=' < expression (IN) of triggmode>] ';'

Related information

SeeFor information about

TriggL - Linear robot movements with events
on page 917

Use of triggers

TriggC - Circular robot movement with events
on page 873
TriggJ - Axis-wise robot movements with
events on page 909

TriggEquip - Define a fixed position and time
I/O event on the path on page 892

Definition of other triggs

triggdata - Positioning events, trigg on
page 1752

Storage of triggdata

triggmode - Trigg action mode on page 1758

SetAO - Changes the value of an analog
output signal on page 686

Set of analog output signal

signalxx - Digital and analog signals on
page 1714

Technical reference manual - System para-
meters

Configuration of event preset time

946 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.318 TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS
Continued

1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed
position-time scale event

Usage
TriggSpeed is used to define conditions and actions for control of an analog
output signal with output value proportional to the actual TCP speed. The beginning,
scaling, and ending of the analog output can be specified at a fixed position-time
along the robot’s movement path. It is possible to use time compensation for the
lag in the external equipment for the beginning, scaling, and ending of the analog
output and also for speed dips of the robot.
The data defined is used in one or more subsequent TriggL, TriggC, or TriggJ
instructions.
This instruction can only be used in themain task T_ROB1, if in a MultiMove System,
in Motion tasks.

Basic examples
The following example illustrates the instruction TriggSpeed:
See also More examples on page 952.

Example 1
VAR triggdata glueflow;

TriggSpeed glueflow, 0, 0.05, glue_ao, 0.8\DipLag:=0.04
\ErrDO:=glue_err;

TriggL p1, v500, glueflow, z50, gun1;

TriggSpeed glueflow, 10, 0.05, glue_ao, 1;

TriggL p2, v500, glueflow, z10, gun1;

TriggSpeed glueflow, 0, 0.05, glue_ao, 0;

TriggL p3, v500, glueflow, z50, gun1;

The figure below illustrates an example of TriggSpeed sequence

xx0500002329

The glue flow (analog output glue_ao) with scale value 0.8 starts when TCP is
0.05 s before point p1, new glue flow scale value 1when TCP is 10mmplus 0.05

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 947
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event

RobotWare - OS

s before point p2, and the glue flow ends (scale value 0) when TCP is 0.05 s
before point p3.
Any speed dip by the robot is time compensated in such a way that the analog
output signal glue_ao is affected 0.04 s before the TCP speed dip occurs.
If overflow of the calculated logical analog output value in glue_ao then the digital
output signal glue_err is set. If there is no more overflow then glue_err is reset.

Arguments
TriggSpeed TriggData Distance [\Start] | [\Next] ScaleLag AOp

ScaleValue [\DipLag] [\ErrDO] [\Inhib] [\InhibSetValue]
[\Mode]

TriggData

Data type: triggdata
Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Distance

Data type: num
Defines the position on the path for change of the analog output value.
Specified as the distance inmm (positive value) from the end point of themovement
path (applicable if the argument \Start is not set).
See Program execution on page 951 for further details.

[\Start]

Data type: switch
Used when the distance for the argument Distance starts at themovement’s start
point instead of the end point.

[\Next]

Data type: switch
Used when the distance for the argument Distance is forward towards the next
programmed point.
This argument can be used to move the change of the analog output value after
the end point of the movement path. It should only be used if wanting to tune the
signal change to be close after the ToPoint of the used movement instruction
(TriggL, TriggC, or TriggJ instructions).

Note

The programmer needs to be careful when using the \Next argument. Depending
on used distance and arguments in the following trigger condition, there can be
an overlap in the actions, and the result might not be as expected.

ScaleLag

Data type: num

Continues on next page
948 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS
Continued

Specify the lag as time in s (positive value) in the external equipment for change
of the analog output value (starting, scaling, and ending).
For compensation of external equipment lag, this argument value means that the
analog output signal is set by the robot at a specified time before the TCP physically
reaches the specified distance in relation to the movement’s start or end point.
The argument can also be used to extend the analog output beyond the end point.
Set the time in seconds that the robot shall keep the analog output. Set the time
with a negative sign. The limit is -0.10 seconds.
The figure below illustrates the use of argument ScaleLag

xx0500002330

AOp

Analog Output
Data type: signalao
The name of the analog output signal.

ScaleValue

Data type: num
The scale value for the analog output signal.
The physical output value for the analog signal is calculated by the robot:

• Logical output value = Scale value * Actual TCP speed in mm/s.
• Physical output value = According definition in configuration for actual analog

output signal with above Logical output value as input.

[\DipLag]

Data type: num
Specify the lag as time in s (positive value) for the external equipment when
changing of the analog output value because of robot speed dips.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 949
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event

RobotWare - OS
Continued

For compensation of external equipment lag, this argument value means that the
analog output signal is set by the robot at a specified time before the TCP speed
dip occurs.

Note

This argument can only be used by the robot for the first TriggSpeed (in
combination with one of TriggL, TriggC, or TriggJ) in a sequence of several
TriggSpeed instructions. The first specified argument value is valid for all the
following TriggSpeed in the sequence.

[\ErrDO]

Error Digital Output
Data type: signaldo
The name of the digital output signal for reporting analog value overflow.
If during movement the calculation of the logical analog output value for signal in
argument AOp results in overflow because of overspeed then this signal is set and
the physical analog output value is reduced to the maximum value. If there is no
more overflow then the signal is reset.

Note

This argument can only be used by the robot for the 1st TriggSpeed (in
combination with one of TriggL, TriggC, or TriggJ) in a sequence of several
TriggSpeed instructions. The 1st given argument value is valid for all the
following TriggSpeed in the sequence.

[\Inhib]

Inhibit
Data type: bool
The name of a persistent variable flag for inhibiting the setting of the analog signal
at runtime.
If this optional argument is used and the actual value of the specified flag is TRUE
at the time for setting the analog signal then the specified signal AOp will be set to
0 instead of a calculated value.

Note

This argument can only be used by the robot for the 1st TriggSpeed (in
combination with one of TriggL, TriggC, or TriggJ) in a sequence of several
TriggSpeed instructions. The 1st given argument value is valid for all the
following TriggSpeed in the sequence.

[\InhibSetValue]

InhibitSetValue
Data type: bool, num or dnum

Continues on next page
950 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS
Continued

The name of a persistent variable of the data type bool, num or dnum or any alias
of those three base data types.
This optional argument can only be used together with optional argument Inhib.
If this optional argument is used and the value of the persistent variable flag used
in optional argument Inhib is TRUE at the position-time for setting the signal, the
value of the persistent variable used in optional argument InhibSetValue is read
and the value is used for setting of the AOp signal.
If using a boolean persistent variable, the value TRUE is translated to value 1, and
FALSE is translated to value 0.

Note

This argument can only be used by the robot for the 1st TriggSpeed (in
combination with one of TriggL, TriggC, or TriggJ) in a sequence of several
TriggSpeed instructions. The 1st given argument value is valid for all the
following TriggSpeed in the sequence.

[\Mode]

Data type: triggmode
Is used to specify different action modes when defining triggers.

Note

This argument can only be used by the robot for the 1st TriggSpeed (in
combination with one of TriggL, TriggC, or TriggJ) in a sequence of several
TriggSpeed instructions. The 1st given argument value is valid for all the
following TriggSpeed in the sequence.

Program execution
When running the instruction TriggSpeed the trigger condition is stored in the
specified variable for the argument TriggData.
Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed
then the following are applicable with regard to the definitions in TriggSpeed:
For the distance specified in the argument Distance, see the table below:

The straight line distanceLinear movement

The circle arc lengthCircular movement

The approximate arc length along the path (to obtain adequate
accuracy, the distance should not exceed one half of the arc length).

Non-linear movement

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 951
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event

RobotWare - OS
Continued

The figure below illustrates the fixed position-time scale value event on a corner
path.

xx0500002331

The position-time related scale value event will be generated when the start point
(end point) is passed if the specified distance from the end point (start point) is
not within the length of the movement of the current instruction (TriggL, TriggC,
or TriggJ).
The 1:st TriggSpeed used by one of TriggL, TriggC, or TriggJ instruction will
internally in the system create a process with the same name as the analog output
signal. The same process will be used by all succeeding TriggL, TriggC, or
TriggJwhich refers to same signal name and setup by a TriggSpeed instruction.
The process will immediately set the analog output to 0, in the event of a program
emergency stop. In the event of a program stop, the analog output signal will stay
TCP-speed proportional until the robot stands still. The process keeps “alive” and
ready for a restart. When the robot restarts, the signal is TCP-speed proportional
directly from the start.

xx0500002332

The process will “die” after handling a scale event with value 0 if no succeeding
TriggL, TriggC, or TriggJ is in the queue at the time.

More examples
More examples of the instruction TriggSpeed are illustrated below.

Example 1
VAR triggdata flow;

Continues on next page
952 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS
Continued

TriggSpeed flow, 10 \Start, 0.05, flowsignal, 0.5 \DipLag:=0.03;

MoveJ p1, v1000, z50, tool1;

TriggL p2, v500, flow, z50, tool1;

The analog output signal flowsignal is set to a logical value = (0.5 * actual TCP
speed in mm/s) 0.05 s before the TCP passes a point located 10 mm after the
start point p. The output value is adjusted to be proportional to the actual TCP
speed during the movement to p2.

...

TriggL p3, v500, flow, z10, tool1;

The robot moves from p2 to p3 with the analog output value proportional to the
actual TCP speed. The analog output value will be decreased at time 0.03 s before
the robot reduces the TCP speed during the passage of the corner path z10.

Example 2
VAR triggdata glueflow;

VAR triggdata glueflowend;

TriggSpeed glueflow, 0, 0.05, glue_ao, 1;

TriggSpeed glueflowend, 25 \Next, 0, glue_ao, 0;

TriggL p1, v500, glueflow, z50, gun1;

TriggL p2, v500, glueflow, z50, gun1;

TriggL p3, v500, glueflowend, z50, gun1;

MoveL p4, v500, z50, gun1;

The figure below illustrates an example of TriggSpeed sequence and use of \Next
argument

p4

p1 p2

p3

25 mm

xx1800000010

The glue flow (analog output glue_ao) with scale value 0.8 starts when TCP is
0.05 s before point p1. The glue flow ends (scale value 0) when TCP is 25 mm
after point p3.

Limitations
The limitations for the instruction TriggSpeed are illustrated below.

Accuracy of position-time related scale value event
Typical absolute accuracy values for scale value events ±5 ms.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 953
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event

RobotWare - OS
Continued

Typical repeat accuracy values for scale value events ±2 ms.

Accuracy of TCP speed dips adaptation (deceleration - acceleration phases)
Typical absolute accuracy values for TCP speed dips adaptation ±5 ms.
Typical repeat accuracy values for TCP speed dips adaptation ±2ms (the value
depends of the configured Path resolution).

Negative ScaleLag
If a negative value on parameter ScaleLag is used to move the zero scaling over
to the next movement order then the analog output signal will not be reset if a
program stop occurs. An emergency stop will always reset the analog signal.
The analog signal is no longer TCP-speed proportional after the end point on the
movement order.

xx0500002333

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Given two consecutive movement orders with TriggL/TriggSpeed instructions.
A negative value in parameter ScaleLagmakes it possible to move the scale event
from the first movement order to the beginning of the second movement order. If

Continues on next page
954 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS
Continued

the second movement order scales at the beginning then there is no control if the
two scales interfere.

xx0500002334

Related system parameters
The system parameter Event Preset Time is used to delay the robot to make it
possible to activate/control the external equipment before the robot runs through
the position.
The table below illustrates the recommendation for setup of system parameter
Event Preset Time, where typical Servo Lag is 0.040 s..

Recommended Event
Preset Time to obtain
best accuracy

RequiredEvent Preset Time
to avoid runtime execution
error

DipLagScaleLag

ScaleLag in s plus 0.090
s

DipLag, if DipLag >
ServoLag

AlwaysScaleLag >
DipLag

0.090 s- " -DipLag <
Servo Lag

ScaleLag <
DipLag

DipLag in s plus 0.030 s- " -DipLag >
Servo Lag

- " -

Syntax
TriggSpeed

[TriggData ':='] < variable (VAR) of triggdata>','

[Distance' :='] < expression (IN) of num>

['\' Start] | ['\' Next] ','

[ScaleLag':='] < expression (IN) of num> ','

[AOp ':='] < variable (VAR) of signalao> ','

[ScaleValue' :='] < expression (IN) of num>

['\' DipLag' :=' < expression (IN) of num>]

['\' ErrDO' :=' < variable (VAR) of signaldo>]

['\' Inhib' :=' < persistent (PERS) of bool >]

['\' InhibSetValue' :=' < persistent (PERS) of anytype>]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 955
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event

RobotWare - OS
Continued

['\' Mode' :=' < expression (IN) of triggmode>] ';'

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Use of triggers

TriggC - Circular robot movement with events on
page 873
TriggJ - Axis-wise robot movements with events on
page 909

TriggIO - Define a fixed position or time I/O event near
a stop point on page 903

Definition of other triggs

TriggInt - Defines a position related interrupt on
page 898
TriggEquip - Define a fixed position and time I/O event
on the path on page 892

triggdata - Positioning events, trigg on page 1752Storage of triggdata
triggmode - Trigg action mode on page 1758

Technical reference manual - System parametersConfiguration of Event preset time

Application manual - Controller software IRC5Advanced RAPID

956 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS
Continued

1.320 TriggStopProc - Generate restart data for trigg signals at stop

Usage
The instruction TriggStopProc creates an internal supervision process in the
system for zero setting of specified process signals and the generation of restart
data in a specified persistent variable at every program stop (STOP) or emergency
stop (QSTOP) in the system.
TriggStopProc and the data type restartdata are intended to be used for
restart after program stop (STOP) or emergency stop (QSTOP) of own process
instructions defined in RAPID (NOSTEPIN routines).
It is possible in a user defined RESTART event routine to analyze the current restart
data, step backwards on the path with instruction StepBwdPath, and activate
suitable process signals before the movement restarts.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in any motion tasks.
Note for MultiMove system that only one TriggStopProc support process with
the specified shadow signal name (argument ShadowDO) can be active in the
system at the same time. It means that TriggStopProc supervises program stop
or emergency stop in the program task where it was last executed.

Arguments
TriggStopProc RestartRef [\DO] [\GO1] [\GO2] [\GO3] [\GO4] ShadowDO

RestartRef

Restart Reference
Data type: restartdata
The persistent variable in which restart data will be available after every stop of
program execution.

[\DO1]

Digital Output 1
Data type: signaldo
The signal variable for a digital process signal to be set to zero and supervised in
restart data when program execution is stopped.

[\GO1]

Group Output 1
Data type: signalgo
The signal variable for a digital group process signal to be set to zero and
supervised in restart data when program execution is stopped.

[\GO2]

Group Output 2
Data type: signalgo
The signal variable for a digital group process signal to be set to zero and
supervised in restart data when program execution is stopped.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 957
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.320 TriggStopProc - Generate restart data for trigg signals at stop

RobotWare - OS

[\GO3]

Group Output 3
Data type: signalgo
The signal variable for a digital group process signal to be set to zero and
supervised in restart data when program execution is stopped.

[\GO4]

Group Output 4
Data type: signalgo
The signal variable for a digital group process signal to be set to zero and
supervised in restart data when program execution is stopped.
At least one of the optional parameters D01, GO1 ... GO4 must be used.

ShadowDO

Shadow Digital Output
Data type: signaldo
The signal variable for the digital signal, which must mirror whether or not the
process is active along the robot path.
This signal will not be set to zero by the process TriggStopProc at STOP or
QSTOP, but its values will be mirrored in restartdata.

Program execution

Setup and execution of TriggStopProc
TriggStopProc must be called from both:

• the START event routine or in the unit part of the program (set PP to main,
kill the internal process for TriggStopProc)

• the POWERON event routine (power off, kill the internal process for
TriggStopProc)

The internal name of the process for TriggStopProc is the same as the signal
name in the argument ShadowDO. If TriggStopProc, with the same signal name
in argument ShadowDO, is executed twice from the same or another program task
then only the last executed TriggStopProc will be active.
Execution of TriggStopProc only starts the supervision of I/O signals at STOP
and QSTOP.

Program stop STOP
The process TriggStopProc comprises the following steps:

1 Wait until the robot stands still on the path.
2 Store the current value (prevalue according to restartdata) of all used

process signals. Zero sets all used process signals except ShadowDO.
3 Do the following during the next time slot, about 500 ms, if some process

signals change their value during this time:
• Store the current value again (postvalue according to restatdata)
• Set that signal to zero except ShadowDO

Continues on next page
958 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.320 TriggStopProc - Generate restart data for trigg signals at stop
RobotWare - OS
Continued

• Count the number of value transitions (flanks) of the signal ShadowDO
4 Update the specified persistent variable with restart data.

Emergency stop (QSTOP)
The process TriggStopProc comprises the following steps:

1 Do the next step as soon as possible.
2 Store the current value (prevalue according to restartdata) of all used

process signals. Set to zero all used process signals except ShadowDO.
3 Do the following during the next time slot, about 500 ms, if some process

signal changes its value during this time:
• Store its current value again (postvalue according to restatdata)
• Set to zero that signal except ShadowDO
• Count the number of value transitions (flanks) of the signal ShadowDO

4 Update the specified persistent variable with restart data.

Critical area for process restart
Both the robot servo and the external equipment have some lags. All the instructions
in the Trigg family are designed so that all signals will be set at suitable places
on the robot path, independently of different lags in external equipment, to obtain
process results that are as good as possible. Because of this, the settings of I/O
signals can be delayed between 0-80ms internally in the system after the robot
stands still at program stop (STOP) or after registration of an emergency stop
(QSTOP). Because of this disadvantage for the restart functionality, both the
prevalue, postvalue, and the shadow flanks are introduced in restart data.
If this critical timeslot of 0-80ms coincides with the following application process
cases then it is difficult to perform a good process restart:

• At the start of the application process
• At the end of the application process
• During a short application process
• During a short interrupt in the application process

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 959
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.320 TriggStopProc - Generate restart data for trigg signals at stop

RobotWare - OS
Continued

The figure below illustrates process phases at STOP or QSTOP within critical time
slot 0-80ms

xx0500002326

Performing a restart
A restart of process instructions (NOSTEPIN routines) along the robot path must
be done in a RESTART event routine.
The RESTART event routine can consist of the following steps:

Action

After QSTOP the regain to path is done at program start.1.

Analyze the restart data from the latest STOP or QSTOP.2.

Continues on next page
960 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.320 TriggStopProc - Generate restart data for trigg signals at stop
RobotWare - OS
Continued

Action

Determine the strategy for process restart from the result of the analysis such as:
• Process active, do process restart
• Process inactive, do not process restart
• Do suitable actions depending on type of process application:

- Start of process
- End of process
- Short process
- Short interrupt in process

3.

Step backwards on the path.4.

Continue the program results in movement restart.5.

If waiting in any STOP or QSTOP event routine until the TriggStopProc process
is ready with e.g. WaitUntil (myproc.restartstop=TRUE), \MaxTime:=2;
, the user must always reset the flag in the RESTART event routine with e.g.
myproc.restartstop:=FALSE. After that the restart is ready.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Limitation
No support for restart of process instructions after a power failure.

Syntax
TriggStopProc

[RestartRef ':='] < persistent (PERS) of restartdata>

['\' DO1 ':=' < variable (VAR) of signaldo>

['\' GO1 ':=' < variable (VAR) of signalgo>]

['\' GO2 ':=' < variable (VAR) of signalgo>]

['\' GO3 ':=' < variable (VAR) of signalgo>]

['\' GO4 ':=' < variable (VAR) of signalgo>] ','

[ShadowDO ':='] < variable (VAR) of signaldo> ';'

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Process instructions

TriggC - Circular robot movement with events on
page 873

restartdata - Restart data for trigg signals on
page 1693

Restart data

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 961
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.320 TriggStopProc - Generate restart data for trigg signals at stop

RobotWare - OS
Continued

SeeFor information about

StepBwdPath - Move backwards one step on path
on page 794

Step backward on path

Application manual - Controller software IRC5Advanced RAPID

962 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.320 TriggStopProc - Generate restart data for trigg signals at stop
RobotWare - OS
Continued

1.321 TryInt - Test if data object is a valid integer

Usage
TryInt is used to test if a given data object is a valid integer.

Basic examples
The following examples illustrate the instruction TryInt:

Example 1
VAR num myint := 4;

...

TryInt myint;

The value of myint will be evaluated and since 4 is a valid integer, the program
execution continues.

Example 2
VAR dnum mydnum := 20000000;

...

TryInt mydnum;

The value of mydnumwill be evaluated and since 20000000 is a valid dnum integer,
the program execution continues.

Example 3
VAR num myint := 5.2;

...

TryInt myint;

...

ERROR

IF ERRNO = ERR_INT_NOTVAL THEN

myint := Round(myint);

RETRY;

ENDIF

The value of myintwill be evaluated and since 5.2 is not a valid integer, an error
will be raised. In the error handler, myint will be rounded to 5 and the instruction
TryInt is executed one more time.

Arguments
TryInt DataObj | DataObj2

DataObj

Data Object
Data type: num
The data object to test if it is a valid integer.

DataObj2

Data Object 2
Data type: dnum
The data object to test if it is a valid integer.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 963
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.321 TryInt - Test if data object is a valid integer

RobotWare - OS

Program execution
The given data object is tested:

• If it is a valid integer, the execution continues with the next instruction.
• If it is not a valid integer, the execution continues in the error handler in an

actual procedure.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

DataObj contains a decimal value.ERR_INT_NOTVAL

• The value of DataObj is larger or smaller then the
integer value range of data type num.

• The value of DataObj2 is larger or smaller then the
integer value range of data type dnum.

ERR_INT_MAXVAL

Note that a value of 3.0 is evaluated as an integer, since .0 can be ignored.

Syntax
TryInt

[DataObj ':='] < expression (IN) of num>

| [DataObj2 ':='] < expression (IN) of dnum>' ;'

Related information

SeeFor information about

num - Numeric values on page 1666Data type num

964 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.321 TryInt - Test if data object is a valid integer
RobotWare - OS
Continued

1.322 TRYNEXT - Jumps over an instruction which has caused an error

Usage
The TRYNEXT instruction is used to resume execution after an error, starting with
the instruction following the instruction that caused the error.

Basic examples
The following example illustrates the instruction TryNext:

Example 1
reg2 := reg3/reg4;

...

ERROR

IF ERRNO = ERR_DIVZERO THEN

reg2:=0;

TRYNEXT;

ENDIF

An attempt is made to divide reg3 by reg4. If reg4 is equal to 0 (division by zero)
then a jump is made to the error handler where reg2 is assigned to 0. The TRYNEXT
instruction is then used to continue with the next instruction.

Program execution
Program execution continues with the instruction subsequent to the instruction
that caused the error.

Limitations
The instruction can only exist in a routine’s error handler.

Syntax
TRYNEXT';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewError handlers

Technical reference manual - RAPID Instructions, Functions and Data types 965
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.322 TRYNEXT - Jumps over an instruction which has caused an error

RobotWare-OS

1.323 TuneReset - Resetting servo tuning

Usage
TuneReset is used to reset the dynamic behavior of all robot axes and external
mechanical units to their normal values.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction TuneReset:

Example 1
TuneReset;

Resetting tuning values for all axes to 100%.

Program execution
The tuning values for all axes are reset to 100%.
The default servo tuning values for all axes are automatically set by executing
instruction TuneReset

• at a Restart.
• when a new program is loaded.
• when starting program execution from the beginning.

Syntax
TuneReset ';'

Related information

SeeFor information about

TuneServo - Tuning servos on page 967Tuning servos

966 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.323 TuneReset - Resetting servo tuning
RobotWare - OS

1.324 TuneServo - Tuning servos

Usage
TuneServo is used to tune the dynamic behavior of separate axes on the robot.
For most applications it is not necessary to use TuneServo, but for some
applications, TuneServo is needed to obtain the desired accuracy. The use of
TuneServo can in many cases be replaced by selecting a predefined Motion
Process Mode, see Technical reference manual - System parameters, or by
modifying a predefined Motion Process Mode.
For external axes TuneServo can be used for load adaptation.
Avoid doing TuneServo commands at the same time that the robot is moving. It
can result in momentary high torque causing error indication and stops.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Note

To obtain optimal tuning it is essential that the correct load data is used. Check
this before using TuneServo.

WARNING

Incorrect use of the TuneServo can cause oscillating movements or torques
that can damage the robot. Youmust bear this in mind and be careful when using
the TuneServo.

Description

Reduce overshoots and vibrations - TUNE_DF
TUNE_DF can be used for adjusting the predictedmechanical resonance frequency
of a particular axis. A tune value of 95% reduces the resonance frequency by 5%.
Themost common use of TUNE_DF is to compensate for a foundation of inadequate
stiffness, i.e. a flexible foundation. In this case, the tune value for axis 1 and 2 is
lowered, typically to a value between 80% and 99%.
Use of TUNE_DF for axis 3 - 6 is rare and is normally not recommended. An
exception is tuning of axis 4 - 6 for compensating the resonance frequency of an
extended flexible payload.
Correctly adjusted, not too high and not too low, TUNE_DF reduces overshoots and
vibrations. Be careful when adjusting TUNE_DF, since a too high or too low tune

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 967
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.324 TuneServo - Tuning servos

RobotWare - OS

value can impair the movement considerably. One example of is shown in the
figure below. In this case, a tune value of 100% gives the best result.

xx1400001280

The tune value can be automatically optimized by using TuneMaster, which is
recommended.
For manual tuning, an example RAPID code snippet for tuning axis 1 is as follows:

MoveAbsJ [[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],
v200, fine, myTool;

FOR DF FROM 80 TO 100 STEP 5 DO

TuneServo ROB_1,1,DF\Type:=TUNE_DF;

MoveAbsJ [[2,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],
vmax, fine, myTool;

WaitTime 1;

MoveAbsJ [[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],
vmax, fine, myTool;

WaitTime 1;

ENDFOR

TuneReset;

Here, the tune value is changed in 5% steps, 2% steps could also be used. Note
that the movement should be short, 2 degrees is a typical value. The robot should
be positioned in a typical work area position. The tune value that minimizes
overshoots and vibrations, by visual inspection, should be chosen.
Overshoots and vibrations can also be reduced by lowering the tune value for
TUNE_DH or by reducing acceleration by using AccSet. In many cases, this is the
best solution. However, if a problem can be solved by TUNE_DF, the cycle time is
unaffected and the use of TUNE_DF is thus the best solution.
For robots whereMounting Stiffness Factor is available, seeMotion ProcessMode
inTechnical reference manual - System parameters, the use ofMounting Stiffness
Factor for compensating a flexible foundation, replaces the use of TUNE_DF.

Reduce overshoots and vibrations - TUNE_DH
TUNE_DH can be used for increasing the smoothness of the robot path by adjusting
the effective bandwidth of the system. The tune value can only be lowered and
values above 100% will not affect the movements. A tune value less than 100%
decreases the bandwidth and increases the smoothness, thereby reducing
overshoots and vibrations.

Continues on next page
968 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.324 TuneServo - Tuning servos
RobotWare - OS
Continued

TUNE_DH only increases cycle time in fine points, whereas acceleration reductions
increases cycle time all along the robot path. Therefore, using TUNE_DH can be a
very cycle time efficient way to reduce vibrations and overshoots compared to
lowering the acceleration by using the AccSet instruction. At high speed, larger
corner zones than programmed will be noticeable when using TUNE_DH. Thus, use
of TUNE_DH reduces path errors caused by vibrations but increases path errors at
high speed by taking shortcuts in corner zones. The shortcuts will increase with
decreased tune value and increased speed. If these shortcuts are not acceptable,
AccSet is recommended instead of TUNE_DH.
The figure below shows the effect of a decreased tune value and that an undesired
vibration can be removed with a proper tune value. For smaller tune values, the
shortcut in the corner zone becomes noticeable.

xx1400001281

It is sufficient to execute the instruction TuneServo with the argument
\Type:=TUNE_DH for one axis. All axes in the same mechanical unit will
automatically get the same tune value.
Examples:

• Cutting with TCP speeds up to 300 mm/s. A tune value of 50% reduces
undesired vibrations.
This is sometimes combined with AccSet, e.g. AccSet 50,100;.

• Material handling at high speed. A tune value of 15% reduces undesired
vibrations.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 969
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.324 TuneServo - Tuning servos

RobotWare - OS
Continued

CAUTION

Never change the tune value when the robot is moving and be careful when using
small tune values (less than 30%) since the robot will take shortcuts in corner
zones.

Only for ABB internal use - TUNE_DK, TUNE_DL, TUNE_DG, TUNE_DI

WARNING

Only for ABB internal use. Do not use these tune types. Incorrect use can cause
oscillating movements or torques that can damage the robot.

Tuning external axes - TUNE_KP, TUNE_KV, TUNE_TI
These tune types affect position control gain (kp), speed control gain (kv), and
speed control integration time (ti) for external axes. These are used for adapting
external axes to different load inertias. Basic tuning of external axes can also be
simplified by using these tune types.

Tuning robot axes - TUNE_KP, TUNE_KV, TUNE_TI
These parameters can be used for changing the behavior of the servo controller.
TUNE_KP affects the equivalent gain of the position controller, TUNE_KV affects
the equivalent gain of the speed controller, and TUNE_TI affects the integral action
of the controller.
Increasing the tune value for TUNE_KV increases the servo stiffness of the robot
and can be useful in contact applications since the total stiffness of the robot
system depends on both the servo stiffness and the mechanical stiffness. An
increased tune value for TUNE_KV also reduces the path errors at low speed and
can be useful in cutting and welding applications where the speed is below 100
mm/s. Typical tune values are 150% - 200%. A tune value which is too high causes
motor vibrations and must be avoided. Always be careful and be observant for
increased motor noise level when adjusting TUNE_KV and do not use higher tune
values than needed for fulfilling the application requirement. Too high tune value
can also increase vibrations due to mechanical resonances.
An increased tune value for TUNE_KP and a decreased tune value for TUNE_TI
increases the servo stiffness and reduces low speed path errors in the low
frequency region. Typical tune values for TUNE_KP are 150% - 300%, and for
TUNE_TI 20% - 50%. In most cases, TUNE_KV is the most important parameter
and TUNE_KP and TUNE_TI do not need adjustment. Too high tune value for
TUNE_KP or too low tune value for TUNE_TI can also increase vibrations due to
mechanical resonances.
Example:

• Robot in deburring application need higher servo stiffness to reduce path
errors. TUNE_KV 175%, TUNE_KP 250%, and TUNE_TI 30%.
This is often combined with AccSet, e.g. AccSet 30,100;.

Continues on next page
970 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.324 TuneServo - Tuning servos
RobotWare - OS
Continued

Friction compensation - TUNE_FRIC_LEV, TUNE_FRIC_RAMP
These tune types can be used to reduce robot path errors caused by friction and
backlash at low speeds (10 - 200 mm/s). These path errors appear when a robot
axis changes direction of movement. Activate friction compensation for an axis by
setting the system parameter Motion/Control Parameters/Friction FFW On to Yes.
The friction model is a constant level with opposite sign of the axis speed direction.
Friction FFW Level (Nm) is the absolute friction level at (low) speeds and is greater
than Friction FFWRamp (rad/s). See the figure below, which shows a frictionmodel.

xx0500002188

TUNE_FRIC_LEV overrides the value of the system parameter Friction FFW Level.
Tuning Friction FFWLevel (using TUNE_FRIC_LEV) for each robot axis can improve
the robot’s path accuracy considerably in the speed range 20 - 100 mm/s. For
larger robots (especially the IRB6400 family) the effect will be minimal as other
sources of tracking errors dominate these robots.
TUNE_FRIC_RAMP overrides the value of the system parameter Friction FFWRamp.
In most cases there is no need to tune the Friction FFW Ramp. The default setting
will be appropriate.
Tune one axis at a time. Change the tuning value in small steps and find the level
that minimizes the robot path error at positions on the path where this specific axis
changes direction of movement. Repeat the same procedure for the next axis and
so on.
The final tuning values can be transferred to the system parameters. Example:
Friction FFW Level = 1. Final tune value (TUNE_FRIC_LEV) = 150%.
Set Friction FFW Level = 1.5 and tune value = 100% (default value) which is
equivalent.

Arguments
TuneServo MecUnit Axis TuneValue [\Type]

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Axis

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 971
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.324 TuneServo - Tuning servos

RobotWare - OS
Continued

The number of the current axis for the mechanical unit (1 - 6).

TuneValue

Data type: num
Tuning value in percent (1 - 500). 100% is the normal value.

[\Type]

Data type: tunetype
Type of servo tuning. Available types are TUNE_DF, TUNE_KP, TUNE_KV,
TUNE_TI, TUNE_FRIC_LEV, TUNE_FRIC_RAMP, TUNE_DG, TUNE_DH,

TUNE_DI. Type TUNE_DK and TUNE_DL only for ABB internal use.
This argument can be omitted when using tuning type TUNE_DF.

Basic examples
The following example illustrates the instruction TuneServo:

Example 1
TuneServo MHA160R1, 1, 110 \Type:= TUNE_KP;

Activating of tuning type TUNE_KP with the tuning value 110% on axis 1 in the
mechanical unit MHA160R1.

Program execution
The specified tuning type and tuning value are activated for the specified axis. This
value is applicable for all movements until a new value is programmed for the
current axis, or until the tuning types and values for all axes are reset using the
instruction TuneReset.
The default servo tuning values for all axes are automatically set by executing
instruction TuneReset

• at a Restart.
• when a new program is loaded.
• when starting program execution from the beginning.

Limitations
Any active servo tuning are always set to default values at power fail.
This limitation can be handled in the user program at restart after power failure.

Syntax
TuneServo

[MecUnit ':='] < variable (VAR) of mecunit> ','

[Axis ':='] < expression (IN) of num> ','

[TuneValue ':='] < expression (IN) of num>

['\' Type ':=' <expression (IN) of tunetype>] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOther motion settings

Continues on next page
972 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.324 TuneServo - Tuning servos
RobotWare - OS
Continued

SeeFor information about

tunetype - Servo tune type on page 1766Types of servo tuning

TuneReset - Resetting servo tuning on page 966Reset of all servo tunings

MotionProcessModeSet - Set motion process mode on
page 390

MotionProcessModeSet - Set
motion process mode.

Application manual - Additional axes and stand alone
controller

Tuning of external axes

Technical reference manual - System parametersFriction compensation

Technical reference manual - RAPID Instructions, Functions and Data types 973
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.324 TuneServo - Tuning servos

RobotWare - OS
Continued

1.325 UIMsgBox - User Message Dialog Box type basic

Usage
UIMsgBox (User Interaction Message Box) is used to communicate with the user
of the robot system on available user device, such as the FlexPendant. A message
is written to the operator, who answers by selecting a button. The user selection
is then transferred back to the program.

Basic examples
The following examples illustrate the instruction UIMsgBox:
See also More examples on page 979.

Example 1
UIMsgBox "Continue the program ?";

The message "Continue the program ?" is displayed. The program proceeds
when the user presses the default button OK.

Example 2
VAR btnres answer;

...

UIMsgBox

\Header:="UIMsgBox Header",

"Message Line 1"

\MsgLine2:="Message Line 2"

\MsgLine3:="Message Line 3"

\MsgLine4:="Message Line 4"

\MsgLine5:="Message Line 5"

\Buttons:=btnOKCancel

\Icon:=iconInfo

\Result:=answer;

IF answer = resOK my_proc;

Continues on next page
974 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.325 UIMsgBox - User Message Dialog Box type basic
RobotWare - OS

xx0500002432

Above message box with icon, header, message line 1 to 5, and push buttons is
written on the FlexPendant display. Program execution waits until OK or Cancel
is pressed. In other words, answer will be assigned 1 (OK) or 5 (Cancel) depending
on which of the buttons is pressed. If answer is OK then my_proc will be called.
Note that Message Line 1 ... Message Line 5 are displayed on separate lines 1 to
5 (the switch \Wrap is not used).

Arguments
UIMsgBox [\Header] MsgLine1 [\MsgLine2] [\MsgLine3] [\MsgLine4] [\MsgLine5]
[\Wrap] [\Buttons] [\Icon] [\Image] [\Result] [\MaxTime] [\DIBreak] [\DIPassive]
[\DOBreak] [\DOPassive] [\PersBoolBreak] [\PersBoolPassive] [\BreakFlag]
[\UIActiveSignal]

[\Header]

Data type: string
Header text to be written at the top of the message box. Max. 40 characters.

MsgLine1

Message Line 1
Data type: string
Text line 1 to be written on the display. Max. 55 characters.

[\MsgLine2]

Message Line 2
Data type: string

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 975
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.325 UIMsgBox - User Message Dialog Box type basic

RobotWare - OS
Continued

Additional text line 2 to be written on the display. Max. 55 characters.

[\MsgLine3]

Message Line 3
Data type: string
Additional text line 3 to be written on the display. Max. 55 characters.

[\MsgLine4]

Message Line 4
Data type: string
Additional text line 4 to be written on the display. Max. 55 characters.

[\MsgLine5]

Message Line 5
Data type: string
Additional text line 5 to be written on the display. Max. 55 characters.

[\Wrap]

Data type: switch
If selected, all the strings MsgLine1 ... MsgLine5 will be concatenated to one
string with a single space between each individual string and spread out on as few
lines as possible.
Default, each message string MsgLine1 ... MsgLine5 will be on separate lines on
the display.

[\Buttons]

Data type: buttondata
Defines the push buttons to be displayed. Only one of the predefined buttons
combination of type buttondata can be used. See Predefined data on page 979.
Default, the system displays the OK button. (\Buttons:=btn OK).

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 979.
Default no icon.

[\Image]

Data type: string
The name of the image that should be used. To launch your own images, the images
have to be placed in the HOME: directory in the active system or directly in the
active system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a Backup and Restore is done.
A Restart is required and then the FlexPendant will load the images.

Continues on next page
976 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.325 UIMsgBox - User Message Dialog Box type basic
RobotWare - OS
Continued

A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be showed can have the width of 185 pixels and the height of
300 pixels. If the image is bigger, only 185 * 300 pixels of the image will be shown
starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\Result]

Data type: btnres
The variable for which, depending on which button is pressed, the numeric value
0..7 is returned. Only one of the predefined constants of type btnres can be used
to test the user selection. See Predefined data on page 979.
If any type of system break such as \MaxTime, \DIBreak, or \DOBreak or if
\Buttons:=btnNone, resUnkwn equal to 0 is returned.

[\MaxTime]

Data type: num
Themaximum amount of time in seconds that program execution waits. If no button
is selected within this time then the program continues to execute in the error
handler unless the BreakFlag is used (see below). The constant ERR_TP_MAXTIME
can be used to test whether or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital input signal that may interrupt the operator dialog. If no button is selected
when the signal is set to 1 (or is already 1), the program continues to execute in
the error handler, unless the BreakFlag is used (see below). The constant
ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital output signal that may interrupt the operator dialog. If no button is
selected when the signal is set to 1 (or is already 1) then the program continues

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 977
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.325 UIMsgBox - User Message Dialog Box type basic

RobotWare - OS
Continued

to execute in the error handler unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak
is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler
will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the message box is activated on the FlexPendant. When the user selection
has been done and the execution continue, the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the instruction
is ready, or when PP is moved.

Continues on next page
978 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.325 UIMsgBox - User Message Dialog Box type basic
RobotWare - OS
Continued

Program execution
The message box with icon, header, message lines, image, and buttons are
displayed according to the programmed arguments. Program execution waits until
the user selects one button or the message box is interrupted by time-out or signal
action. The user selection and interrupt reason are transferred back to the program.
New message box on TRAP level takes the focus from the message box on the
basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

!Buttons:

CONST buttondata btnNone := -1;

CONST buttondata btnOK := 0;

CONST buttondata btnAbrtRtryIgn := 1;

CONST buttondata btnOKCancel := 2;

CONST buttondata btnRetryCancel := 3;

CONST buttondata btnYesNo := 4;

CONST buttondata btnYesNoCancel := 5;

!Results:

CONST btnres resUnkwn := 0;

CONST btnres resOK := 1;

CONST btnres resAbort := 2;

CONST btnres resRetry := 3;

CONST btnres resIgnore := 4;

CONST btnres resCancel := 5;

CONST btnres resYes := 6;

CONST btnres resNo := 7;

More examples
More examples of how to use the instruction UIMsgBox are illustrated below.

Example 1
VAR errnum err_var;

...

UIMsgBox \Header:= "Example 1", "Waiting for a break condition..."
\Buttons:=btnNone \Icon:=iconInfo \MaxTime:=60 \DIBreak:=di5
\BreakFlag:=err_var;

TEST err_var

CASE ERR_TP_MAXTIME:

! Time out break, max time 60 seconds has elapsed

CASE ERR_TP_DIBREAK:

! Input signal break, signal di5 has been set to 1

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 979
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.325 UIMsgBox - User Message Dialog Box type basic

RobotWare - OS
Continued

DEFAULT:

! Not such case defined

ENDTEST

Themessage box is displayed until a break condition has become true. The operator
cannot answer or remove the message box because btnNone is set for the
argument \Buttons. The message box is removed when di5 is set to 1 or at time
out (after 60 seconds).

Example 2
VAR errnum err_var;

...

UIMsgBox \Header:= "Example 2", "Waiting for a break condition..."
\Buttons:=btnNone \Icon:=iconInfo \MaxTime:=60 \DIBreak:=di5
\DIPassive \BreakFlag:=err_var;

TEST err_var

CASE ERR_TP_MAXTIME:

! Time out break, max time 60 seconds has elapsed

CASE ERR_TP_DIBREAK:

! Input signal break, signal di5 has been set to 0

DEFAULT:

! Not such case defined

ENDTEST

Themessage box is displayed until a break condition has become true. The operator
can not answer or remove the message box because btnNone is set for the
argument \Buttons. The message box is removed when di5 is set to 0 or at time
out (after 60 seconds).

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no client, e.g. a FlexPendant, to take care of the
instruction.

ERR_TP_NO_CLIENT

If parameter \BreakFlag is not used then these situations can then be dealt with
by the error handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator
then the system variable ERRNO is set to ERR_TP_MAXTIME and the execution
continues in the error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator
then the system variable ERRNO is set to ERR_TP_DIBREAK and the execution
continues in the error handler.

• If a digital output is set (parameter \DOBreak) before an input from the
operator then the system variable ERRNO is set to ERR_TP_DOBREAK and the
execution continues in the error handler.

Continues on next page
980 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.325 UIMsgBox - User Message Dialog Box type basic
RobotWare - OS
Continued

• If a persistent boolean is set (parameter \PersBoolBreak) before an input
from the operator then the system variable ERRNO is set to
ERR_TP_PERSBOOLBREAK and the execution continues in the error handler.

Limitations
Avoid using too small values for the time-out parameter \MaxTimewhen UIMsgBox
is frequently executed, like in a loop. It can result in an unpredictable behavior of
the system performance, like slow response of the FlexPendant.

Syntax
UIMsgBox

['\'Header':=' <expression (IN) of string>',']

[MsgLine1':='] <expression (IN) of string>

['\'MsgLine2':='<expression (IN) of string>]

['\'MsgLine3':='<expression (IN) of string>]

['\'MsgLine4':='<expression (IN) of string>]

['\'MsgLine5':='<expression (IN) of string>]

['\'Wrap]

['\'Buttons':=' <expression (IN) of buttondata>]

['\'Icon':=' <expression (IN) of icondata>]

['\'Image':='<expression (IN) of string>]

['\'Result':='< var or pers (INOUT) of btnres>]

['\'MaxTime':=' <expression (IN) of num>]

['\'DIBreak':=' <variable (VAR) of signaldi>]

['\'DIPassive]

['\'DOBreak':=' <variable (VAR) of signaldo>]

['\'DOPassive]

['\'PersBoolBreak ':=' <persistent (PERS) of bool>]

['\'PersBoolPassive]

['\'BreakFlag':=' <var or pers (INOUT) of errnum>]

['\'UIActiveSignal ':=' <variable (VAR) of signaldo>] ';'

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

buttondata - Push button data on page 1568Push button data

btnres - Push button result data on page1565Push button result data

UIMessageBox - User Message Box type ad-
vanced on page 1531

User Interaction Message Box type ad-
vanced

UINumEntry - User Number Entry on page1539User Interaction Number Entry

UINumTune - User Number Tune on page1546User Interaction Number Tune

UIAlphaEntry - User Alpha Entry on page1501User Interaction Alpha Entry

UIListView - User List View on page 1523User Interaction List View

UIClientExist - Exist User Client on page1508System connected to FlexPendant and so
on.

Product specification - Controller software
IRC5

FlexPendant interface

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 981
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.325 UIMsgBox - User Message Dialog Box type basic

RobotWare - OS
Continued

SeeFor information about

TPErase - Erases text printed on the FlexPend-
ant on page 855

Clean up the Operator window

982 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.325 UIMsgBox - User Message Dialog Box type basic
RobotWare - OS
Continued

1.326 UIMsgWrite - User message dialog box type non-waiting

Usage
UIMsgWrite (User Interaction Message Write) is used to communicate with the
user of the robot system on an available user device, such as the FlexPendant. A
message is written to the operator.

Basic examples
The following examples illustrate the instruction UIMsgWrite.

Example 1
VAR string myHeader := "Signal error!";

UIMsgWrite myHeader, "Set signal di1 high please!" \Icon:=iconInfo;

WaitDi di1, 1;

UIMsgWriteAbort;

The message "Set signal di1 high please!" is displayed. The program proceeds
and the message is removed when the signal di1 is set.

Example 2
VAR string myHeader := "Signal Error!";

VAR string myMsgArray{5}:= ["Set", "signal", "di1", "high",
"please!"];

UIMsgWrite myHeader, myMsgArray, \Icon:=iconInfo
\Image:="MyImage.jpg";

WaitDi di1, 1;

UIMsgWriteAbort;

Themessage including header, five lines of message, icon, and image is displayed.
The program proceeds and the message is removed when the signal di1 is set.
Note that message line 1 to message line 5 are displayed on separate lines 1 to 5
(the switch \Wrap is not used).

Arguments
UIMsgWrite Header Message | MsgArray [\Wrap] [\Icon] [\Image]

[\PersBool] | [\PersBoolName] [\AbortValue] [\UIActiveSignal]

Header

Data type: string
Header text to be written at the top of the message box. Maximum 40 characters.

Message

Data type: string
One text line to be written on the display. Maximum 50 characters.

MsgArray

(Message Array)
Data type: string

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 983
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.326 UIMsgWrite - User message dialog box type non-waiting

RobotWare - OS

Several text lines from an array to be written on the display. Only one of the
parameters Message or MsgArray can be used at the same time.
Maximum layout space is 5 lines with 50 characters each.

[\Wrap]

Data type: switch
If selected, all the lines in MsgArraywill be concatenated to one string with a single
space between each individual string and spread out on as few lines as possible.
Default, each line in MsgArray will be on separate lines on the display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used, see Predefined data on page 986.
Default no icon.

[\Image]

Data type: string
The name of the image that should be used. To launch your own images, the images
have to be placed in the HOME: directory in the active system or directly in the
active system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a backup and restore is done.
A restart is required and then the FlexPendant will load the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be shown can have the width of 185 pixels and the height of
300 pixels. If the image is larger, then only 185 * 300 pixels of the image will be
shown starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\PersBool]

(Persistent Bool)
Data type: bool
The message will be displayed as long as the specified bool is FALSE. If the
parameter AbortValue is used, the message will be displayed as long as the
specified bool differs in value from AbortValue.
Only an entire PERS bool or TASK PERS bool variable can be used.

[\PersBoolName]

(Persistent Bool Name)
Data type: string

Continues on next page
984 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.326 UIMsgWrite - User message dialog box type non-waiting
RobotWare - OS
Continued

The message will be displayed as long as the specified bool is FALSE. If the
parameter AbortValue is used, the message will be displayed as long as the
specified bool differs in value from AbortValue.
Only an entire PERS bool or TASK PERS bool variable name can be used.
If using the \PersBoolName argument, it is possible to use a PERS bool variable
declared in another task in the UIMsgWrite instruction.

[\AbortValue]

Data type: bool
Only valid if PersBool is present. The expected value for PersBool. Themessage
will be displayed until PersBool equals AbortValue.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when themessage box is activated on the FlexPendant. The signal is set to 0 when
the message box is removed with instruction UIMsgWriteAbort or when the
PersBool expression is fulfilled.
No supervision of stop or restart exist. The signal is set to 0 when PP is moved.

Program execution
Themessage with icon, header, message lines, image, and unfulfilled expressions
are displayed according to the programmed arguments. Themessage is displayed
until the message is aborted by UIMsgWriteAbort (or when the PersBool
expression is fulfilled, if PersBool argument is used).

• A new message on basic level will replace an older message.
• A new message on TRAP level will replace an older message on basic level,

and stay active when returning to basic level.
• A new message in a service routine will always be aborted when returning

to basic level. Any active message on basic level will then be reactivated.
• A new user message generated by the following instructions and functions

will replace a message generated by UIMsgWrite:
TPReadFK, TPReadDnum, TPReadNum, UIMsgBox, UIMessageBox,

UIDnumEntry, UIDnumTune, UINumEntry, UINumTune,

UIAlphaEntry, UIListView.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 985
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.326 UIMsgWrite - User message dialog box type non-waiting

RobotWare - OS
Continued

Cause of errorName

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

The data object used in [\PersBoolName] is non-existent.ERR_SYM_ACCESS

Predefined data
The following constants of the data type icondata are predefined in the system:

IconConstantValue

No iconiconNone0

Information iconiconInfo1

Warning iconiconWarning2

Error iconiconError3

Syntax
UIMsgWrite

[Header ':=' <expression (IN) of string> ',']

[Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' Image ':=' <expression (IN) of string>]

['\' PersBool ':=' <pers (IN) of bool>]

| ['\' PersBoolName ':=' <pers (IN) of string>]

['\' AbortValue ':=' <var or pers (IN) of bool>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ';'

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

UIMsgWriteAbort - Abort user message dialog
box type non-waiting on page 987

Abort user message dialog

UIClientExist - Exist User Client on page 1508System connected to FlexPendant and
so on.

Product specification - Controller software IRC5FlexPendant interface

Application manual - Controller software IRC5Cyclic bool

986 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.326 UIMsgWrite - User message dialog box type non-waiting
RobotWare - OS
Continued

1.327 UIMsgWriteAbort - Abort user message dialog box type non-waiting

Usage
UIMsgWriteAbort is used to abort an active message that has previously been
launched by an UIMsgWrite instruction.

Basic examples
The following example illustrates the instruction UIMsgWriteAbort.

Example 1
VAR string myHeader := "Signal error!";

UIMsgWrite myHeader, "Set signal di1 high please!", iconInfo;

WaitDi di1, 1;

UIMsgWriteAbort;

The message "Set signal di1 high please!" is displayed. The program proceeds
and the message is removed when the signal di1 is set.

Syntax
UIMsgWriteAbort ';'

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

UIMsgWrite - User message dialog box type non-
waiting on page 983

Write user message dialog

UIClientExist - Exist User Client on page 1508System connected to FlexPendant and
so on.

Product specification - Controller software IRC5FlexPendant interface

Application manual - Controller software IRC5Cyclic bool

Technical reference manual - RAPID Instructions, Functions and Data types 987
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.327 UIMsgWriteAbort - Abort user message dialog box type non-waiting

RobotWare - OS

1.328 UIShow - User Interface show

Usage
UIShow (User Interface Show) is used to communicate with the user of the robot
system on the available User Device such as the FlexPendant. With UIShow both
individually written applications and standard applications can be launched from
a RAPID program.

Basic examples
The following examples illustrate the instruction UIShow:
Example 1 and example 2 only works if the files TpsViewMyAppl.dll and
TpsViewMyAppl.gtpu.dll is present in the HOME: directory, and aRestart has
been performed.

Example 1
CONST string Name:="TpsViewMyAppl.gtpu.dll";

CONST string Type:="ABB.Robotics.SDK.Views.TpsViewMyAppl";

CONST string Cmd1:="Init data string passed to the view";

CONST string Cmd2:="New init data string passed to the view";

PERS uishownum myinstance:=0;

VAR num mystatus:=0;

...

! Launch one view of my application MyAppl

UIShow Name, Type \InitCmd:=Cmd1 \InstanceID:=myinstance
\Status:=mystatus;

! Update the view with new init command

UIShow Name, Type \InitCmd:=Cmd2 \InstanceID:=myinstance
\Status:=mystatus;

The code above will launch the view TpsViewMyAppl with init command Cmd1,
and then update the view with Cmd2.

Example 2
CONST string Name:="TpsViewMyAppl.gtpu.dll";

CONST string Type:="ABB.Robotics.SDK.Views.TpsViewMyAppl";

CONST string Cmd1:="Init data string passed to the view";

CONST string Cmd2:="New init data string passed to the view";

PERS uishownum myinstance:=0;

VAR num mystatus:=0;

...

! Launch one view of my application MyAppl

UIShow Name, Type \InitCmd:=Cmd1 \Status:=mystatus;

! Launch another view of the application MyAppl

UIShow Name, Type \InitCmd:=Cmd2 \InstanceID:=myinstance
\Status:=mystatus;

The code above will launch the view TpsViewMyAppl with init command Cmd1.
Then it launches another view with init command Cmd2.

Example 3
CONST string Name:="tpsviewbackupandrestore.dll";

CONST string Type:="ABB.Robotics.Tps.Views.TpsViewBackupAndRestore";

Continues on next page
988 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.328 UIShow - User Interface show
RobotWare - OS

VAR num mystatus:=0;

...

UIShow Name, Type \Status:=mystatus;

Launch standard application Backup and Restore.

Example 4
CONST string Name:="TpsViewPanel.gtpu.dll";

CONST string Type:="ABB.Robotics.SDK.Views.MainScreen";

PERS uishownum myinstance:=0;

VAR num mystatus:=0;

...

UIShow Name, Type \InstanceID:=myinstance \Status:=mystatus;

Launch an application created with ScreenMaker.

Arguments
UIShow AssemblyName TypeName [\InitCmd] [\InstanceId] [\Status]

[\NoCloseBtn]

AssemblyName

Data type: string
The name of the assembly that contains the view.

TypeName

Data type: string
This is the name of the view (the type to create). This is the fully qualified name of
the type, i.e. its namespace is included.

[\InitCmd]

Init Command
Data type: string
A init data string passed to the view.

[\InstanceId]

Data type: uishownum
A parameter that represents a token used to identify a view. If a view is shown
after the call to UIShow then a value that identifies the view is passed back. This
token can then be used in other calls to UIShow to activate an already running
view. If the value identifies an existing (running) view then the view will be activated.
If it does not exist then a new instance will be created. This means that this
parameter can be used to determine if a new instance will be launched or not. If
its value identifies an already started view then this view will be activated regardless
of the values of all other parameters. A recommendation is to use an unique
InstanceId variable for each new application that is going to be launched with
the UIShow instruction.
The parameter must be a persistent variable and the reason for this is that this
variable should keep its value, even if the program pointer is moved to main. If
executing the same UIShow as earlier and using the same variable then the same
view will be activated if it is still open. If the view has been closed then a new view
will be launched.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 989
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.328 UIShow - User Interface show

RobotWare - OS
Continued

[\Status]

Data type: num
Status indicates if the operation was successful or not. Note that if this option is
used then the RAPID execution will be waiting until the instruction is completed,
i.e. the view is launched.
This optional parameter is primary used for debugging purpose. (SeeError handling)

DescriptionStatus

OK0

No space left on the FlexPendant for the new view. Maximum
6 views can be open at the same time on the FlexPendant.

-1

Assembly could not be found, does not exist-2

File was found, but could not be loaded-3

Assembly exist, but no new instance could be created-4

The typename is invalid for this assembly-5

InstanceID does not match assembly to load-6

[\NoCloseBtn]

No Close Button
Data type: switch
NoCloseBtn disables the close button of the view.

Program execution
The UIShow instruction is used to launch individual applications on the FlexPendant.
To launch individual applications, the assemblies have to be placed in the HOME:
directory in the active system, or directly in the active system, or in an additional
option. The recommendation is to place the files in the HOME: directory so that
they are saved if a Backup and Restore is done. A Restart is required and then
the FlexPendant loads the new assemblies. A demand on the system is that the
RobotWare option FlexPendant Interface is used.
It is also possible to launch standard applications such as Backup and Restore.
Then there is no demand to have the RobotWare option FlexPendant Interface.
If using the parameter \Status then the program execution will wait until the
application is launched. If errors in the application are not handled then it is only
the result of the launch that is supervised. Without the \Status parameter, the
FlexPendant is ordered to launch the application but there is no check to determine
if it is possible to launch it or not.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

There is no client, e.g. a FlexPendant, to take care of the
instruction.

ERR_TP_NO_CLIENT

Continues on next page
990 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.328 UIShow - User Interface show
RobotWare - OS
Continued

If parameter \Status is used then these situations can then be dealt with by the
error handler:

• If there is no space left on the FlexPendant for the assembly then the system
variable ERRNO is set to ERR_UISHOW_FULL and the execution continues in
the error handler. The FlexPendant can have 6 views open at the same time.

• If something else goes wrong when trying to launch a view then the system
variable ERRNO is set to ERR_UISHOW_FATAL, and the execution continues
in the error handler.

Limitations
When using UIShow instruction to launch individual applications then it is a demand
that the system is equipped with the option FlexPendant Interface.
Applications that have been launched with the UIShow instruction do not survive
power fail situations. POWER ON event routine can be used to setup the application
again.

Syntax
UIShow

[AssemblyName ':='] < expression (IN) of string >','

[TypeName ':='] < expression (IN) of string >','

['\'InitCmd' :=' < expression (IN) of string>]

['\'InstanceId ':=' < persistent (PERS) of uishownum>]

['\'Status ':=' < variable (VAR) of num>]

['\'NoCloseBtn]';'

Related information

SeeFor information about

Product specification - Controller software
IRC5

FlexPendant interface

http://developercenter.robotstudio.com/Building individual applications for the
FlexPendant

uishownum - Instance ID for UIShow on
page 1767

uishownum

TPErase - Erases text printed on the FlexPend-
ant on page 855

Clean up the operator window

Technical reference manual - RAPID Instructions, Functions and Data types 991
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.328 UIShow - User Interface show

RobotWare - OS
Continued

http://developercenter.robotstudio.com/

1.329 UnLoad - UnLoad a program module during execution

Usage
UnLoad is used to unload a program module from the program memory during
execution.
The programmodule must have previously been loaded into the programmemory
using the instructions Load or StartLoad - WaitLoad.

Basic examples
The following example illustrates the instruction UnLoad:
See also More examples below.

Example 1
UnLoad diskhome \File:="PART_A.MOD";

UnLoad the program module PART_A.MOD from the program memory that was
previously loaded into the program memory with Load. (See instruction Load).
diskhome is a predefined string constant "HOME:".

Arguments
UnLoad [\ErrIfChanged] | [\Save] FilePath [\File]

[\ErrIfChanged]

Data type: switch
If this argument is used, and the module has been changed since it was loaded
into the system, then the instruction will generate the error recovery code
ERR_NOTSAVED.

[\Save]

Data type: switch
If this argument is used then the program module is saved before the unloading
starts. The programmodule will be saved at the original place specified in the Load
or StartLoad instruction.

FilePath

Data type: string
The file path and the file name to the file that will be unloaded from the program
memory. The file path and the file name must be the same as in the previously
executed Load or StartLoad instruction. The file name shall be excluded when
the argument \File is used.

[\File]

Data type: string
When the file name is excluded in the argument FilePath, then it must be defined
with this argument. The file name must be the same as in the previously executed
Load or StartLoad instruction.

Continues on next page
992 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.329 UnLoad - UnLoad a program module during execution
RobotWare - OS

Program execution
To be able to execute an UnLoad instruction in the program, a Load or StartLoad
- WaitLoad instruction with the same file path and namemust have been executed
earlier in the program.
The program execution waits for the program module to finish unloading before
the execution proceeds with the next instruction.
After that the program module is unloaded, and the rest of the program modules
will be linked.
For more information see the instructions Load or StartLoad-Waitload.

More examples
More examples of how to use the instruction UnLoad are illustrated below.

Example 1
UnLoad "HOME:/DOORDIR/DOOR1.MOD";

UnLoad the program module DOOR1.MOD from the program memory that was
previously loaded into the program memory.

Example 2
UnLoad "HOME:" \File:="DOORDIR/DOOR1.MOD";

Same as in example 1 above but another syntax.

Example 3
Unload \Save, "HOME:" \File:="DOORDIR/DOOR1.MOD";

Same as in examples 1 and 2 above but saves the program module before
unloading.

Limitations
It is not allowed to unload a program module that is executing (program pointer in
the module).
TRAP routines, system I/O events, and other program tasks cannot execute during
the unloading.
Avoid ongoing robot movements during the unloading.
Program stop during execution of UnLoad instruction can result in guard stop with
motors off and error message "20025 Stop order timeout" on the FlexPendant.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The argument \ErrIfChanged is used and the module
has been changed.

ERR_NOTSAVED

The file in the UnLoad instruction cannot be unloaded be-
cause of ongoing execution within the module or wrong
path (module not loaded with Load or StartLoad).

ERR_UNLOAD

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 993
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.329 UnLoad - UnLoad a program module during execution

RobotWare - OS
Continued

Syntax
UnLoad

['\'ErrIfChanged ','] | ['\'Save ',']

[FilePath':=']<expression (IN) of string>

['\'File':=' <expression (IN) of string>]';'

Related information

SeeFor information about

CheckProgRef - Check program references on page 118Check program references

Load - Load a programmodule during execution on page362Load a program module
StartLoad - Load a program module during execution on
page 777
WaitLoad - Connect the loadedmodule to the task on page1035

994 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.329 UnLoad - UnLoad a program module during execution
RobotWare - OS
Continued

1.330 UnpackRawBytes - Unpack data from rawbytes data

Usage
UnpackRawBytes is used to unpack the contents of a container of type rawbytes
to variables of type byte, num, dnum or string.

Basic examples
The following example illustrates the instruction UnpackRawBytes:

Example 1
VAR iodev io_device;

VAR rawbytes raw_data_out;

VAR rawbytes raw_data_in;

VAR num integer;

VAR dnum bigInt;

VAR num float;

VAR string string1;

VAR byte byte1;

VAR byte data1;

! Data packed in raw_data_out according to the protocol

...

Open "chan1:", io_device\Bin;

WriteRawBytes io_device, raw_data_out;

ReadRawBytes io_device, raw_data_in\Time := 1;

Close io_device;

According to the protocol that is known to the programmer, the message is sent
to device "chan1:". Then the answer is read from the device.
The answer contains, for an example, the following:

contents:byte number:

integer‘ 5’1-4

float‘ 234.6’5-8

string "This is real fun!"9-25

hex value‘ 4D’26

ASCII code 122, i.e. ‘z’27

integer’ 4294967295’28-36

integer’ 4294967295’37-40

UnpackRawBytes raw_data_in, 1, integer \IntX := DINT;

The contents of integer will be 5.
UnpackRawBytes raw_data_in, 5, float \Float4;

The contents of float will be 234.6 decimal.
UnpackRawBytes raw_data_in, 9, string1 \ASCII:=17;

The contents of string1 will be "This is real fun!".
UnpackRawBytes raw_data_in, 26, byte1 \Hex1;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 995
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.330 UnpackRawBytes - Unpack data from rawbytes data

RobotWare - OS

The contents of byte1 will be '4D' hexadecimal.
UnpackRawBytes raw_data_in, 27, data1 \ASCII:=1;

The contents of data1 will be 122, the ASCII code for "z".
UnpackRawBytes raw_data_in, 28, bigInt \IntX := LINT;

The contents of bigInt will be 4294967295.
UnpackRawBytes raw_data_in, 37, bigInt \IntX := UDINT;

The contents of bigInt will be 4294967295.

Arguments
UnpackRawBytes RawData [\Network] StartIndex Value [\Hex1]| [

\IntX] | [\Float4] | [\ASCII]

RawData

Data type: rawbytes
Variable container to unpack data from.

[\Network]

Data type: switch
Indicates that integer and float shall be unpacked from big-endian (network order)
represented in RawData. ProfiBus and InterBus use big-endian.
Without this switch, integer and float will be unpacked in little-endian (not network
order) representation from RawData. DeviceNet uses little-endian.
Only relevant together with optional parameter \IntX - UINT, UDINT, ULINT,
INT, DINT, LINT and \Float4.

StartIndex

Data type: num
StartIndex, between 1 and 1024, indicates where to start unpacking data from
RawData.

Value

Data type: anytype
Variable containing the data that was unpacked from RawData.
Allowed data types are: byte, num, dnum or string. Array cannot be used.

[\Hex1]

Data type: switch
The data to be unpacked and placed in Value has hexadecimal format in 1 byte
and will be converted to decimal format in a byte variable.

[\IntX]

Data type: inttypes
The data to be unpacked has the format according to the specified constant of
data type inttypes. The data will be converted to a num or a dnum variable
containing an integer and stored in Value.
See Predefined data on page 997.

Continues on next page
996 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.330 UnpackRawBytes - Unpack data from rawbytes data
RobotWare - OS
Continued

[\Float4]

Data type: switch
The data to be unpacked and placed in Value has float, 4 bytes, format, and it will
be converted to a num variable containing a float.

[\ASCII]

Data type: num
The data to be unpacked and placed in Value has byte or string format.
If Value is of type byte then the data will be interpreted as ASCII code and
converted to byte format (1 character).
If Value is of type string then the data will be stored as string (1...80
characters). String data is not NULL terminated in data of type rawbytes.
One of arguments \Hex1, \IntX, \Float4 or \ASCII must be programmed.
The following combinations are allowed:

Allowed optional parameters:Data type of Value:

\IntXnum *)

\IntXdnum **)

\Float4num

\ASCII:=n with n between 1 and 80string

\Hex1 \ASCII:=1byte

*) Must be an integer within the value range of selected symbolic constant USINT,
UINT, UDINT, SINT, INT or DINT.
**) Must be an integer within the value range of selected symbolic constant USINT,
UINT, UDINT, ULINT, SINT, INT, DINT or LINT.

Program execution
During program execution data is unpacked from the container of type rawbytes
into a variable of type anytype.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Predefined data
The following symbolic constants of the data type inttypes are predefined and
can be used to specify the integer in parameter \IntX.

Integer value rangeInteger formatConstant
value

Symbolic con-
stant

0 ... 255Unsigned 1 byte integer1USINT

0 ... 65 535Unsigned 2 byte integer2UINT

0 ... 8 388 608 *)Unsigned 4 byte integer4UDINT

0 ... 4 294 967 295 ****)

0 ... 4 503 599 627 370 496**)Unsigned 8 byte integer8ULINT

- 128... 127Signed 1 byte integer- 1SINT

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 997
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.330 UnpackRawBytes - Unpack data from rawbytes data

RobotWare - OS
Continued

Integer value rangeInteger formatConstant
value

Symbolic con-
stant

- 32 768 ... 32 767Signed 2 byte integer- 2INT

- 8 388 607 ... 8 388 608 *)Signed 4 byte integer- 4DINT

-2 147 483 648 ... 2 147 483 647
***)

- 4 503 599 627 370 496... 4 503
599 627 370 496 **)

Signed 8 byte integer- 8LINT

*) RAPID limitation for storage of integer in data type num.
**) RAPID limitation for storage of integer in data type dnum.
***) Range when using a dnum variable and inttype DINT.
****) Range when using a dnum variable and inttype UDINT.

Syntax
UnpackRawBytes

[RawData ':='] < variable (VAR) of rawbytes>

['\' Network] ','

[StartIndex ':='] < expression (IN) of num> ','

[Value ':='] < variable (VAR) of anytype>

['\' Hex1]

| ['\' IntX' :=' < expression (IN) of inttypes>]

| [' \' Float4]

| ['\' ASCII' :=' < expression (IN) of num>] ';'

Related information

SeeFor information about

rawbytes - Raw data on page 1689rawbytes data

RawBytesLen - Get the length of rawbytes data on
page 1390

Get the length of rawbytes data

ClearRawBytes - Clear the contents of rawbytes data
on page 133

Clear the contents of rawbytes data

CopyRawBytes - Copy the contents of rawbytes data
on page 157

Copy the contents of rawbytes data

PackDNHeader - Pack DeviceNet Header into raw-
bytes data on page 503

Pack DeviceNet header into
rawbytes data

PackRawBytes - Pack data into rawbytes data on
page 506

Pack data into rawbytes data

WriteRawBytes - Write rawbytes data on page 1082Write rawbytes data

ReadRawBytes - Read rawbytes data on page 586Read rawbytes data

UnpackRawBytes - Unpack data from rawbytes data
on page 995

Unpack data from rawbytes data

Technical reference manual - RAPID OverviewBit/Byte Functions

Technical reference manual - RAPID OverviewString functions

Application manual - Controller software IRC5File and serial channel handling

998 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.330 UnpackRawBytes - Unpack data from rawbytes data
RobotWare - OS
Continued

1.331 VelSet - Changes the programmed velocity

Usage
VelSet is used to increase or decrease the programmed velocity of all subsequent
movement instructions. This instruction is also used to limit the maximum TCP
velocity.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the instruction VelSet:
See also More examples on page 1000.

Example 1
VelSet 50, 800;

All the programmed velocities are decreased to 50% of the value in the instruction.
The TCP velocity is not permitted to exceed 800 mm/s.

Arguments
VelSet Override Max

Override

Data type: num
Desired velocity as a percentage of programmed velocity. 100% corresponds to
the programmed velocity.

Max

Data type: num
Maximum TCP velocity in mm/s.

Program execution
The programmed velocity applies for the next executedmovement instruction until
a new VelSet instruction is executed.
The argument Override affects:

• All velocity components (TCP, orientation, rotating, and linear external axes)
in speeddata.

• The programmed velocity override in the positioning instruction (the argument
\V).

• Timed movements.
The argument Override does not affect:

• The welding speed in welddata.
• The heating and filling speed in seamdata.

The argument Max only limits the velocity of the TCP if it is lower than the
programmed velocity.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 999
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.331 VelSet - Changes the programmed velocity

RobotWare - OS

The default values for Override and Max are 100% and vmax.v_tcp mm/s
respectively. These values are automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Note

The maximum TCP speed for the used robot type can be changed in the Motion
configuration system parameters, type Motion Planner and attribute Linear Max
Speed. The RAPID function MaxRobSpeed returns the same value.

More examples
More examples of how to use the instruction VelSet are illustrated below.

Example 1
VelSet 50, 800;

MoveL p1, v1000, z10, tool1;

MoveL p2, v2000, z10, tool1;

MoveL p3, v1000\T:=5, z10, tool1;

The speed is 500 mm/s to point p1 and 800 mm/s to p2. It takes 10 seconds to
move from p2 to p3.

Limitations
The maximum speed is not taken into consideration when the time is specified in
the movement instruction.

Syntax
VelSet

[Override ':='] < expression (IN) of num > ','

[Max ':='] < expression (IN) of num > ';'

Related information

SeeFor information about

AccSet - Reduces the acceleration on page 21Reduction of acceleration

MaxRobSpeed - Maximum robot speed on page 1335Max. TCP speed for this robot

motsetdata - Motion settings data on page 1660Motion settings data

speeddata - Speed data on page 1718Definition of velocity

Technical reference manual - RAPID OverviewPositioning instructions

1000 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.331 VelSet - Changes the programmed velocity
RobotWare - OS
Continued

1.332 WaitAI - Waits until an analog input signal value is set

Usage
WaitAI (Wait Analog Input) is used to wait until an analog input signal value is
set.

Basic examples
The following examples illustrate the instruction WaitAI:

Example 1
WaitAI ai1, \GT, 5;

Program execution only continues after the ai1 analog input has value greater
than 5.

Example 2
WaitAI ai1, \LT, 5;

Program execution only continues after the ai1 analog input has value less than
5.

Arguments
WaitAI Signal [\LT] | [\GT] Value [\MaxTime] [\ValueAtTimeout]

[\Visualize] [\Header] [\Message] | [\MsgArray] [\Wrap]
[\Icon] [\Image] [\VisualizeTime] [\UIActiveSignal]

Signal

Data type: signalai
The name of the analog input signal.

[\LT]

Less Than
Data type: switch
If using this parameter, the WaitAI instruction waits until the analog signal value
is less than the value in Value.

[\GT]

Greater Than
Data type: switch
If using this parameter the WaitAI instruction waits until the analog signal value
is greater than the value in Value.

Value

Data type: num
The desired value of the signal.

[\MaxTime]

Maximum Time
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1001
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.332 WaitAI - Waits until an analog input signal value is set

RobotWare - OS

The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the condition is met, the error handler will be called, if there is one,
with the error code ERR_WAIT_MAXTIME. If there is no error handler, the execution
will be stopped.

[\ValueAtTimeout]

Data type: num
If the instruction time-out, the current signal value will be stored in this variable.
The variable will only be set if the system variable ERRNO is set to
ERR_WAIT_MAXTIME.

[\Visualize]

Data type: switch
If selected, the visualization is activated. The visualization consists of a message
box with the condition that is not fulfilled, icon, header, message lines, and image
is displayed according to the programmed arguments.

[\Header]

Data type: string
Header text to be written at the top of the message box. Maximum 40 characters.
If no \Header argument is used a default message will be displayed.

[\Message]

Data type: string
One text line to be written on the display. Maximum 50 characters.

[\MsgArray]

(Message Array)
Data type: string
Several text lines from an array to be written on the display. Only one of the
parameters \Message or \MsgArray can be used at the same time.
Maximum layout space is 5 lines with 50 characters each.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on separate lines on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1639.
Default, no icon.

Continues on next page
1002 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.332 WaitAI - Waits until an analog input signal value is set
RobotWare - OS
Continued

[\Image]

Data type: string
The name of the image that should be used. To launch your own images, the images
have to be placed in the HOME: directory in the active system or directly in the
active system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a backup and restore is done.
A restart is required and then the FlexPendant will load the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be shown can have the width of 185 pixels and the height of
300 pixels. If the image is larger, then only 185 * 300 pixels of the image will be
shown starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\VisualizeTime]

Data type: num
The waiting time before the message box should appear on the FlexPendant. If
using the arguments \VisualizeTime and \MaxTime, the time used in argument
\MaxTime needs to be bigger than the time used in argument \VisualizeTime.
The default time for the visualization if not using the argument \VisualizeTime
is 5 s. Minimum value 1 s. Maximum value no limit. Resolution 0.001 s.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the visualization message box is activated on the FlexPendant. When the
message box is removed (when the condition is met), the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the instruction
is ready, or when PP is moved.

Program execution
If the value of the signal is correct when the instruction is executed, the program
simply continues with the following instruction.
If the signal value is incorrect, the robot enters a waiting state and the program
continues when the signal changes to the correct value. The change is detected
with an interrupt, which gives a fast response (not polled).
When the robot is waiting, the time is supervised. By default, the robot can wait
forever, but the maximal waiting time can be specified with the optional argument
\MaxTime. If this max. time is exceeded, an error is raised.
If program execution is stopped, and later restarted, the instruction evaluates the
currentvalue of the signal. Any change during program stop is rejected.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1003
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.332 WaitAI - Waits until an analog input signal value is set

RobotWare - OS
Continued

In manual mode, after waiting more than 3 s, an alert box will pop up asking if you
want to simulate the instruction. If you don’t want the alert box to appear then you
can set system parameter SimulateMenu to NO, see Technical reference
manual - System parameters, topic Controller, type General RAPID.
If the switch \Visualize is used, a message box is displayed on the FlexPendant
according to the programmed arguments. If no \Header argument is used a default
header text will be displayed. When the execution of the WaitAI instruction is
ready, the message box will be removed from the FlexPendant.
New message box on TRAP level takes the focus from the message box on the
basic level.

More examples
More examples of the instruction WaitAI are illustrated below.

Example 1
VAR num myvalattimeout:=0;

WaitAI ai1, \LT, 5 \MaxTime:=4 \ValueAtTimeout:=myvalattimeout;

ERROR

IF ERRNO=ERR_WAIT_MAXTIME THEN

TPWrite "Value of ai1 at timeout:" + ValToStr(myvalattimeout);

TRYNEXT;

ELSE

! No error recovery handling

ENDIF

Program execution continues only if ai1 is less than 5, or when timing out. If timing
out, the value of the signal ai1 at timeout can be logged without another read of
signal.

Example 2
WaitAI ai1 \GT, 5 \Visualize \Header:="Waiting for signal"

\MsgArray:=["Movement will not start until", "the condition
below is TRUE"] \Icon:=iconError;

MoveL p40, v500, z20, L10tip;

..

Continues on next page
1004 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.332 WaitAI - Waits until an analog input signal value is set
RobotWare - OS
Continued

If the condition is not met then the header and message specified in the optional
arguments \Header and \MsgArray will be written on the display of the
FlexPendant together with the condition that is not met.

xx1600000150

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed Value argument for the specified analog
input signal Signal is outside limits.

ERR_AO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

There is a time-out (parameter \MaxTime) before the signal
changes to the right value.

ERR_WAIT_MAXTIME

Syntax
WaitAI

[Signal ':='] <variable (VAR) of signalai> ','

['\' LT] | ['\' GT] ','

[Value ':='] <expression (IN) of num>

['\'MaxTime ':='<expression (IN) of num>]

['\'ValueAtTimeout' :=' <variable (VAR) of num>]

['\' Visualize]

['\' Header ':=' <expression (IN) of string>]]

['\' Message ':=' <expression (IN) of string>]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1005
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.332 WaitAI - Waits until an analog input signal value is set

RobotWare - OS
Continued

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' Image ':=' <expression (IN) of string>]

['\' VisualizeTime ':=' <expression (IN) of num>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ';'

Related information

SeeFor information about

WaitUntil - Waits until a condition is met on
page 1053

Waiting until a condition is satisfied

WaitTime - Waits a given amount of time on
page 1051

Waiting for a specified period of time

WaitAO -Waits until an analog output signal value
is set on page 1007

Waiting until an analog output is set/reset

1006 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.332 WaitAI - Waits until an analog input signal value is set
RobotWare - OS
Continued

1.333 WaitAO - Waits until an analog output signal value is set

Usage
WaitAO (Wait Analog Output) is used to wait until an analog output signal value
is set.

Basic examples
The following examples illustrate the instruction WaitAO:

Example 1
WaitAO ao1, \GT, 5;

Program execution only continues after the ao1 analog output has value greater
than 5.

Example 2
WaitAO ao1, \LT, 5;

Program execution only continues after the ao1 analog output has value less than
5.

Arguments
WaitAO Signal [\LT] | [\GT] Value [\MaxTime] [\ValueAtTimeout]

[\Visualize] [\Header] [\Message] | [\MsgArray] [\Wrap]
[\Icon] [\Image] [\VisualizeTime] [\UIActiveSignal]

Signal

Data type: signalao
The name of the analog output signal.

[\LT]

Less Than
Data type: switch
If using this parameter, the WaitAO instruction waits until the analog signal value
is less than the value in Value.

[\GT]

Greater Than
Data type: switch
If using this parameter, the WaitAO instruction waits until the analog signal value
is greater than the value in Value.

Value

Data type: num
The desired value of the signal.

[\MaxTime]

Maximum Time
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1007
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.333 WaitAO - Waits until an analog output signal value is set

RobotWare - OS

The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the condition is met, the error handler will be called, if there is one,
with the error code ERR_WAIT_MAXTIME. If there is no error handler, the execution
will be stopped.

[\ValueAtTimeout]

Data type: num
If the instruction time-out, the current signal value will be stored in this variable.
The variable will only be set if the system variable ERRNO is set to
ERR_WAIT_MAXTIME.

[\Visualize]

Data type: switch
If selected, the visualization is activated. The visualization consists of a message
box with the condition that is not fulfilled, icon, header, message lines, and image
is displayed according to the programmed arguments.

[\Header]

Data type: string
Header text to be written at the top of the message box. Maximum 40 characters.
If no \Header argument is used a default message will be displayed.

[\Message]

Data type: string
One text line to be written on the display. Maximum 50 characters.

[\MsgArray]

(Message Array)
Data type: string
Several text lines from an array to be written on the display. Only one of the
parameters \Message or \MsgArray can be used at the same time.
Maximum layout space is 5 lines with 50 characters each.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on separate lines on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1639.
Default, no icon.

Continues on next page
1008 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.333 WaitAO - Waits until an analog output signal value is set
RobotWare - OS
Continued

[\Image]

Data type: string
The name of the image that should be used. To launch your own images, the images
have to be placed in the HOME: directory in the active system or directly in the
active system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a backup and restore is done.
A restart is required and then the FlexPendant will load the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be shown can have the width of 185 pixels and the height of
300 pixels. If the image is larger, then only 185 * 300 pixels of the image will be
shown starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\VisualizeTime]

Data type: num
The waiting time before the message box should appear on the FlexPendant. If
using the arguments \VisualizeTime and \MaxTime, the time used in argument
\MaxTime needs to be bigger than the time used in argument \VisualizeTime.
The default time for the visualization if not using the argument \VisualizeTime
is 5 s. Minimum value 1 s. Maximum value no limit. Resolution 0.001 s.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the visualization message box is activated on the FlexPendant. When the
message box is removed (when the condition is met), the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the instruction
is ready, or when PP is moved.

Program execution
If the value of the signal is correct when the instruction is executed, the program
simply continues with the following instruction.
If the signal value is incorrect, the robot enters a waiting state and the program
continues when the signal changes to the correct value. The change is detected
with an interrupt, which gives a fast response (not polled).
When the robot is waiting, the time is supervised. By default, the robot can wait
forever, but the maximal waiting time can be specified with the optional argument
\MaxTime. If this max. time is exceeded, an error is raised.
If program execution is stopped, and later restarted, the instruction evaluates the
currentvalue of the signal. Any change during program stop is rejected.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1009
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.333 WaitAO - Waits until an analog output signal value is set

RobotWare - OS
Continued

In manual mode, after waiting more than 3 s, an alert box will pop up asking if you
want to simulate the instruction. If you don’t want the alert box to appear then you
can set system parameter SimulateMenu to NO, see Technical reference
manual - System parameters, topic Controller, type General RAPID.
If the switch \Visualize is used, a message box is displayed on the FlexPendant
according to the programmed arguments. If no \Header argument is used a default
header text will be displayed. When the execution of the WaitAO instruction is
ready, the message box will be removed from the FlexPendant.
New message box on TRAP level takes the focus from the message box on the
basic level.

More examples
More examples of the instruction WaitAO are illustrated below.

Example 1
VAR num myvalattimeout:=0;

WaitAO ao1, \LT, 5 \MaxTime:=4 \ValueAtTimeout:=myvalattimeout;

ERROR

IF ERRNO=ERR_WAIT_MAXTIME THEN

TPWrite "Value of ao1 at timeout:" + ValToStr(myvalattimeout);

TRYNEXT;

ELSE

! No error recovery handling

ENDIF

Program execution continues only if ao1 is less than 5, or when timing out. If timing
out, the value of the signal ao1 at timeout can be logged without another read of
signal.

Example 2
WaitAO ao1 \GT, 5 \Visualize \Header:="Waiting for signal"

\MsgArray:=["Movement will not start until", "the condition
below is TRUE"] \Icon:=iconError;

MoveL p40, v500, z20, L10tip;

..

Continues on next page
1010 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.333 WaitAO - Waits until an analog output signal value is set
RobotWare - OS
Continued

If the condition is not met then the header and message specified in the optional
arguments \Header and \MsgArray will be written on the display of the
FlexPendant together with the condition that is not met.

xx1600000151

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed Value argument for the specified analog
output signal Signal is outside limits.

ERR_AO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

There is a time-out (parameter \MaxTime) before the signal
changes to the right value.

ERR_WAIT_MAXTIME

Syntax
WaitAO

[Signal ':='] <variable (VAR) of signalao> ','

['\' LT] | ['\' GT] ','

[Value ':='] <expression (IN) of num>

['\'MaxTime ':='<expression (IN) of num>]

['\'ValueAtTimeout' :=' <variable (VAR) of num>]

['\' Visualize]

['\' Header ':=' <expression (IN) of string>]]

['\' Message ':=' <expression (IN) of string>]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1011
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.333 WaitAO - Waits until an analog output signal value is set

RobotWare - OS
Continued

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' Image ':=' <expression (IN) of string>]

['\' VisualizeTime ':=' <expression (IN) of num>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ';'

Related information

SeeFor information about

WaitUntil - Waits until a condition is met on
page 1053

Waiting until a condition is satisfied

WaitTime - Waits a given amount of time on
page 1051

Waiting for a specified period of time

WaitAI - Waits until an analog input signal value
is set on page 1001

Waiting until an analog input is set/reset

1012 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.333 WaitAO - Waits until an analog output signal value is set
RobotWare - OS
Continued

1.334 WaitDI - Waits until a digital input signal is set

Usage
WaitDI (Wait Digital Input) is used to wait until a digital input is set.

Basic examples
The following examples illustrate the instruction WaitDI:

Example 1
WaitDI di4, 1;

Program execution continues only after the di4 input has been set.

Example 2
WaitDI grip_status, 0;

Program execution continues only after the grip_status input has been reset.

Example 3
WaitDI di1, 1, \Visualize \Header:="Waiting for signal"

\MsgArray:=["Movement will not start until", "the condition
below is TRUE"] \Icon:=iconError;

MoveL p40, v500, z20, L10tip;

..

If the condition is not met then the header and message specified in the optional
arguments \Header and \MsgArray will be written on the display of the
FlexPendant together with the condition that is not met.

xx1600000148

Arguments
WaitDI Signal Value [\MaxTime] [\TimeFlag] [\Visualize] [\Header]

[\Message] | [\MsgArray] [\Wrap] [\Icon] [\Image]
[\VisualizeTime] [\UIActiveSignal]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1013
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.334 WaitDI - Waits until a digital input signal is set

RobotWare - OS

Signal

Data type: signaldi
The name of the signal.

Value

Data type: dionum
The desired value of the signal.

[\MaxTime]

Maximum Time
Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the condition is met then the error handler will be called, if there
is one, with the error code ERR_WAIT_MAXTIME. If there is no error handler then
the execution will be stopped.

[\TimeFlag]

Timeout Flag
Data type: bool
The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the condition is met. If this parameter is included in
the instruction then it is not considered to be an error if the max. time runs out.
This argument is ignored if the MaxTime argument is not included in the instruction.

[\Visualize]

Data type: switch
If selected, the visualization is activated. The visualization consists of a message
box with the condition that is not fulfilled, icon, header, message lines, and image
is displayed according to the programmed arguments.

[\Header]

Data type: string
Header text to be written at the top of the message box. Maximum 40 characters.
If no \Header argument is used a default message will be displayed.

[\Message]

Data type: string
One text line to be written on the display. Maximum 50 characters.

[\MsgArray]

(Message Array)
Data type: string
Several text lines from an array to be written on the display. Only one of the
parameters \Message or \MsgArray can be used at the same time.
Maximum layout space is 5 lines with 50 characters each.

Continues on next page
1014 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.334 WaitDI - Waits until a digital input signal is set
RobotWare - OS
Continued

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on separate lines on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1639.
Default, no icon.

[\Image]

Data type: string
The name of the image that should be used. To launch your own images, the images
have to be placed in the HOME: directory in the active system or directly in the
active system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a backup and restore is done.
A restart is required and then the FlexPendant will load the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be shown can have the width of 185 pixels and the height of
300 pixels. If the image is larger, then only 185 * 300 pixels of the image will be
shown starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\VisualizeTime]

Data type: num
The waiting time before the message box should appear on the FlexPendant. If
using the arguments \VisualizeTime and \MaxTime, the time used in argument
\MaxTime needs to be bigger than the time used in argument \VisualizeTime.
The default time for the visualization if not using the argument \VisualizeTime
is 5 s. Minimum value 1 s. Maximum value no limit. Resolution 0.001 s.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the visualization message box is activated on the FlexPendant. When the
message box is removed (when the condition is met), the signal is set to 0 again.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1015
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.334 WaitDI - Waits until a digital input signal is set

RobotWare - OS
Continued

No supervision of stop or restart exist. The signal is set to 0 when the instruction
is ready, or when PP is moved.

Program execution
If the value of the signal is correct, when the instruction is executed, then the
program simply continues with the following instruction.
If the signal value is not correct then the robot enters a waiting state and when the
signal changes to the correct value, the program continues. The change is detected
with an interrupt, which gives a fast response (not polled).
When the robot is waiting, the time is supervised, and if it exceeds the max time
value then the program will continue if a TimeFlag is specified or raise an error
if it’s not. If a TimeFlag is specified then this will be set to TRUE if the time is
exceeded. Otherwise it will be set to FALSE.
If program execution is stopped, and later restarted, the instruction evaluates the
currentvalue of the signal. Any change during program stop is rejected.
In manual mode, after waiting more than 3 s, an alert box will pop up asking if you
want to simulate the instruction. If you don’t want the alert box to appear then you
can set system parameter SimulateMenu to NO, see Technical reference
manual - System parameters, topic Controller, type General RAPID.
If the switch \Visualize is used, a message box is displayed on the FlexPendant
according to the programmed arguments. If no \Header argument is used a default
header text will be displayed. When the execution of the WaitDI instruction is
ready, the message box will be removed from the FlexPendant.
New message box on TRAP level takes the focus from the message box on the
basic level.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

There is a time-out (parameter \MaxTime) before the signal
changes to the right value.

ERR_WAIT_MAXTIME

Syntax
WaitDI

[Signal ':='] <variable (VAR) of signaldi>' ,'

[Value ':='] <expression (IN) of dionum>

['\'MaxTime' :='<expression (IN) of num>]

['\'TimeFlag':='<variable (VAR) of bool>]

['\' Visualize]

Continues on next page
1016 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.334 WaitDI - Waits until a digital input signal is set
RobotWare - OS
Continued

['\' Header ':=' <expression (IN) of string>]]

['\' Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' Image ':=' <expression (IN) of string>]

['\' VisualizeTime ':=' <expression (IN) of num>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ';'

Related information

SeeFor information about

WaitUntil - Waits until a condition is met on
page 1053

Waiting until a condition is satisfied

WaitTime - Waits a given amount of time on
page 1051

Waiting for a specified period of time

Technical reference manual - RAPID Instructions, Functions and Data types 1017
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.334 WaitDI - Waits until a digital input signal is set

RobotWare - OS
Continued

1.335 WaitDO - Waits until a digital output signal is set

Usage
WaitDO (Wait Digital Output) is used to wait until a digital output is set.

Basic examples
The following examples illustrate the instruction WaitDO:

Example 1
WaitDO do4, 1;

Program execution continues only after the do4 output has been set.

Example 2
WaitDO grip_status, 0;

Program execution continues only after the grip_status output has been reset.

Example 3
WaitDO do1, 1, \Visualize \Header:="Waiting for signal"

\MsgArray:=["Movement will not start until", "the condition
below is TRUE"] \Icon:=iconError;

MoveL p40, v500, z20, L10tip;

..

If the condition is not met then the header and message specified in the optional
arguments \Header and \MsgArray will be written on the display of the
FlexPendant together with the condition that is not met.

xx1600000149

Arguments
WaitDO Signal Value [\MaxTime] [\TimeFlag] [\Visualize] [\Header]

[\Message] | [\MsgArray] [\Wrap] [\Icon] [\Image]
[\VisualizeTime] [\UIActiveSignal]

Continues on next page
1018 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.335 WaitDO - Waits until a digital output signal is set
RobotWare - OS

Signal

Data type: signaldo
The name of the signal.

Value

Data type: dionum
The desired value of the signal.

[\MaxTime]

Maximum Time
Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the condition is met and the TimeFlag argument is not used then
the error handler can be called with the error code ERR_WAIT_MAXTIME. If there
is no error handler then the execution will be stopped.

[\TimeFlag]

Timeout Flag
Data type: bool
The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the condition is met. If this parameter is included in
the instruction then it is not considered to be an error if the maximum time runs
out. This argument is ignored if the MaxTime argument is not included in the
instruction.

[\Visualize]

Data type: switch
If selected, the visualization is activated. The visualization consists of a message
box with the condition that is not fulfilled, icon, header, message lines, and image
is displayed according to the programmed arguments.

[\Header]

Data type: string
Header text to be written at the top of the message box. Maximum 40 characters.
If no \Header argument is used a default message will be displayed.

[\Message]

Data type: string
One text line to be written on the display. Maximum 50 characters.

[\MsgArray]

(Message Array)
Data type: string
Several text lines from an array to be written on the display. Only one of the
parameters \Message or \MsgArray can be used at the same time.
Maximum layout space is 5 lines with 50 characters each.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1019
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.335 WaitDO - Waits until a digital output signal is set

RobotWare - OS
Continued

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on separate lines on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1639.
Default, no icon.

[\Image]

Data type: string
The name of the image that should be used. To launch your own images, the images
have to be placed in the HOME: directory in the active system or directly in the
active system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a backup and restore is done.
A restart is required and then the FlexPendant will load the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be shown can have the width of 185 pixels and the height of
300 pixels. If the image is larger, then only 185 * 300 pixels of the image will be
shown starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\VisualizeTime]

Data type: num
The waiting time before the message box should appear on the FlexPendant. If
using the arguments \VisualizeTime and \MaxTime, the time used in argument
\MaxTime needs to be bigger than the time used in argument \VisualizeTime.
The default time for the visualization if not using the argument \VisualizeTime
is 5 s. Minimum value 1 s. Maximum value no limit. Resolution 0.001 s.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the visualization message box is activated on the FlexPendant. When the
message box is removed (when the condition is met), the signal is set to 0 again.

Continues on next page
1020 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.335 WaitDO - Waits until a digital output signal is set
RobotWare - OS
Continued

No supervision of stop or restart exist. The signal is set to 0 when the instruction
is ready, or when PP is moved.

Program execution
If the value of the output signal is correct, when the instruction is executed, then
the program simply continues with the following instruction.
If the value of the output signal is not correct then the robot enters a waiting state.
When the signal changes to the correct value then the program continues. The
change is detected with an interrupt, which gives a fast response (not polled).
When the robot is waiting, the time is supervised, and if it exceeds the maximum
time value then the program will continue if a TimeFlag is specified or raise an
error if its not. If a TimeFlag is specified then this will be set to TRUE if the time
is exceeded. Otherwise it will be set to FALSE.
If program execution is stopped, and later restarted, the instruction evaluates the
currentvalue of the signal. Any change during program stop is rejected.
In manual mode, after waiting more than 3 s, an alert box will pop up asking if you
want to simulate the instruction. If you don’t want the alert box to appear then you
can set system parameter SimulateMenu to NO, see Technical reference
manual - System parameters, topic Controller, type General RAPID.
If the switch \Visualize is used, a message box is displayed on the FlexPendant
according to the programmed arguments. If no \Header argument is used a default
header text will be displayed. When the execution of the WaitDO instruction is
ready, the message box will be removed from the FlexPendant.
New message box on TRAP level takes the focus from the message box on the
basic level.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

There is a time-out (parameter \MaxTime) before the signal
changes to the right value.

ERR_WAIT_MAXTIME

Syntax
WaitDO

[Signal ':='] <variable (VAR) of signaldo>','

[Value ':='] <expression (IN) of dionum>

['\'MaxTime' :='<expression (IN) of num>]

['\'TimeFlag':='<variable (VAR) of bool>]

['\' Visualize]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1021
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.335 WaitDO - Waits until a digital output signal is set

RobotWare - OS
Continued

['\' Header ':=' <expression (IN) of string>]]

['\' Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' Image ':=' <expression (IN) of string>]

['\' VisualizeTime ':=' <expression (IN) of num>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ';'

Related information

SeeFor information about

WaitUntil -Waits until a condition ismet on page1053Waiting until a condition is satisfied

WaitTime -Waits agivenamount of timeonpage1051Waiting for a specified period of time

WaitDI - Waits until a digital input signal is set on
page 1013

Waiting until an input is set/reset

1022 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.335 WaitDO - Waits until a digital output signal is set
RobotWare - OS
Continued

1.336 WaitGI - Waits until a group of digital input signals are set

Usage
WaitGI (Wait Group digital Input) is used to wait until a group of digital input signals
are set to specified values.

Basic examples
The following example illustrates the instruction WaitGI:
See also More examples on page 1026.

Example 1
WaitGI gi4, 5;

Program execution continues only after the gi4 input has the value 5.

Example 2
WaitGI grip_status, 0;

Program execution continues only after the grip_status input has been reset.

Arguments
WaitGI Signal [\NOTEQ] | [\LT] | [\GT] Value | Dvalue [\MaxTime]

[\ValueAtTimeout] | [\DvalueAtTimeout] [\Visualize] [\Header]
[\Message] | [\MsgArray] [\Wrap] [\Icon] [\Image]
[\VisualizeTime] [\UIActiveSignal]

Signal

Data type: signalgi
The name of the digital group input signal.

[\NOTEQ]

NOT EQual
Data type: switch
If using this parameter, the WaitGI instruction waits until the digital group signal
value divides from the value in Value.

[\LT]

Less Than
Data type: switch
If using this parameter, the WaitGI instruction waits until the digital group signal
value is less than the value in Value.

[\GT]

Greater Than
Data type: switch
If using this parameter, the WaitGI instruction waits until the digital group signal
value is greater than the value in Value.

Value

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1023
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.336 WaitGI - Waits until a group of digital input signals are set

RobotWare - OS

The desired value of the signal. Must be an integer value within the working range
of the used digital group input signal. The permitted value is dependent on the
number of signals in the group. Max value that can be used in the Value argument
is 8388608, and that is the value a 23 bit digital signal can have as maximum value.

Dvalue

Data type: dnum
The desired value of the signal. Must be an integer value within the working range
of the used digital group input signal. The permitted value is dependent on the
number of signals in the group. The maximal amout of signal bits a digital group
signal can have is 32. With a dnum variable it is possible to cover the value range
0-4294967295, which is the value range a 32 bits digital signal can have.

[\MaxTime]

Maximum Time
Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the condition is met, the error handler will be called (if there is one)
with the error code ERR_WAIT_MAXTIME. If there is no error handler, the execution
will be stopped.

[\ValueAtTimeout]

Data type: num
If the instruction time-out, the current signal value will be stored in this variable.
The variable will only be set if the system variable ERRNO is set to
ERR_WAIT_MAXTIME. If the Dvalue argument is used, use argument
DvalueAtTimeout to store current value on signal (reason: limitation of maximum
integer value for num).
Signal values between 0 and 8388608 are always stored as an exact integer.

[\DvalueAtTimeout]

Data type: dnum
If the instruction time-out, the current signal value will be stored in this variable.
The variable will only be set if the system variable ERRNO is set to
ERR_WAIT_MAXTIME.
Signal values between 0 and 4294967295 are always stored as an exact integer.

[\Visualize]

Data type: switch
If selected, the visualization is activated. The visualization consists of a message
box with the condition that is not fulfilled, icon, header, message lines, and image
is displayed according to the programmed arguments.

[\Header]

Data type: string
Header text to be written at the top of the message box. Maximum 40 characters.
If no \Header argument is used a default message will be displayed.

Continues on next page
1024 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.336 WaitGI - Waits until a group of digital input signals are set
RobotWare - OS
Continued

[\Message]

Data type: string
One text line to be written on the display. Maximum 50 characters.

[\MsgArray]

(Message Array)
Data type: string
Several text lines from an array to be written on the display. Only one of the
parameters \Message or \MsgArray can be used at the same time.
Maximum layout space is 5 lines with 50 characters each.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on separate lines on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1639.
Default, no icon.

[\Image]

Data type: string
The name of the image that should be used. To launch your own images, the images
have to be placed in the HOME: directory in the active system or directly in the
active system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a backup and restore is done.
A restart is required and then the FlexPendant will load the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be shown can have the width of 185 pixels and the height of
300 pixels. If the image is larger, then only 185 * 300 pixels of the image will be
shown starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\VisualizeTime]

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1025
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.336 WaitGI - Waits until a group of digital input signals are set

RobotWare - OS
Continued

The waiting time before the message box should appear on the FlexPendant. If
using the arguments \VisualizeTime and \MaxTime, the time used in argument
\MaxTime needs to be bigger than the time used in argument \VisualizeTime.
The default time for the visualization if not using the argument \VisualizeTime
is 5 s. Minimum value 1 s. Maximum value no limit. Resolution 0.001 s.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the visualization message box is activated on the FlexPendant. When the
message box is removed (when the condition is met), the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the instruction
is ready, or when PP is moved.

Program execution
If the value of the signal is correct when the instruction is executed, the program
simply continues with the following instruction.
If the signal value is not correct, the robot enters a waiting state and the program
continues when the signal changes to the correct value. The change is detected
with an interrupt, which gives a fast response (not polled).
When the robot is waiting, the time is supervised. By default, the robot can wait
forever, but the maximal waiting time can be specified with the optional argument
\MaxTime. If this max. time is exceeded, an error is raised.
If program execution is stopped, and later restarted, the instruction evaluates the
currentvalue of the signal. Any change during program stop is rejected.
In manual mode, after waiting more than 3 s, an alert box will pop up asking if you
want to simulate the instruction. If you don’t want the alert box to appear then you
can set system parameter SimulateMenu to NO, see Technical reference
manual - System parameters, topic Controller, type General RAPID.
If the switch \Visualize is used, a message box is displayed on the FlexPendant
according to the programmed arguments. If no \Header argument is used a default
header text will be displayed. When the execution of the WaitGI instruction is
ready, the message box will be removed from the FlexPendant.
New message box on TRAP level takes the focus from the message box on the
basic level.

More examples
More examples of the instruction WaitGI are illustrated below.

Example 1
WaitGI gi1,\NOTEQ,0;

Program execution only continues after the gi1 differs from the value 0.

Example 2
WaitGI gi1,\LT,1;

Program execution only continues after the gi1 is less than 1.

Continues on next page
1026 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.336 WaitGI - Waits until a group of digital input signals are set
RobotWare - OS
Continued

Example 3
WaitGI gi1,\GT,0;

Program execution continues only after the gi1 is greater than 0.

Example 4
VAR num myvalattimeout:=0;

WaitGI gi1, 5 \MaxTime:=4 \ValueAtTimeout:=myvalattimeout;

ERROR

IF ERRNO=ERR_WAIT_MAXTIME THEN

TPWrite "Value of gi1 at timeout:" + ValToStr(myvalattimeout);

TRYNEXT;

ELSE

! No error recovery handling

ENDIF

Program execution continues only if gi1 is equal to 5, or when timing out. If timing
out, the value of the signal gi1 at timeout can be logged without another read of
signal.

Example 5
WaitGI gi1, 4, \Visualize \Header:="Waiting for signal"

\MsgArray:=["Movement will not start until", "the condition
below is TRUE"] \Icon:=iconError;

MoveL p40, v500, z20, L10tip;

..

If the condition is not met then the header and message specified in the optional
arguments \Header and \MsgArray will be written on the display of the
FlexPendant together with the condition that is not met.

xx1600000152

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1027
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.336 WaitGI - Waits until a group of digital input signals are set

RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed Value or Dvalue argument for the spe-
cified digital group input signal Signal is out of limit.

ERR_GO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

There is a time-out (parameter \MaxTime) before the signal
changes to the right value.

ERR_WAIT_MAXTIME

Syntax
WaitGI

[Signal ':='] <variable (VAR) of signalgi> ','

['\' NOTEQ] | ['\' LT] | ['\' GT] ','

[Value ':='] <expression (IN) of num>

| [Dvalue' :='] <expression (IN) of dnum>

['\'MaxTime ':='<expression (IN) of num>]

['\'ValueAtTimeout' :=' <variable (VAR) of num>]

| ['\'DvalueAtTimeout' :=' <variable (VAR) of dnum>]

['\' Visualize]

['\' Header ':=' <expression (IN) of string>]]

['\' Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' Image ':=' <expression (IN) of string>]

['\' VisualizeTime ':=' <expression (IN) of num>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ';'

Related information

SeeFor information about

WaitUntil - Waits until a condition is met on
page 1053

Waiting until a condition is satisfied

WaitTime - Waits a given amount of time on
page 1051

Waiting for a specified period of time

WaitGO - Waits until a group of digital output sig-
nals are set on page 1029

Waiting until a group of digital output
signals are set/reset

1028 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.336 WaitGI - Waits until a group of digital input signals are set
RobotWare - OS
Continued

1.337 WaitGO - Waits until a group of digital output signals are set

Usage
WaitGO (Wait Group digital Output) is used to wait until a group of digital output
signals are set to a specified value.

Basic examples
The following examples illustrate the instruction WaitGO:
See also More examples on page 1032.

Example 1
WaitGO go4, 5;

Program execution only continues after the go4 output has value 5.

Example 2
WaitGO grip_status, 0;

Program execution only continues after the grip_status output has been reset.

Arguments
WaitGO Signal [\NOTEQ] | [\LT] | [\GT] Value | Dvalue [\MaxTime]

[\ValueAtTimeout] | [\DvalueAtTimeout] [\Visualize] [\Header]
[\Message] | [\MsgArray] [\Wrap] [\Icon] [\Image]
[\VisualizeTime] [\UIActiveSignal]

Signal

Data type: signalgo
The name of the digital group output signal.

[\NOTEQ]

NOT EQual
Data type: switch
If using this parameter, the WaitGO instruction waits until the digital group signal
value divides from the value in Value.

[\LT]

Less Than
Data type: switch
If using this parameter, the WaitGO instruction waits until the digital group signal
value is less than the value in Value.

[\GT]

Greater Than
Data type: switch
If using this parameter, the WaitGO instruction waits until the digital group signal
value is greater than the value in Value.

Value

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1029
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.337 WaitGO - Waits until a group of digital output signals are set

RobotWare - OS

The desired value of the signal. Must be an integer value within the working range
of the used digital group output signal. The permitted value is dependent on the
number of signals in the group. Max value that can be used in the Value argument
is 8388608, and that is the value a 23 bit digital signal can have as maximum value.

Dvalue

Data type: dnum
The desired value of the signal. Must be an integer value within the working range
of the used digital group output signal. The permitted value is dependent on the
number of signals in the group. The maximal amout of signal bits a digital group
signal can have is 32. With a dnum variable it is possible to cover the value range
0-4294967295, which is the value range a 32 bits digital signal can have.

[\MaxTime]

Maximum Time
Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the condition is met, the error handler will be called, if there is one,
with the error code ERR_WAIT_MAXTIME. If there is no error handler, the execution
will be stopped.

[\ValueAtTimeout]

Data type: num
If the instruction time-out, the current signal value will be stored in this variable.
The variable will only be set if the system variable ERRNO is set to
ERR_WAIT_MAXTIME. If the Dvalue argument is used, use argument
DvalueAtTimeout to store current value on signal (reason: limitation of maximum
integer value for num).
Signal values between 0 and 8388608 are always stored as an exact integer.

[\DvalueAtTimeout]

Data type: dnum
If the instruction time-out, the current signal value will be stored in this variable.
The variable will only be set if the system variable ERRNO is set to
ERR_WAIT_MAXTIME.
Signal values between 0 and 4294967295 are always stored as an exact integer.

[\Visualize]

Data type: switch
If selected, the visualization is activated. The visualization consists of a message
box with the condition that is not fulfilled, icon, header, message lines, and image
is displayed according to the programmed arguments.

[\Header]

Data type: string
Header text to be written at the top of the message box. Maximum 40 characters.
If no \Header argument is used a default message will be displayed.

Continues on next page
1030 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.337 WaitGO - Waits until a group of digital output signals are set
RobotWare - OS
Continued

[\Message]

Data type: string
One text line to be written on the display. Maximum 50 characters.

[\MsgArray]

(Message Array)
Data type: string
Several text lines from an array to be written on the display. Only one of the
parameters \Message or \MsgArray can be used at the same time.
Maximum layout space is 5 lines with 50 characters each.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on separate lines on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1639.
Default, no icon.

[\Image]

Data type: string
The name of the image that should be used. To launch your own images, the images
have to be placed in the HOME: directory in the active system or directly in the
active system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a backup and restore is done.
A restart is required and then the FlexPendant will load the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be shown can have the width of 185 pixels and the height of
300 pixels. If the image is larger, then only 185 * 300 pixels of the image will be
shown starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\VisualizeTime]

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1031
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.337 WaitGO - Waits until a group of digital output signals are set

RobotWare - OS
Continued

The waiting time before the message box should appear on the FlexPendant. If
using the arguments \VisualizeTime and \MaxTime, the time used in argument
\MaxTime needs to be bigger than the time used in argument \VisualizeTime.
The default time for the visualization if not using the argument \VisualizeTime
is 5 s. Minimum value 1 s. Maximum value no limit. Resolution 0.001 s.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the visualization message box is activated on the FlexPendant. When the
message box is removed (when the condition is met), the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the instruction
is ready, or when PP is moved.

Program execution
If the value of the signal is correct when the instruction is executed, the program
simply continues with the following instruction.
If the signal value is incorrect, the robot enters a waiting state and the program
continues when the signal changes to the correct value. The change is detected
with an interrupt, which gives a fast response (not polled).
When the robot is waiting, the time is supervised. By default, the robot can wait
forever, but the maximal waiting time can be specified with the optional argument
\MaxTime. If this max. time is exceeded, an error is raised.
If program execution is stopped, and later restarted, the instruction evaluates the
currentvalue of the signal. Any change during program stop is rejected.
In manual mode, after waiting more than 3 s, an alert box will pop up asking if you
want to simulate the instruction. If you don’t want the alert box to appear then you
can set system parameter SimulateMenu to NO, see Technical reference
manual - System parameters, topic Controller, type General RAPID.
If the switch \Visualize is used, a message box is displayed on the FlexPendant
according to the programmed arguments. If no \Header argument is used a default
header text will be displayed. When the execution of the WaitGO instruction is
ready, the message box will be removed from the FlexPendant.
New message box on TRAP level takes the focus from the message box on the
basic level.

More examples
More examples of the instruction WaitGO are illustrated below.

Example 1
WaitGO go1,\NOTEQ,0;

Program execution only continues after the go1 differs from the value 0.

Example 2
WaitGO go1,\LT,1;

Program execution only continues after the go1 is less than 1.

Continues on next page
1032 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.337 WaitGO - Waits until a group of digital output signals are set
RobotWare - OS
Continued

Example 3
WaitGO go1,\GT,0;

Program execution only continues after the go1 is greater than 0.

Example 4
VAR num myvalattimeout:=0;

WaitGO go1, 5 \MaxTime:=4 \ValueAtTimeout:=myvalattimeout;

ERROR

IF ERRNO=ERR_WAIT_MAXTIME THEN

TPWrite "Value of go1 at timeout:" + ValToStr(myvalattimeout);

TRYNEXT;

ELSE

! No error recovery handling

ENDIF

Program execution continues only if go1 is equal to 5, or when timing out. If timing
out, the value of the signal go1 at timeout can be logged without another read of
signal.

Example 5
WaitGO go1, 4, \Visualize \Header:="Waiting for signal"

\MsgArray:=["Movement will not start until", "the condition
below is TRUE"] \Icon:=iconError;

MoveL p40, v500, z20, L10tip;

..

If the condition is not met then the header and message specified in the optional
arguments \Header and \MsgArray will be written on the display of the
FlexPendant together with the condition that is not met.

xx1600000153

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1033
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.337 WaitGO - Waits until a group of digital output signals are set

RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The programmed Value or Dvalue argument for the spe-
cified digital group output signal Signal is out of limit.

ERR_GO_LIM

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

There is a time-out (parameter \MaxTime) before the signal
changes to the right value.

ERR_WAIT_MAXTIME

Syntax
WaitGO

[Signal ':='] <variable (VAR) of signalgo> ','

['\' NOTEQ] | ['\' LT] | ['\' GT] ','

[Value ':='] <expression (IN) of num>

| [Dvalue ':='] <expression (IN) of dnum>

['\' MaxTime ':=' <expression (IN) of num>]

['\' ValueAtTimeout ':=' <variable (VAR) of num>]

| ['\' DvalueAtTimeout ':=' <variable (VAR) of dnum>]

['\' Visualize]

['\' Header ':=' <expression (IN) of string>]]

['\' Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' Image ':=' <expression (IN) of string>]

['\' VisualizeTime ':=' <expression (IN) of num>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ';'

Related information

SeeFor information about

WaitUntil - Waits until a condition is met on
page 1053

Waiting until a condition is satisfied

WaitTime - Waits a given amount of time on
page 1051

Waiting for a specified period of time

WaitGI - Waits until a group of digital input signals
are set on page 1023

Waiting until a group of digital input sig-
nals are set/reset

1034 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.337 WaitGO - Waits until a group of digital output signals are set
RobotWare - OS
Continued

1.338 WaitLoad - Connect the loaded module to the task

Usage
WaitLoad is used to connect with the module that is loaded with the instruction
StartLoad to the program task.
The loaded program module will be added to the modules already existing in the
program memory.
A module that is loaded with StartLoadmust be connected to the program task
with the instruction WaitLoad before any of its symbols or routines can be used.
WaitLoad can also unload a program module if the optional switches are used.
This will minimize the number of links (1 instead of 2).
WaitLoad can also check for any unsolved references if the optional switch
\CheckRef is used.

Basic examples
The following example illustrates the instruction WaitLoad:
See also More examples on page 1036.

Example 1
VAR loadsession load1;

...

StartLoad "HOME:/PART_A.MOD", load1;

MoveL p10, v1000, z50, tool1 \WObj:=wobj1;

MoveL p20, v1000, z50, tool1 \WObj:=wobj1;

MoveL p30, v1000, z50, tool1 \WObj:=wobj1;

MoveL p40, v1000, z50, tool1 \WObj:=wobj1;

WaitLoad load1;

%"routine_x"%;

UnLoad "HOME:/PART_A.MOD";

Load the program module PART_A.MOD from HOME: into the program memory. In
parallel, move the robot. Then connect the new program module to the program
task and call the routine routine_x in the module PART_A.

Arguments
WaitLoad [\UnloadPath] [\UnloadFile] LoadNo [\CheckRef]

[\UnloadPath]

Data type: string
The file path and the file name to the file that will be unloaded from the program
memory. The file name should be excluded when the argument \UnloadFile is
used.

[\UnloadFile]

Data type: string
When the file name is excluded in the argument \UnloadPath, then it must be
defined with this argument.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1035
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.338 WaitLoad - Connect the loaded module to the task

RobotWare - OS

LoadNo

Data type: loadsession
This is a reference to the load session, created by the instruction StartLoad that
is needed to connect the loaded program module to the program task.

[\CheckRef]

Data type: switch
Check after loading of the module for unsolved references in the program task. If
not used no check for unsolved references are done.

Program execution
The instruction WaitLoad will first wait for the loading to be completed, if it is not
already done, and then the module will be linked and initialized. The initiation of
the loaded module sets all variables at module level to their initial values.
Unresolved references will always be accepted for the loading operations
StartLoad - WaitLoad if parameter \CheckRef is not used, but it will be a run
time error on execution of an unresolved reference.
The system starts with the unloading operation, if specified. If the unloading of the
module fails, then no new module will be loaded.
If any error from the loading operation, including unresolved references if use of
switch \CheckRef, the loadedmodule will not be available anymore in the program
memory.
To obtain a good program structure, that is easy to understand and maintain, all
loading and unloading of programmodules should be done from the main module,
which is always present in the program memory during execution.
For loading a program that contains a main procedure to a main program (with
another main procedure), see instruction Load.

More examples
More examples of the instruction WaitLoad are illustrated below.

Example 1
StartLoad "HOME:/DOORDIR/DOOR2.MOD", load1;

...

WaitLoad \UnloadPath:="HOME:/DOORDIR/DOOR1.MOD", load1;

Load the program module DOOR2.MOD from HOME: in the directory DOORDIR into
the programmemory and connect the newmodule to the task. The programmodule
DOOR1.MOD will be unloaded from the program memory.

Example 2
StartLoad "HOME:" \File:="DOORDIR/DOOR2.MOD", load1;

! The robot can do some other work

WaitLoad \UnloadPath:="HOME:" \File:= "DOORDIR/DOOR1.MOD", load1;

It is the same as the instructions below but the robot can do some other work
during the loading time and also do it faster (only one link instead of the two links
below).

Load "HOME:" \File:="DOORDIR/DOOR2.MOD";

Continues on next page
1036 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.338 WaitLoad - Connect the loaded module to the task
RobotWare - OS
Continued

UnLoad "HOME:" \File:="DOORDIR/DOOR1.MOD";

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The file specified in the StartLoad instruction cannot be
found.

ERR_FILNOTFND

Some type of problem to read the file to load.ERR_IOERROR

Argument LoadNo refers to an unknown load session.ERR_UNKPROC

Themodule cannot be loaded because the programmemory
is full.

ERR_PRGMEMFULL

The program module is already loaded into the program
memory.

ERR_LOADED

The loaded module contains syntax errors.ERR_SYNTAX

The loaded module result in fatal link errors.
• The loaded module result in fatal link errors.
• WaitLoad is used with the switch \CheckRef to

check for any reference error and the program
memory contains unresolved references.

ERR_LINKREF

The following errors can only occur when the argument \UnloadPathis used in
the instruction WaitLoad:

Cause of errorName
• Themodule specified in the argument \UnloadPath

cannot be unloaded because of ongoing execution
within the module

• tThemodule specified in the argument \UnloadPath
cannot be unloaded because the program module
is not loaded with Load or StartLoad-WaitLoad
from the RAPID program.

ERR_UNLOAD

If some of these error occurs, the actual module will be unloaded and will not be
available in the ERROR handler.

Note

RETRY cannot be used for error recovery for any errors from WaitLoad.

Limitations
It is not possible to change the current value of some PERS variable by loading
the same module with a new init value for the actual PERS variable.
Example:

• File my_module.mod with declaration PERS num my_pers:=1; is loaded
in the system.

• The file my_module.mod is edited on disk with new persistent value eg.
PERS num my_pers:=3;

• The code below is executed.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1037
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.338 WaitLoad - Connect the loaded module to the task

RobotWare - OS
Continued

• After loading the my_module.mod again, the value of my_pers is still 1
instead of 3.

StartLoad \Dynamic, "HOME:/my_module.mod", load1;

...

WaitLoad \UnLoadPath:="HOME:/my_module.mod", load1;

This limitation is a consequence of PERS variable characteristic. The current value
of the PERS variable will not be changed by the new loaded PERS init value if
thePERS variable is in any use at the loading time.
The above problems will not occur if the following code is executed instead:

UnLoad "HOME:/my_module.mod";

StartLoad \Dynamic, "HOME:/my_module.mod", load1;

...

WaitLoad load1;

Another option is to use a CONST for the init value and do the following assignment
in the beginning of the execution in the new module: my_pers := my_const;

Syntax
WaitLoad

['\' UnloadPath ':=' <expression (IN) of string> ',']

['\' UnloadFile ':=' <expression (IN) of string> ',']

[LoadNo ':='] <variable (VAR) of loadsession>

['\' CheckRef] ';'

Related information

SeeFor information about

StartLoad - Load a program module during execu-
tion on page 777

Load a programmodule during execu-
tion

loadsession - Program load session on page 1657Load session

Load - Load a program module during execution
on page 362

Load a program module

UnLoad - UnLoad a programmodule during execu-
tion on page 992

Unload a program module

CancelLoad - Cancel loading of a module on
page 69

Cancel loading of a program module

CheckProgRef - Check program references on
page 118

Check program references

Technical reference manual - RAPID OverviewProcedure call with Late binding

1038 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.338 WaitLoad - Connect the loaded module to the task
RobotWare - OS
Continued

1.339 WaitRob - Wait until stop point or zero speed

Usage
WaitRob (Wait Robot) waits until the robot and external axes have reached stop
point or have zero speed.

Basic examples
The following example illustrates the instruction WaitRob:
See also More examples on page 1039.

Example 1
WaitRob \InPos;

Program execution waits until the robot and external axes have reached stop point.

Arguments
WaitRob [\InPos] | [\ZeroSpeed]

[\InPos]

In Position
Data type: switch
If this argument is used then the robot and external axes must have reached the
stop point (ToPoint of current move instruction) before the execution can continue.

[\ZeroSpeed]

Zero Speed
Data type: switch
If this argument is used then the robot and external axes must have zero speed
before the execution can continue.
If none of the arguments \InPos or \ZeroSpeed is entered, an error message
will be displayed.

More examples
More examples of how to use the instruction WaitRob are illustrated below.

Example 1
PROC stop_event()

WaitRob \ZeroSpeed;

SetDO rob_moving, 0;

ENDPROC

The example shows an event routine that executes at program stop. The digital
out signal rob_moving is 1 as long as the robot is moving and is set to 0 when
the robot and external axes has stopped moving after a program stop.

Syntax
WaitRob

['\' InPos] | ['\' ZeroSpeed] ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1039
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.339 WaitRob - Wait until stop point or zero speed

RobotWare - OS

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section Motion and I/O principles

Motion in general

Technical reference manual - RAPID Over-
view, section RAPID summary - Motion

Other positioning instructions

stoppointdata - Stop point data on page1722Definition of stop point data

1040 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.339 WaitRob - Wait until stop point or zero speed
RobotWare - OS
Continued

1.340 WaitSensor - Wait for connection on sensor

Usage
WaitSensor connects to an object in the start window on the sensor mechanical
unit.

Basic examples
Basic examples of the instruction WaitSensor are illustrated below.
See also More examples on page 1042.

Example 1
WaitSensor Ssync1;

The program connects to the first object in the object queue that is within the start
window on the sensor. If there is no object in the start window then execution stops
and waits for an object.

Arguments
WaitSensor MechUnit [\RelDist][\PredTime][\MaxTime][\TimeFlag]

MechUnit

Mechanical Unit
Data type: mecunit
Themoving mechanical unit to which the robot position in the instruction is related.

[\RelDist]

Relative Distance
Data type: num
Waits for an object to enter the start window and go beyond the distance specified
by the argument. If the work object is already connected, then execution stops
until the object passes the given distance. If the object has already gone past the
relative distance then execution continues.

[\PredTime]

Prediction Time
Data type: num
Waits for an object to enter the start window and go beyond the distance specified
by the argument. If the work object is already connected, then execution stops
until the object passes the given distance. If the object has already gone past the
prediction time then execution continues.

[\MaxTime]

Maximum Time
Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the sensor connection or \RelDist reached, the error handler will
be called, if there is one, with the error code ERR_WAIT_MAXTIME. If there is no
error handler, the execution will be stopped.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1041
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.340 WaitSensor - Wait for connection on sensor

Machine Synchronization

[\TimeFlag]

Timeout Flag
Data type: bool
The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the sensor connection or \RelDist reached. If this
parameter is included in the instruction, it is not considered to be an error if the
max. time runs out.
This argument is ignored if the MaxTime argument is not included in the instruction.

Program execution
If there is no object in the start window then program execution stops. If an object
is present, then the object is connected to the sensor and execution continues.
If a second WaitSensor instruction is issued while connected then an error is
returned unless the \RelDist optional argument is used.

More examples
More examples of the instruction are illustrated below.

Example 1
WaitSensor Ssync1\RelDist:=500.0;

If not connected, then wait for the object to enter the start window and then wait
for the object to pass the 500 mm point on the sensor.
If already connected to the object, then wait for the object to pass 500 mm.

Example 2
WaitSensor Ssync1\RelDist:=0.0;

If not connected, then wait for an object in the start window.
If already connected, then continue execution as the object has already gone past
0.0 mm.

Example 3
WaitSensor Ssync1;

WaitSensor Ssync1\RelDist:=0.0;

The first WaitSensor connects to the object in the start window. The second
WaitSensor will return immediately if the object is still connected, but will wait
for the next object if the previous object had moved past the maximum distance
or was dropped.

Example 4
WaitSensor Ssync1\RelDist:=0.5\PredTime:=0.1;

The WaitSensor will return immediately if the object has passed 0.5 meter but
otherwise will wait for an object will reach =RelDist - C1speed * PredTime. The
goal here is to anticipate delays before starting a new move instruction.

Example 5
WaitSensor Ssync1\RelDist:=0.5\MaxTime:=0.1\TimeFlag:=flag1;

Continues on next page
1042 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.340 WaitSensor - Wait for connection on sensor
Machine Synchronization
Continued

The WaitSensor will return immediately if the object has passed 0.5 meter but
otherwise will wait 0.1 sec for an object. If no object passes 0.5 meter during this
0.1 sec the instruction will return with flag1 = TRUE.

Limitations
It requires 50ms to connect to the first object in the start window. Once connected,
a second WaitSensor with \RelDist optional argument will take only normal
RAPID instruction execution time.

Error handling
If following errors occurs during execution of the WaitSensor instruction, the
system variable ERRNO will be set. These errors can then be handled in the error
handler.

Cause of errorName

The sensor is not activated.ERR_CNV_NOT_ACT

The WaitSensor instruction is already connected.ERR_CNV_CONNECT

The object that the instruction WaitSensor was waiting for
has been dropped by another task. (DSQC 354 Revision 2:
an object had passed the start window).

ERR_CNV_DROPPED

The object did not come in time and there is no TimeFlag.ERR_WAIT_MAXTIME

Syntax
WaitSensor

[MechUnit ':='] < variable (VAR) of mecunit >

['\' RelDist ':=' < expression (IN) of num >]

['\' PredTime ':=' < expression (IN) of num >]

['\' MaxTime ':=' < expression (IN) of num >]

['\' TimeFlag ':=' < variable (VAR) of bool >] ';'

Related information

SeeFor information about

DropSensor - Drop object on sensor on page 176Drop object on sensor

SyncToSensor - Sync to sensor on page 844Sync to sensor

SyncToSensor - Sync to sensor on page 844Sync to sensor

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 1043
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.340 WaitSensor - Wait for connection on sensor

Machine Synchronization
Continued

1.341 WaitSyncTask - Wait at synchronization point for other program tasks

Usage
WaitSyncTask is used to synchronize several program tasks at a special point in
each program. Each program task waits until all program tasks have reach the
named synchronization point.

Note

The instruction WaitSyncTask only synchronizes the program execution. To
synchronize both the program execution and the robot movements, then the
Move instruction before the WaitSyncTask must be a stop-point in all involved
program tasks. It is also possible to synchronize both the program execution
and the robot movements by using WaitsyncTask \Inpos ... in all involved
program tasks.

WARNING

To reach safe synchronization functionality, themeeting point (parameter SyncID)
must have an unique name in each program task. The name must also be the
same for the program tasks that should meet in the meeting point.

Basic examples
The following examples illustrate the instruction WaitSyncTask:
See also More examples on page 1046.

Example 1
Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

...

WaitSyncTask sync1, task_list;

...

Example 2
Program example in task T_ROB2

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

...

WaitSyncTask sync1, task_list;

...

The program task, that first reaches WaitSyncTask with identity sync1, waits
until the other program task reaches its WaitSyncTask with the same identity
sync1. Then both program tasks T_ROB1 and T_ROB2 continue their execution.

Continues on next page
1044 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.341 WaitSyncTask - Wait at synchronization point for other program tasks
Multitasking

Arguments
WaitSyncTask [\InPos] SyncID TaskList [\TimeOut]

[\InPos]

In Position
Data type: switch
If this argument is used then the robot and external axes must have come to a
standstill before this program task starts waiting for other program tasks to reach
its meeting point specified in the WaitSyncTask instruction.

SyncID

Synchronization identity
Data type: syncident
Variable that specifies the name of the synchronization (meeting) point. Data type
syncident is a non-value type only used as an identifier for naming the
synchronization point.
The variable must be defined and have an equal name in all cooperated program
tasks. It is recommended to always define the variable global in each program task
(VAR syncident ...).

TaskList

Data type: tasks
Persistent variable, that in a task list (array) specifies the name (string) of the
program tasks, that should meet in the synchronization point with its name
according to the argument SyncID.
The persistent variablemust be defined and have an equal name and equal contents
in all cooperated program tasks. It is recommended to always define the variable
global in the system (PERS tasks ...).

[\TimeOut]

Data type: num
The max. time for waiting for the other program tasks to reach the synchronization
point. Time-out in seconds (resolution 0.001s). If this argument is not specified
then the program task will wait for ever.
If this time runs out before all program tasks have reached the synchronization
poin then the error handler will be called, if there is one, with the error code
ERR_WAITSYNCTASK. If there is no error handler then the execution will be stopped.

Program execution
The actual program task will wait at WaitSyncTask until the other program tasks
in the TaskList have reached the same SyncID point. At that time the respective
program task will continue to execute its next instruction.
WaitSyncTask can be programmed between move instructions with corner zone
in between. Depending on the timing balance between the program tasks at
execution time, the system can:

• at best timing, keep all corner zones.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1045
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.341 WaitSyncTask - Wait at synchronization point for other program tasks

Multitasking
Continued

• at worst timing, only keep the corner zone for the program task that reaches
the WaitSyncTask last. For the other program tasks it will result in stop
points.

It is possible to exclude program tasks for testing purposes from FlexPendant -
Task Selection Panel.
The following principles can be used:

• Principle 1) Exclude the program task cycle-permanent from Task Selection
Panel before starting frommain (after set of PP to main) - This disconnection
will be valid during the whole program cycle.

• Principle 2) Exclude the program task temporarily from the Task Selection
Panel between some WaitSyncTask instructions in the program cycle -
The system will only run the other connected tasks but will, with error
message, force the user to connect the excluded program tasks before
passing co-operated WaitSyncTask.

• Principle 3) If running according principle 2, it is possible to exclude some
program task’s permanent cycle from Task Selection Panel for further running
according to principle 1 by executing the service routine SkipTaskExec.

Note that the Task Selection Panel is locked when running the system in
synchronized movements.

More examples
More examples of the instruction WaitSyncTask are illustrated below.

Example 1
Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

...

WaitSyncTask \InPos, sync1, task_list \TimeOut := 60;

...

ERROR

IF ERRNO = ERR_WAITSYNCTASK THEN

RETRY;

ENDIF

The program task T_ROB1 waits in instruction WaitSyncTask until its mechanical
units are in position and after that it waits for the program task T_ROB2 to reach
its synchronization point with the same identity. After waiting for 60 s, the error
handler is called with ERRNO equal to ERR_WAITSYNCTASK. Then the instruction
WaitSyncTask is called again for an additional 60 s.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

A time-out occurs because WaitSyncTask not ready.ERR_WAITSYNCTASK

Continues on next page
1046 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.341 WaitSyncTask - Wait at synchronization point for other program tasks
Multitasking
Continued

Limitation
If this instruction is preceded by a move instruction then that move instruction
must be programmed with a stop point (zonedata fine), not a fly-by point.
Otherwise restart after power failure will not be possible.
WaitSyncTask \InPos cannot be executed in a RAPID routine connected to any
of the following special system events: PowerOn, Stop, QStop,Restart, or Step.

Syntax
WaitSyncTask

['\' InPos ',']

[SyncID ':='] < variable (VAR) of syncident> ','

[TaskList ':='] < persistent array {*} (PERS) of tasks>

['\' TimeOut ':=' < expression (IN) of num >] ';'

Related information

SeeFor information about

tasks - RAPID program tasks on page 1739Specify cooperated program tasks

syncident - Identity for synchronization point on
page 1735

Identity for synchronization point

Technical reference manual - RAPID Instructions, Functions and Data types 1047
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.341 WaitSyncTask - Wait at synchronization point for other program tasks

Multitasking
Continued

1.342 WaitTestAndSet - Wait until variable becomes FALSE, then set

Usage
WaitTestAndSet instruction waits for a specified bool persistent variable value
to become FALSE. When the variable value becomes FALSE, the instruction will
set value to TRUE and continue the execution. The persistent variable can be used
as a binary semaphore for synchronization and mutual exclusion.
This instruction has the same underlying functionality as the TestAndSet function,
but the WaitTestAndSet is waiting as long as the bool is FALSE while the
TestAndSet instruction terminates immediately.
It is not recommended to use WaitTestAndSet instruction in a TRAP routine,
UNDO handler, or event routines.
Examples of resources that can need protection from access at the same time:

• Use of some RAPID routines with function problems when executed in
parallel.

• Use of the FlexPendant - Operator Log.

Basic examples
The following example illustrates the instruction WaitTestAndSet:
See also More examples on page 1049.

Example 1
MAIN program task:

PERS bool tproutine_inuse := FALSE;

...

WaitTestAndSet tproutine_inuse;

TPWrite "First line from MAIN";

TPWrite "Second line from MAIN";

TPWrite "Third line from MAIN";

tproutine_inuse := FALSE;

BACK1 program task:
PERS bool tproutine_inuse := FALSE;

...

WaitTestAndSet tproutine_inuse;

TPWrite "First line from BACK1";

TPWrite "Second line from BACK1";

TPWrite "Third line from BACK1";

tproutine_inuse := FALSE;

To avoid mixing up the lines in the Operator Log (one from MAIN and one from
BACK1) the use of the WaitTestAndSet function guarantees that all three lines
from each task are not separated.
If program task MAIN takes the semaphore WaitTestAndSet(tproutine_inuse)
first then program task BACK1 must wait until the program task MAIN has left the
semaphore.

Continues on next page
1048 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.342 WaitTestAndSet - Wait until variable becomes FALSE, then set
RobotWare - OS

Arguments
WaitTestAndSet Object

Object

Data type: bool
User defined data object to be used as semaphore. The data object must be a
persistent variable PERS. If WaitTestAndSet are used between different program
tasks then the object must be a global PERS.

Program execution
This instruction will in one indivisible step check and set the user defined persistent
variable like code example below:

• if it has the value FALSE, set it to TRUE
• if it has the value TRUE, wait until it become FALSE and then set it to TRUE
IF Object = FALSE THEN

Object := TRUE;

ELSE

! Wait until it become FALSE

WaitUntil Object = FALSE;

Object := TRUE;

ENDIF

After that the instruction is ready. To avoid problems, because persistent variables
keep their value if program pointer PP is moved tomain, always set the semaphore
object to FALSE in the START event routine.

More examples
More examples of the instruction WaitTestAndSet are illustrated below.

Example 1
PERS bool semPers:= FALSE;

...

PROC doit(...)

WaitTestAndSet semPers;

...

semPers := FALSE;

ENDPROC

Note

If program execution is stopped in the routine doit and the program pointer is
moved to main then the variable semPers will not be reset. To avoid this, reset
the variable semPers to FALSE in the START event routine.

Syntax
WaitTestAndSet

[Object ':='] < persistent (PERS) of bool> ';'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1049
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.342 WaitTestAndSet - Wait until variable becomes FALSE, then set

RobotWare - OS
Continued

Related information

SeeFor information about

TestAndSet - Test variable and set if unset
on page 1480

Test variable and set if unset (type polled with
WaitTime)

1050 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.342 WaitTestAndSet - Wait until variable becomes FALSE, then set
RobotWare - OS
Continued

1.343 WaitTime - Waits a given amount of time

Usage
WaitTime is used to wait a given amount of time. This instruction can also be
used to wait until the robot and external axes have come to a standstill.

Basic examples
The following example illustrates the instruction WaitTime:
See also More examples on page 1051 below.

Example 1
WaitTime 0.5;

Program execution waits 0.5 seconds.

Arguments
WaitTime [\InPos] Time

[\InPos]

In Position
Data type: switch
If this argument is used then the robot and external axes must have come to a
standstill before the waiting time starts to be counted. This argument can only be
used if the task controls mechanical units.

Time

Data type: num
The time, expressed in seconds, that program execution is to wait. Min. value 0 s.
Max. value no limit. Resolution 0.001 s.

Program execution
Program execution temporarily stops for the given amount of time. Interrupt handling
and other similar functions, nevertheless, are still active.
In manual mode, after waiting more than 3 s, an alert box will pop up asking if you
want to simulate the instruction. If you don’t want the alert box to appear then you
can set system parameter SimulateMenu to NO, see Technical reference
manual - System parameters, topic Controller, type General RAPID.

More examples
More examples of how to use the instruction WaitTime are illustrated below.

Example 1
WaitTime \InPos,0;

Program execution waits until the robot and the external axes have come to a
standstill.

Limitations
The argument \Inpos cannot be used together with SoftServo.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1051
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.343 WaitTime - Waits a given amount of time

RobotWare - OS

If this instruction is preceded by a Move instruction then that Move instructionmust
be programmed with a stop point (zonedata fine), not a fly-by point. Otherwise it
will not be possible to restart after a power failure.
WaitTime \Inpos cannot be executed in a RAPID routine connected to any of
the following special system events: PowerOn, Stop, QStop, Restart, or Step.

Syntax
WaitTime

['\' InPos ',']

[Time ':='] <expression (IN) of num> ';'

Related information

SeeFor information about

WaitUntil - Waits until a condition is met on
page 1053

Waiting until a condition is met

WaitDI - Waits until a digital input signal is set on
page 1013

Waiting until an I/O is set/reset

1052 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.343 WaitTime - Waits a given amount of time
RobotWare - OS
Continued

1.344 WaitUntil - Waits until a condition is met

Usage
WaitUntil is used to wait until a logical condition is met; for example, it can wait
until one or several inputs have been set.

Basic examples
The following example illustrates the instruction WaitUntil:
See also More examples on page 1056.

Example 1
WaitUntil di4 = 1;

Program execution continues only after the di4 input has been set.

Arguments
WaitUntil [\InPos] Cond [\MaxTime] [\TimeFlag] [\PollRate]

[\Visualize] [\Header] [\Message] | [\MsgArray] [\Wrap]
[\Icon] [\Image] [\VisualizeTime] [\UIActiveSignal]

[\InPos]

In Position
Data type: switch
If this argument is used then the robot and external axes must have reached the
stop point (ToPoint of current move instruction) before the execution can continue.
This argument can only be used if the task controls mechanical units.

Cond

Data type:bool
The logical expression that is to be waited for.

[\MaxTime]

Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the condition is set then the error handler will be called, if there is
one, with the error code ERR_WAIT_MAXTIME. If there is no error handler then the
execution will be stopped.

[\TimeFlag]

Timeout Flag
Data type: bool
The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the condition is met. If this parameter is included in
the instruction then it is not considered to be an error if the max. time runs out.
This argument is ignored if the MaxTime argument is not included in the instruction.

[\PollRate]

Polling Rate
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1053
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.344 WaitUntil - Waits until a condition is met

RobotWare - OS

The polling rate in seconds for checking if the condition in argument Cond is TRUE.
This means that WaitUntil first check the condition at once, and if not TRUE, then
after the specified time until TRUE. Min. polling rate value 0.004 s. If this argument
is not used then the default polling rate is set to 0.1 s.

[\Visualize]

Data type: switch
If selected, the visualization is activated. The visualization consists of a message
box with the logical condition that is not fulfilled, icon, header, message lines, and
image is displayed according to the programmed arguments.

[\Header]

Data type: string
Header text to be written at the top of the message box. Maximum 40 characters.
If no \Header argument is used a default message will be displayed.

[\Message]

Data type: string
One text line to be written on the display. Maximum 50 characters.

[\MsgArray]

(Message Array)
Data type: string
Several text lines from an array to be written on the display. Only one of the
parameters \Message or \MsgArray can be used at the same time.
Maximum layout space is 5 lines with 50 characters each.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on separate lines on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1639.
Default, no icon.

[\Image]

Data type: string
The name of the image that should be used. To launch your own images, the images
have to be placed in the HOME: directory in the active system or directly in the
active system.

Continues on next page
1054 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.344 WaitUntil - Waits until a condition is met
RobotWare - OS
Continued

The recommendation is to place the files in the HOME: directory so that they are
saved if a backup and restore is done.
A restart is required and then the FlexPendant will load the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be shown can have the width of 185 pixels and the height of
300 pixels. If the image is larger, then only 185 * 300 pixels of the image will be
shown starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\VisualizeTime]

Data type: num
The waiting time before the message box should appear on the FlexPendant. If
using the arguments \VisualizeTime and \MaxTime, the time used in argument
\MaxTime needs to be bigger than the time used in argument \VisualizeTime.
The default time for the visualization if not using the argument \VisualizeTime
is 5 s. Minimum value 1 s. Maximum value no limit. Resolution 0.001 s.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the visualization message box is activated on the FlexPendant. When the
message box is removed (when the condition is met), the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the instruction
is ready, or when PP is moved.

Program execution
If the programmed condition is not met on execution of a WaitUntil instruction
then condition is checked again every 100 ms (or according value specified in
argument Pollrate).
When the robot is waiting the time is supervised, and if it exceeds the max time
value then the program will continue if a TimeFlag is specified or raise an error
if it’s not. If a TimeFlag is specified then this will be set to TRUE if the time is
exceeded. Otherwise it will be set to false.
In manual mode, after waiting more than 3 s, an alert box will pop up asking if you
want to simulate the instruction. If you don’t want the alert box to appear then you
can set system parameter SimulateMenu to NO, see Technical reference
manual - System parameters, topic Controller, type General RAPID.
If the switch \Visualize is used, a message box is displayed on the FlexPendant
according to the programmed arguments. If no \Header argument is used a default
header text will be displayed. When the execution of the WaitUntil instruction
is ready, the message box will be removed from the FlexPendant.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1055
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.344 WaitUntil - Waits until a condition is met

RobotWare - OS
Continued

New message box on TRAP level takes the focus from the message box on the
basic level.

More examples
More examples of how to use the instruction WaitUntil are illustrated below.

Example 1
VAR bool timeout;

WaitUntil start_input = 1 AND grip_status = 1\MaxTime := 60
\TimeFlag := timeout;

IF timeout THEN

TPWrite "No start order received within expected time";

ELSE

start_next_cycle;

ENDIF

If the two input conditions are not met within 60 seconds then an error message
will be written on the display of the FlexPendant.

Example 2
WaitUntil \Inpos, di4 = 1;

Program execution waits until the robot has come to a standstill and the di4 input
has been set.

Example 3
WaitUntil di4 = 1 \MaxTime:=5.5;

..

ERROR

ERROR

IF ERRNO = ERR_WAIT_MAXTIME THEN

RAISE;

ELSE

Stop;

ENDIF

Program execution waits until the di4 input has been set. If the I/O device has
been disabled, or the waiting time expires, the execution continues in the error
handler.

Example 4
WaitUntil di1 = 1 AND di2 = 1 \MaxTime := 60 \Visualize;

..

ERROR

IF ERRNO = ERR_WAIT_MAXTIME THEN

RAISE;

ELSE

Stop;

ENDIF

Continues on next page
1056 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.344 WaitUntil - Waits until a condition is met
RobotWare - OS
Continued

If the two input conditions are not met within 5 seconds then a message will be
written on the display of the FlexPendant. If the conditions is not met within 60
seconds the execution continues in the error handler.

xx1600000146

Example 5
WaitUntil di1 = 1 AND di2 = 1 \Visualize \Header:="Waiting for

signals" \MsgArray:=["Movement will not start until",
"conditions below are TRUE"] \Icon:=iconError;

MoveL p40, v500, z20, L10tip;

..

If the two input conditions are not met then the header and message specified in
the optional arguments \Header and \MsgArray will be written on the display of
the FlexPendant together with the conditions that are not met.

xx1600000147

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1057
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.344 WaitUntil - Waits until a condition is met

RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is a signal used in the condition, and there is no
contact with the I/O device.

ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

There is a time-out (parameter \MaxTime) before the con-
dition has changed to the right value.

ERR_WAIT_MAXTIME

Limitation
The argument \Inpos cannot be used together with SoftServo.
If this instruction is preceded by a Move instruction then that Move instructionmust
be programmed with a stop point (zonedata fine), not a fly-by point. Otherwise it
will not be possible to restart after a power failure.
WaitUntil \Inpos cannot be executed in a RAPID routine connected to any of
the following special system events: PowerOn, Stop, QStop, Restart, or Step.
WaitUntil \Inpos cannot be used together with StopMove to detect if the
movement has been stopped. The WaitUntil instruction can be hanging forever
in that case. It does not detect that the movement has stopped, it detects that the
robot and external axes has reached the last programmed ToPoint (MoveX,
SearchX, TriggX).

Syntax
WaitUntil

['\' InPos ',']

[Cond ':='] <expression (IN) of bool>

['\' MaxTime ':=' <expression (IN) of num>]

['\' TimeFlag ':=' <variable (VAR) of bool>]

['\' PollRate ':=' <expression (IN) of num>]

['\' Visualize]

['\' Header ':=' <expression (IN) of string>]]

['\' Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' Image ':=' <expression (IN) of string>]

['\' VisualizeTime ':=' <expression (IN) of num>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ';'

Continues on next page
1058 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.344 WaitUntil - Waits until a condition is met
RobotWare - OS
Continued

Related information

SeeFor information about

WaitDI - Waits until a digital input signal is set on
page 1013

Waiting until an input is set/reset

WaitTime - Waits a given amount of time on
page 1051

Waiting a given amount of time

Technical reference manual - RAPID OverviewExpressions

Technical reference manual - RAPID Instructions, Functions and Data types 1059
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.344 WaitUntil - Waits until a condition is met

RobotWare - OS
Continued

1.345 WaitWObj - Wait for work object on conveyor

Usage
WaitWObj (Wait Work Object) connects to a work object in the start window on
the conveyor mechanical unit.

Basic examples
The following example illustrates the instruction WaitWObj:
See also More examples on page 1061.

Example 1
WaitWObj wobj_on_cnv1;

The program connects to the first object in the object queue that is within the start
window on the conveyor. If there is no object in the start window then execution
waits for an object.

Arguments
WaitWObj WObj [\RelDist][\MaxTime][\TimeFlag]

WObj

Work Object
Data type: wobjdata
The moving work object (coordinate system) to which the robot position in the
instruction is related. The mechanical unit conveyor is to be specified by the ufmec
in the work object.

[\RelDist]

Relative Distance
Data type: num
Waits for an object to enter the start window and go beyond the distance specified
by the argument. If the work object is already connected then execution waits until
the object passes the given distance. If the object has already gone past the
\RelDist then execution continues.

[\MaxTime]

Maximum Time
Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this time
runs out before the object connection or \Reldist reached then the error handler
will be called, if there is one, with the error code ERR_WAIT_MAXTIME. If there is
no error handler then the execution will be stopped.

[\TimeFlag]

Timeout Flag
Data type: bool
The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the object connection or \Reldist is reached. If this

Continues on next page
1060 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.345 WaitWObj - Wait for work object on conveyor
Conveyor Tracking

parameter is included in the instruction then it is not considered to be an error if
the max. time runs out. This argument is ignored if the MaxTime argument is not
included in the instruction.

Program execution
If there is no object in the start window then program execution waits. If an object
is present then the work object is connected to the conveyor and execution
continues.
If a second WaitWObj instruction is issuedwhile connected then an error is returned
unless the \RelDist optional argument is used.

More examples
More examples of the instruction WaitWObj are illustrated below.

Example 1
WaitWObj wobj_on_cnv1\RelDist:=500.0;

If not connected then wait for the object to enter the start window and then wait
for the object to pass the 500 mm point on the conveyor.
If already connected to the object then wait for the object to pass 500 mm.
If not connected then wait for an object in the start window.

Example 2
WaitWObj wobj_on_cnv1\RelDist:=0.0;

If already connected then continue execution as the object has already gone past
0.0 mm.

Example 3
WaitWObj wobj_on_cnv1;

WaitWObj wobj_on_cnv1\RelDist:=0.0;

The first WaitWObj connects to the object in the start window. The second
WaitWObj will return immediately if the object is still connected. But it will wait for
the next object if the previous object had moved past the maximum distance or
was dropped.

Example 4
WaitWObj wobj_on_cnv1\RelDist:=500.0\MaxTime:=0.1 \Timeflag:=flag1;

The WaitWobj will return immediately if the object has passed 500 mm but
otherwise will wait 0.1 sec for an object. If no object passes 500 mm during this
0.1 sec the instruction will return with flag1 =TRUE.

Limitations
It requires 50ms to connect to the first object in the start window. Once connected,
a second WaitWObjwith \RelDist optional argument will take only normal RAPID
instruction execution time.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1061
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.345 WaitWObj - Wait for work object on conveyor

Conveyor Tracking
Continued

Error handling
If the following errors occur during execution of the WaitWobj instruction then the
system variable ERRNO will be set. These errors can then be handled in the error
handler.

Cause of errorName

The conveyor is not activated.ERR_CNV_NOT_ACT

The WaitWObj instruction is already connected.ERR_CNV_CONNECT

The object that the instruction WaitWObj was waiting for has
been dropped by another task. (DSQC 354Revision 2: an object
had passed the start window).

ERR_CNV_DROPPED

The object did not come in time and there is no Timeflag.ERR_WAIT_MAXTIME

Syntax
WaitWObj

[WObj ':='] < persistent (PERS) of wobjdata> ';'

['\' RelDist ':=' < expression (IN) of num >]

['\' MaxTime ':=' <expression (IN) of num>]

['\' TimeFlag ':=' <variable (VAR) of bool>] ';

Related information

SeeFor information about

DropWObj - Drop work object on conveyor on
page 177

Drop workobject on conveyor

Application manual - Conveyor trackingConveyor tracking

1062 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.345 WaitWObj - Wait for work object on conveyor
Conveyor Tracking
Continued

1.346 WarmStart - Restart the controller

Usage
WarmStart is used to restart the controller.
The system parameters can be changed from RAPID with the instruction
WriteCfgData. Youmust restart the controller in order for a change to have effect
on some of the system parameters. The restart can be done with this instruction
WarmStart.

Basic examples
The following example illustrates the instruction WarmStart:

Example 1
WriteCfgData "/MOC/MOTOR_CALIB/rob1_1","cal_offset",offset1;

WarmStart;

Writes the value of the num variable offset1 as calibration offset for axis 1 on
rob1 and generates a restart of the controller.

Program execution
Warmstart takes effect at once and the program pointer is set to the next
instruction.

Syntax
WarmStart ';'

Related information

SeeFor information about

WriteCfgData - Writes attribute of a system para-
meter on page 1078

Write attribute of a system parameter

Technical referencemanual - System parametersConfiguration

Product specification - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 1063
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.346 WarmStart - Restart the controller

RobotWare - OS

1.347 WHILE - Repeats as long as ...

Usage
WHILE is used when a number of instructions are to be repeated as long as a given
condition expression evaluates to a TRUE value.

Tip

If it is possible to determine the number of repetitions then the FOR instruction
can be used.

Basic examples
The following example illustrates the instruction WHILE:

Example 1
WHILE reg1 < reg2 DO

...

reg1 := reg1 + 1;

ENDWHILE

Repeats the instructions in the WHILE-block as long as reg1 < reg2.

Arguments
WHILE Condition DO ... ENDWHILE

Condition

Data type: bool
The condition that must be evaluated to a TRUE value for the instructions in the
WHILE-block to be executed.

Program execution
1 The condition expression is evaluated. If the expression evaluates to a TRUE

value then the instructions in the WHILE-block are executed.
2 The condition expression is then evaluated again, and if the result of this

evaluation is TRUE then the instructions in the WHILE-block are executed
again.

3 This process continues until the result of the expression evaluation becomes
FALSE.

The iteration is then terminated and the program execution continues from the
instruction after the WHILE-block.
If the result of the expression evaluation is FALSE at the very outset then the
instructions in the WHILE-block are not executed at all, and the program control
transfers immediately to the instruction that follows after the WHILE-block.

Syntax
WHILE <conditional expression> DO

<statement list>

ENDWHILE

Continues on next page
1064 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.347 WHILE - Repeats as long as ...
RobotWare - OS

Related information

SeeFor information about

Technical referencemanual - RAPIDOverview,
section Basic characteristics - Expressions

Expressions

FOR - Repeats a given number of times on
page 246

Repeats a given number of times

Technical reference manual - RAPID Instructions, Functions and Data types 1065
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.347 WHILE - Repeats as long as ...

RobotWare - OS
Continued

1.348 WorldAccLim - Control acceleration in world coordinate system

Usage
WorldAccLim (World Acceleration Limitation) is used to limit the
acceleration/deceleration of the tool (and payload) in the world coordinate system.
The limitation will be achieved all together in the gravity center point of the actual
tool, actual payload (if present), and the mounting flange of the robot.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following examples illustrate the instruction WorldAccLim:

Example 1
WorldAccLim \On := 3.5;

Acceleration/deceleration is limited to 3.5 m/s2 .

Example 2
WorldAccLim \Off;

The acceleration/deceleration is reset to maximum (default).

Arguments
WorldAccLim [\On] | [\Off]

[\On]

Data type: num
The absolute value of the acceleration/deceleration limitation in m/s2 .

[\Off]

Data type: switch
No limit. Maximum acceleration (default).

Program execution
The acceleration limitations applies for the next executed robot movement
instruction and is valid until a new WorldAccLim instruction is executed.
The maximum acceleration (WorldAccLim \Off) is automatically set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Continues on next page
1066 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.348 WorldAccLim - Control acceleration in world coordinate system
RobotWare - OS

It is recommended to use just one type of limitation of the acceleration. If a
combination of instructions WorldAccLim, AccSet, and PathAccLim are done
then the system reduces the acceleration/deceleration in the following order:

• according WorldAccLim
• according AccSet
• according PathAccLim

Limitations
The minimum acceleration allowed is 0.1 m/s2 .
The following robot models are not supported and cannot use the WorldAccLim
instruction:

• IRB 340, IRB 360, IRB 540, IRB 1400, IRB 1410

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The argument On is set to a value that is too low.ERR_ACC_TOO_LOW

Syntax
WorldAccLim

['\' On ':=' <expression (IN) of num>] | ['\' Off] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewPositioning instructions

motsetdata - Motion settings data on page1660Motion settings data

AccSet - Reduces the acceleration on page 21Reduction of acceleration

PathAccLim - Reduce TCP acceleration along
the path on page 510

Limitation of acceleration along the path

Technical reference manual - RAPID Instructions, Functions and Data types 1067
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.348 WorldAccLim - Control acceleration in world coordinate system

RobotWare - OS
Continued

1.349 Write - Writes to a character-based file or serial channel

Usage
Write is used to write to a character-based file or serial channel. The value of
certain data can be written as well as text.

Basic examples
The following examples illustrate the instruction Write:
See also More examples on page 1069.

Example 1
Write logfile, "Execution started";

The text Execution started is written to the file with reference name logfile.

Example 2
VAR num reg1:=5;

...

Write logfile, "No of produced parts="\Num:=reg1;

The text No of produced parts=5, is written to the file with the reference name
logfile.

Arguments
Write IODevice String [\Num] | [\Bool] | [\Pos] | [\Orient] |

[\Dnum] [\NoNewLine]

IODevice

Data type: iodev
The name (reference) of the current file or serial channel.

String

Data type: string
The text to be written.

[\Num]

Numeric
Data type: num
The data whose numeric values are to be written after the text string.

[\Bool]

Boolean
Data type: bool
The data whose logical values are to be written after the text string.

[\Pos]

Position
Data type: pos
The data whose position is to be written after the text string.

Continues on next page
1068 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.349 Write - Writes to a character-based file or serial channel
RobotWare - OS

[\Orient]

Orientation
Data type: orient
The data whose orientation is to be written after the text string.

[\Dnum]

Numeric
Data type: dnum
The data whose numeric values are to be written after the text string.

[\NoNewLine]

Data type: switch
Omits the line-feed character that normally indicates the end of the text, i.e. next
write instruction will continue on the same line.

Program execution
The text string is written to a specified file or serial channel. A line-feed character
(LF) is also written, but can be omitted if the argument \NoNewLine is used.
If one of the arguments \Num, \Bool, \Pos, or \Orient is used then its value is
first converted to a text string before being added to the first string. The conversion
from value to text string takes place as follows:

Text stringValueArgument

“23”23\Num

“1.14137”1.141367\Num

“TRUE”TRUE\Bool

"[1817.3,905.17,879.11]"[1817.3,905.17,879.11]\Pos

“[0.96593,0,0.25882,0]"[0.96593,0,0.25882,0]\Orient

"4294967295"4294967295\Dnum

The value is converted to a string with standard RAPID format. This means in
principle 6 significant digits. If the decimal part is less than 0.000005 or greater
than 0.999995, the number is rounded to an integer.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

More examples
More examples of the instruction Write are illustrated below.

Example 1
VAR iodev printer;

VAR num reg1:=0;

VAR num stopprod_value:=0;

...

Open "com1:", printer\Write;

stopprod_value:=stopprod;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1069
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.349 Write - Writes to a character-based file or serial channel

RobotWare - OS
Continued

WHILE stopprod_value = 0 DO

produce_part;

reg1:=reg1+1;

Write printer, "Produced part="\Num:=reg1\NoNewLine;

Write printer, " "\NoNewLine;

Write printer, CTime();

stopprod_value:=stopprod;

ENDWHILE

Close printer;

A line, including the number of the produced part and the time, is outputed to a
printer each cycle. The printer is connected to serial channel com1:. The printed
message could look like this:

09:47:15Produced part=473

Limitations
The arguments \Num, \Dnum, \Bool, \Pos, and \Orient are mutually exclusive
and thus cannot be used simultaneously in the same instruction.
This instruction can only be used for files or serial channels that have been opened
for writing.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs during writing.ERR_FILEACC

Syntax
Write

[IODevice ':='] <variable (VAR) of iodev> ','

[String ':='] <expression (IN) of string>

['\' Num ':=' <expression (IN) of num>]

| ['\' Bool ':=' <expression (IN) of bool>]

| ['\' Pos ':=' <expression (IN) of pos>]

| ['\' Orient ':=' <expression (IN) of orient>]

| ['\' Dnum ':=' <expression (IN) of dnum>]

['\' NoNewLine] ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening a file or serial channel

Application manual - Controller software IRC5File and serial channel handling

1070 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.349 Write - Writes to a character-based file or serial channel
RobotWare - OS
Continued

1.350 WriteAnyBin - Writes data to a binary serial channel or file

Usage
WriteAnyBin (Write Any Binary) is used to write any type of data to a binary serial
channel or file.

Basic examples
The following example illustrates the instruction WriteAnyBin:
See also More examples on page 1072.

Example 1
VAR iodev channel1;

VAR orient quat1 := [1, 0, 0, 0];

...

Open "com1:", channel1 \Bin;

WriteAnyBin channel1, quat1;

The orient data quat1 is written to the channel referred to by channel1.

Arguments
WriteAnyBin IODevice Data

IODevice

Data type: iodev
The name (reference) of the binary serial channel or file for the writing operation.

Data

Data type: ANYTYPE
Data to be written.

Program execution
As many bytes as required for the specified data are written to the specified binary
serial channel or file.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Limitations
This instruction can only be used for serial channels or files that have been opened
for binary writing.
The data to be written by this instruction WriteAnyBin must be value data type
such as num, bool, or string. Record, record component, array, or array element
of these value data types can also be used. Entire data or partial data with
semi-value or non-value data types cannot be used.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1071
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.350 WriteAnyBin - Writes data to a binary serial channel or file

RobotWare - OS

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs during writing.ERR_FILEACC

More examples
More examples of the instruction WriteAnyBin are illustrated below.

Example 1
VAR iodev channel;

VAR num input;

VAR robtarget cur_robt;

Open "com1:", channel\Bin;

! Send the control character enq

WriteStrBin channel, "\05";

! Wait for the control character ack

input := ReadBin (channel \Time:= 0.1);

IF input = 6 THEN

! Send current robot position

cur_robt := CRobT(\Tool:= tool1\WObj:= wobj1);

WriteAnyBin channel, cur_robt;

ENDIF

Close channel;

The current position of the robot is written to a binary serial channel.

Limitations
Because WriteAnyBin-ReadAnyBin is designed to only send internal controller
data between IRC5 control systems, no data protocol is released and the data
cannot be interpreted on any PC.

Note

Control software development can break the compatibility, and therefore it might
not be possible to use WriteAnyBin-ReadAnyBin between different software
versions of RobotWare.

Syntax
WriteAnyBin

[IODevice ':='] <variable (VAR) of iodev> ','

[Data ':='] <expression (IN) of ANYTYPE> ';'

Continues on next page
1072 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.350 WriteAnyBin - Writes data to a binary serial channel or file
RobotWare - OS
Continued

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Opening of serial channels or files

ReadAnyBin - Read data from a binary
channel or file on page 574

Read data from a binary serial channel or file

Application manual - Controller software
IRC5

File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1073
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.350 WriteAnyBin - Writes data to a binary serial channel or file

RobotWare - OS
Continued

1.351 WriteBin - Writes to a binary serial channel

Usage
WriteBin is used to write a number of bytes to a binary serial channel.

Basic examples
The following example illustrates the instruction WriteBin:
See also More examples on page 1075.

Example 1
WriteBin channel2, text_buffer, 10;

10 characters from the text_buffer list are written to the channel referred to by
channel2.

Arguments
WriteBin IODevice Buffer NChar

IODevice

Data type: iodev
Name (reference) of the current serial channel.

Buffer

Data type: array of num
The list (array) containing the numbers (characters) to be written.

NChar

Number of Characters
Data type: num
The number of characters to be written from the Buffer.

Program execution
The specified number of numbers (characters) in the list is written to the serial
channel.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Limitations
This instruction can only be used for serial channels that have been opened for
binary writing.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs during writing.ERR_FILEACC

Continues on next page
1074 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.351 WriteBin - Writes to a binary serial channel
RobotWare - OS

More examples
More examples of how to use the instruction WriteBin are illustrated below.

Example 1
VAR iodev channel;

VAR num out_buffer{20};

VAR num input;

VAR num nchar;

Open "com1:", channel\Bin;

out_buffer{1} := 5;!(enq)

WriteBin channel, out_buffer, 1;

input := ReadBin (channel \Time:= 0.1);

IF input = 6 THEN !(ack)

out_buffer{1} := 2;!(stx)

out_buffer{2} := 72;!(’H’)

out_buffer{3} := 101;!(’e’)

out_buffer{4} := 108;!(’l’)

out_buffer{5} := 108;!(’l’)

out_buffer{6} := 111;!(’o’)

out_buffer{7} := 32;!(’ ’)

out_buffer{8} := StrToByte("w"\Char);!(’w’)

out_buffer{9} := StrToByte("o"\Char);!(’o’)

out_buffer{10} := StrToByte("r"\Char);!(’r’)

out_buffer{11} := StrToByte("l"\Char);!(’l’)

out_buffer{12} := StrToByte("d"\Char);!(’d’)

out_buffer{13} := 3;!(etx)

WriteBin channel, out_buffer, 13;

ENDIF

After a handshake (enq,ack) the text string Hello world (with associated control
characters) is written to a serial channel. The function StrToByte is used in the
same cases to convert a string into a byte (num) data.

Syntax
WriteBin

[IODevice ':='] <variable (VAR) of iodev> ','

[Buffer ':='] <array {*} (IN) of num> ','

[NChar ':='] <expression (IN) of num> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening, etc. of serial channels

StrToByte - Converts a string to a byte data on
page 1466

Convert a string to a byte data

byte - Integer values 0 - 255 on page 1570Byte data

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1075
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.351 WriteBin - Writes to a binary serial channel

RobotWare - OS
Continued

1.352 WriteBlock - Write block of data to device

Usage
WriteBlock is used to write a block of data to a device connected to the serial
sensor interface. The data is fetched from a file.
The sensor interface communicates with sensors over serial channels using the
RTP1 transport protocol.
This is an example of a sensor channel configuration.

COM_PHY_CHANNEL:

Name "COM1:"

Connector "COM1"

Baudrate 19200

COM_TRP:

Name "sen1:"

Type "RTP1"

PhyChannel "COM1"

Basic examples
The following example illustrates the instruction WriteBlock:

Example 1
CONST string SensorPar := "flp1:senpar.cfg";

CONST num ParBlock:= 1;

! Connect to the sensor device "sen1:" (defined in sio.cfg).

SenDevice "sen1:";

! Write sensor parameters from flp1:senpar.cfg

! to sensor datablock 1.

WriteBlock "sen1:", ParBlock, SensorPar;

Arguments
WriteBlock device BlockNo FileName [\TaskName]

device

Data type: string
The I/O device name configured in sio.cfg for the sensor used.

BlockNo

Data type: num
The argument BlockNo is used to select the data block in the sensor block to be
written.

FileName

Data type: string
The argument FileName is used to select a file from which data is written to the
data block in the sensor selected by the BlockNo argument.

Continues on next page
1076 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.352 WriteBlock - Write block of data to device
Sensor Interface

[\TaskName]

Data type: string
The argument TaskNamemakes it possible to access devices in other RAPID tasks.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

DescriptionError constant (ERRNO value)

Measurement failureSEN_NO_MEAS

Sensor unable to handle commandSEN_NOREADY

General sensor errorSEN_GENERRO

Sensor busSEN_BUSY

Unknown sensorSEN_UNKNOWN

External sensor errorSEN_EXALARM

Internal sensor errorSEN_CAALARM

Sensor temperature errorSEN_TEMP

Illegal communication valueSEN_VALUE

Sensor check failureSEN_CAMCHECK

Communication errorSEN_TIMEOUT

Syntax
WriteBlock

[device ':='] < expression(IN) of string> ','

[BlockNo ':='] < expression (IN) of num > ','

[FileName ':='] < expression (IN) of string > ','

['\' TaskName ':=' < expression (IN) of string >] ';'

Related information

SeeFor information about

SenDevice - connect to a sensor device on page 680Connect to a sensor device

WriteVar - Write variable on page 1086Write a sensor variable

ReadBlock - read a block of data from device on page577Read a sensor data block

Technical reference manual - System parametersConfiguration of sensor commu-
nication

Technical reference manual - RAPID Instructions, Functions and Data types 1077
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.352 WriteBlock - Write block of data to device

Sensor Interface
Continued

1.353 WriteCfgData - Writes attribute of a system parameter

Usage
WriteCfgData is used to write one attribute of a system parameter (configuration
data).
Besides writing named parameters, it is also possible to search and update
unnamed parameters

Basic examples
The following examples illustrate the instruction WriteCfgData. Both of these
examples show how to write named parameter data.

Example 1
VAR num offset1 := 1.2;

...

WriteCfgData "/MOC/MOTOR_CALIB/rob1_1","cal_offset",offset1;

Written in the num variable offset1, the calibration offset for axis 1 on rob_1.

Example 2
VAR string io_device := "my_device";

...

WriteCfgData "/EIO/EIO_SIGNAL/process_error","Device",io_device;

Written in the string variable io_device, the name of the I/O device where the
signal process_error is defined.

Arguments
WriteCfgData InstancePath Attribute CfgData [\ListNo]

InstancePath

Data type: string
Specifies the path to the parameter to be accessed.
For named parameters, the format of this string is /DOMAIN/TYPE/ParameterName.
For unnamed parameters, the format of this string is
/DOMAIN/TYPE/Attribute/AttributeValue.

Attribute

Data type: string
The name of the attribute of the parameter to be written.

CfgData

Data type: anytype
The data object fromwhich the new data to store is read. Depending on the attribute
type, valid types are bool, num, dnum, or string.

[\ListNo]

Data type: num
Variable holding the instance number of the Attribute + AttributeValue to
be found and updated.

Continues on next page
1078 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.353 WriteCfgData - Writes attribute of a system parameter
RobotWare - OS

First occurrence of the Attribute + AttributeValue has instance number 0.
If there are more instances to search for then the returned value in \ListNo will
be incremented with 1. Otherwise if there are no more instance then the returned
value will be -1. The predefined constant END_OF_LIST can be used for check if
there are more instances to search for.

Program execution
The value of the attribute specified by the Attribute argument is set according
to the value of the data object specified by the CfgData argument.
If using format /DOMAIN/TYPE/ParameterName in InstancePath then only
named parameters can be accessed, i.e. parameters where the first attribute is
name, Name, or NAME.
For unnamed parameters, use the optional parameter \ListNo to specify which
instance to write the attribute value to. It is updated after each successful write to
the next available instance to write to.

More examples
More examples of the instruction WriteCfgdata are illustrated below. Both of
these examples show how to write to unnamed parameters.

Example 1
VAR num read_index;

VAR num write_index;

VAR string read_str;

...

read_index:=0;

write_index:=0;

ReadCfgData "/EIO/EIO_CROSS/Act1/do_13", "Res", read_str,
\ListNo:=read_index;

WriteCfgData "/EIO/EIO_CROSS/Act1/do_13", "Res", "my"+read_str,
\ListNo:=write_index;

Reads the resultant signal for the unnamed digital actor signal do_13 and places
the name in the string variable read_str. Then update the name to di_13 with
prefix "my".
In this example, domain EIO has the following cfg code:
EIO_CROSS:
-Name "Cross_di_1_do_2" -Res "di_1" -Act1 "do_2"
-Name "Cross_di_2_do_2" -Res "di_2" -Act1 "do_2"
-Name "Cross_di_13_do_13" -Res "di_13" -Act1 "do_13"

Example 2
VAR num read_index;

VAR num write_index;

VAR string read_str;

...

read_index:=0;

write_index:=0;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1079
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.353 WriteCfgData - Writes attribute of a system parameter

RobotWare - OS
Continued

WHILE read_index <> END_OF_LIST DO

ReadCfgData "/EIO/EIO_SIGNAL/Device/USERIO", "Name", read_str,
\ListNo:=read_index;

IF read_index <> END_OF_LIST THEN

WriteCfgData "/EIO/EIO_SIGNAL/Device/USERIO", "Name",
"my"+read_str, \ListNo:=write_index;

ENDIF

ENDWHILE

Read the names of all signals defined for the I/O device USERIO. Change the names
on the signals to the read name with the prefix "my".
In this example, domain EIO has the following cfg code:

EIO_SIGNAL:

-Name "USERDO1" -SignalType "DO" -Device "USERIO" -DeviceMap "0"

-Name "USERDO2" -SignalType "DO" -Device "USERIO" -DeviceMap "1"

-Name "USERDO3" -SignalType "DO" -Device "USERIO" -DeviceMap "2"

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

It is not possible to find the data specified with
“InstancePath + Attribute” in the configuration data-
base.

ERR_CFG_NOTFND

The data type for parameter CfgData is not equal to the
real data type for the found data specified
with“InstancePath + Attribute” in the configuration
database.

ERR_CFG_ILLTYPE

The data for parameter CfgData is outside limits (max./min.
value).

ERR_CFG_LIMIT

Trying to write internally written protected data.ERR_CFG_INTERNAL

Variable in argument \ListNo has a value outside range
of available instances (0 ... n) when executing the instruc-
tion.

ERR_CFG_OUTOFBOUNDS

Limitations
The conversion from RAPID program units (mm, degree, second etc.) to system
parameter units (m, radian, second etc.) for CfgData of data type num and dnum
must be done by the user in the RAPID program.
For most system parameters, you must manually restart the controller or execute
the instruction WarmStart in order for the change to have effect. System
parameters that can be changed fromRobotStudio or FlexPendant without a restart
does not require a restart when changed from RAPID either.
If using format /DOMAIN/TYPE/ParameterName in InstancePath then only
named parameters can be accessed, i.e. parameters where the first attribute is
name, Name, or NAME.
RAPID strings are limited to 80 characters. In some cases, this can be in theory
too small for the definition of InstancePath, Attribute, or CfgData.

Continues on next page
1080 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.353 WriteCfgData - Writes attribute of a system parameter
RobotWare - OS
Continued

Predefined data
The predefined constant END_OF_LIST with value -1 can be used to stop writing
when no more instances can be found.

Syntax
WriteCfgData

[InstancePath ':='] < expression (IN) of string > ','

[Attribute ':='] < expression (IN) of string > ','

[CfgData ':='] < expression (IN) of anytype >

['\' ListNo ':=' < variable (VAR) of num >] ';'

Related information

SeeFor information about

string - Strings on page 1728Definition of string

ReadCfgData - Reads attribute of a system para-
meter on page 579

Read attribute of a system parameter

RobName - Get the TCP robot name on page1415Get robot name in current task

Technical referencemanual - System parametersConfiguration

WarmStart - Restart the controller on page 1063Restart of the system

Product specification - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 1081
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.353 WriteCfgData - Writes attribute of a system parameter

RobotWare - OS
Continued

1.354 WriteRawBytes - Write rawbytes data

Usage
WriteRawBytes is used to write data of type rawbytes to a device opened with
Open\Bin.

Basic examples
The following example illustrates the instruction WriteRawBytes:

Example 1
VAR iodev io_device;

VAR rawbytes raw_data_out;

VAR rawbytes raw_data_in;

VAR num float := 0.2;

VAR string answer;

ClearRawBytes raw_data_out;

PackDNHeader "10", "20 1D 24 01 30 64", raw_data_out;

PackRawBytes float, raw_data_out, (RawBytesLen(raw_data_out)+1)
\Float4;

Open "/FCI1:/dsqc328_1", io_device \Bin;

WriteRawBytes io_device, raw_data_out;

ReadRawBytes io_device, raw_data_in \Time:=1;

Close io_device;

UnpackRawBytes raw_data_in, 1, answer \ASCII:=10;

In this example raw_data_out is cleared and then packed with DeviceNet header
and a float with value 0.2.
A device, "/FCI1/:dsqc328_1", is opened and the current valid data in
raw_data_out is written to the device. Then the program waits for at most 1
second to read from the device, which is stored in the raw_data_in.
After having closed the device “/FCI1/:dsqc328_1”, then the read data is
unpacked as a string of 10characters and stored in answer.

Arguments
WriteRawBytes IODevice RawData [\NoOfBytes]

IODevice

Data type: iodev
IODevice is the identifier of the device to which RawData shall be written.

RawData

Data type: rawbytes
RawData is the data container to be written to IODevice.

[\NoOfBytes]

Data type: num

Continues on next page
1082 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.354 WriteRawBytes - Write rawbytes data
RobotWare - OS

\NoOfBytes tells how many bytes of RawData should be written to IODevice,
starting at index 1.
If \NoOfBytes is not present then the current length of valid bytes in the variable
RawData is written to device IODevice.

Program execution
During program execution, data is written to the device indicated by IODevice.
If using WriteRawBytes for field bus commands, such as DeviceNet, then the
field bus always sends an answer. The answer must be handle in RAPID with the
ReadRawBytes instruction.
The current length of valid bytes in the RawData variable is not changed.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs during writing.ERR_FILEACC

Syntax
WriteRawBytes

[IODevice ':='] < variable (VAR) of iodev> ','

[RawData ':='] < variable (VAR) of rawbytes>

['\' NoOfBytes ':=' < expression (IN) of num>] ';'

Related information

SeeFor information about

rawbytes - Raw data on page 1689rawbytes data

RawBytesLen - Get the length of rawbytes data
on page 1390

Get the length of rawbytes data

ClearRawBytes - Clear the contents of rawbytes
data on page 133

Clear the contents of rawbytes data

CopyRawBytes - Copy the contents of rawbytes
data on page 157

Copy the contents of rawbytes data

PackDNHeader - Pack DeviceNet Header into
rawbytes data on page 503

Pack DeviceNet header into rawbytes
data

PackRawBytes - Pack data into rawbytes data
on page 506

Pack data into rawbytes data

ReadRawBytes -Read rawbytes data onpage586Read rawbytes data

UnpackRawBytes - Unpack data from rawbytes
data on page 995

Unpack data from rawbytes data

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1083
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.354 WriteRawBytes - Write rawbytes data

RobotWare - OS
Continued

1.355 WriteStrBin - Writes a string to a binary serial channel

Usage
WriteStrBin (Write String Binary) is used to write a string to a binary serial
channel or binary file.

Basic examples
The following example illustrates the instruction WriteStrBin:
See also More examples on page 1085.

Example 1
WriteStrBin channel2, "Hello World\0A";

The string "Hello World\0A"is written to the channel referred to by channel2.
The string is in this case ended with new line \0A. All characters and hexadecimal
values written with WriteStrBin will be unchanged by the system.

Arguments
WriteStrBin IODevice Str

IODevice

Data type: iodev
Name (reference) of the current serial channel.

Str

String
Data type: string
The text to be written.

Program execution
The text string is written to the specified serial channel or file.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Limitations
This instruction can only be used for serial channels or files that have been opened
for binary reading and writing.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs during writing.ERR_FILEACC

Continues on next page
1084 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.355 WriteStrBin - Writes a string to a binary serial channel
RobotWare - OS

More examples
More examples of how to use the instruction WriteStrBin are illustrated below.

Example 1
VAR iodev channel;

VAR num input;

Open "com1:", channel\Bin;

! Send the control character enq

WriteStrBin channel, "\05";

! Wait for the control character ack

input := ReadBin (channel \Time:= 0.1);

IF input = 6 THEN

! Send a text starting with control character stx and ending with
etx

WriteStrBin channel, "\02Hello world\03";

ENDIF

Close channel;

After a handshake the text string Hello world (with associated control characters
in hexadecimal) is written to a binary serial channel.

Syntax
WriteStrBin

[IODevice ':='] <variable (VAR) of iodev> ','

[Str ':='] <expression (IN) of string> ';'

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Opening, etc. of serial channels

ReadStrBin - Reads a string from a binary
serial channel or file on page 1406

Read binary sting

Applicationmanual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1085
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.355 WriteStrBin - Writes a string to a binary serial channel

RobotWare - OS
Continued

1.356 WriteVar - Write variable

Usage
WriteVar is used to write a variable to a device connected to the serial sensor
interface.
The sensor interface communicates with sensors over serial channels using the
RTP1 transport protocol.
This is an example of a sensor channel configuration.

COM_PHY_CHANNEL:

Name "COM1:"

Connector "COM1"

Baudrate 19200

COM_TRP:

Name "sen1:"

Type "RTP1"

PhyChannel "COM1"

Basic examples
The following example illustrates the instruction WriteVar:

Example 1
! Define variable numbers

CONST num SensorOn := 6;

CONST num XCoord := 8;

CONST num YCoord := 9;

CONST num ZCoord := 10;

VAR pos SensorPos;

! Connect to the sensor device“ sen1:” (defined in sio.cfg).

SenDevice "sen1:";

! Request start of sensor meassurements

WriteVar "sen1:", SensorOn, 1;

! Read a cartesian position from the sensor.

SensorPos.x := ReadVar "sen1:", XCoord;

SensorPos.y := ReadVar "sen1:", YCoord;

SensorPos.z := ReadVar "sen1:", ZCoord;

! Stop sensor

WriteVar "sen1:", SensorOn, 0;

Arguments
WriteVar device VarNo VarData [\TaskName]

device

Data type: string
The I/O device name configured in sio.cfg for the sensor used.

Continues on next page
1086 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.356 WriteVar - Write variable
Sensor Interface

VarNo

Data type: num
The argument VarNo is used to select the sensor variable.

VarData

Data type: num
The argument VarData defines the data which is to be written to the variable
selected by the VarNo argument.

[\TaskName]

Data type: string
The argument TaskNamemakes it possible to access devices in other RAPID tasks.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

DescriptionError constant (ERRNOvalue)

Measurement failureSEN_NO_MEAS

Sensor unable to handle commandSEN_NOREADY

General sensor errorSEN_GENERRO

Sensor busSEN_BUSY

Unknown sensorSEN_UNKNOWN

External sensor errorSEN_EXALARM

Internal sensor errorSEN_CAALARM

Sensor temperature errorSEN_TEMP

Illegal communication valueSEN_VALUE

Sensor check failureSEN_CAMCHECK

Communication errorSEN_TIMEOUT

Syntax
WriteVar

[device ':='] < expression (IN) of string> ','

[VarNo ':='] < expression (IN) of num > ','

[VarData ':='] < expression (IN) of num > ','

['\' TaskName ':=' < expression (IN) of string >] ';'

Related information

SeeFor information about

SenDevice - connect to a sensor device on page 680Connect to a sensor device

ReadVar - Read variable from a device on page 1408Read a sensor variable

WriteBlock - Write block of data to device on page 1076Write a sensor data block

ReadBlock - read a block of data from device on page577Read a sensor data block

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1087
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.356 WriteVar - Write variable

Sensor Interface
Continued

SeeFor information about

Technical reference manual - System parametersConfiguration of sensor commu-
nication

1088 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.356 WriteVar - Write variable
Sensor Interface
Continued

1.357 WriteVarArr - Write multiple variables to a sensor device

Usage
WriteVarArr is used to write up to six variables to a sensor device at the same
time.
The sensor must be configured and communicating via the RobotWare option
Sensor Interface.

Basic examples
The following example illustrates the instruction WriteVarArr:

Example 1
! Define variable numbers

CONST num jointno := 16;

CONST num unit := 19;

VAR sensorvardata writeData{3};

! Connect to the sensor device “sen1:” (defined in sio.cfg).

SenDevice "sen1:";

! Setup two variables to write

writeData{1}:=[jointno, 0, false, 1, 5];

writeData{2}:=[unit, 0, false, 1, 1];

! A varNumber of -1 will be ignored

writeData{3}:=[-1, 0, false, 1, 1];

WriteVarArr "sen1:", writeData;

The example shows a write request of the variables jointno and unit.

Arguments
WriteVarArr Device, Data, [\taskName]

Device

Data type: string
The I/O device name configured in sio.cfg for the sensor used.

Data

Data type: sensorvardata
An array variable that refers to a data definition of the variables to be written.

[\TaskName]

Data type: string
The argument TaskNamemakes it possible to access devices in other RAPID tasks.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1089
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.357 WriteVarArr - Write multiple variables to a sensor device

Sensor Interface

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Measurement failureSEN_NO_MEAS

Sensor unable to handle commandSEN_NOREADY

General sensor errorSEN_GENERRO

Sensor busySEN_BUSY

Unknown sensorSEN_UNKNOWN

External sensor errorSEN_EXALARM

Internal sensor errorSEN_CAALARM

Sensor temperature errorSEN_TEMP

Illegal communication valueSEN_VALUE

Sensor check failureSEN_CAMCHECK

Communication errorSEN_TIMEOUT

Syntax
WriteVarArr

[Device ':='] <expression(IN) of string> ','

[Data ':='] < array variable {*} (INOUT) of sensorvardata > ','

['\' TaskName ':=' <expression (IN) of string>] ';'

Related information

SeeFor information about

SenDevice - connect to a sensor device on page 680Connect to a sensor device

ReadVarArr - Read multiple variables from a sensor
device on page 589

Read multiple variables from a
device

WriteVar - Write variable on page 1086Write a sensor variable

ReadVar - Read variable from a device on page 1408Read a sensor variable

WriteBlock - Write block of data to device on page 1076Write a sensor data block

ReadBlock - read a block of data from device on page577Read a sensor data block

sensorvardata - Multiple variable setup data for sensor
interface on page 1708

Multiple variable setup data for
sensor interface

Technical reference manual - System parametersConfiguration of sensor commu-
nication

1090 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.357 WriteVarArr - Write multiple variables to a sensor device
Sensor Interface
Continued

1.358 WZBoxDef - Define a box-shaped world zone

Usage
WZBoxDef (World Zone Box Definition) is used to define a world zone that has the
shape of a straight box with all its sides parallel to the axes of theWorld Coordinate
System.

Basic examples
The following example illustrates the instruction WZBoxDef:

Example 1

xx0500002205

VAR shapedata volume;

CONST pos corner1:=[200,100,100];

CONST pos corner2:=[600,400,400];

...

WZBoxDef \Inside, volume, corner1, corner2;

Define a straight box with coordinates parallel to the axes of the world coordinate
system and defined by the opposite corners corner1 and corner2.

Arguments
WZBoxDef [\Inside] | [\Outside] Shape LowPoint HighPoint

[\Inside]

Data type: switch
Define the volume inside the box.

[\Outside]

Data type: switch
Define the volume outside the box (inverse volume).
One of the arguments \Inside or \Outside must be specified.

Shape

Data type: shapedata
Variable for storage of the defined volume (private data for the system).

LowPoint

Data type: pos

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1091
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.358 WZBoxDef - Define a box-shaped world zone

World Zones

Position (x,y,z) in mm defining one lower corner of the box.

HighPoint

Data type: pos
Position (x,y,z) in mm defining the corner diagonally opposite to the previous one.

Program execution
The definition of the box is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

Limitations
The LowPoint and HighPoint positions must be valid for opposite corners (with
different x, y, and z coordinate values).
If the robot is used to point out the LowPoint or HighPoint then work object
wobj0 must be active (use of component trans in robtarget e.g. p1.trans as
argument).

Syntax
WZBoxDef

[['\' Inside] | ['\' Outside] ',']

[LowPoint ':='] <expression (IN) of pos> ','

[Shape ':='] <variable (VAR) of shapedata> ','

[HighPoint ':='] <expression (IN) of pos> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWorld Zones

shapedata - World zone shape data on page 1710World zone shape

WZSphDef - Define a sphere-shaped world zone
on page 1116

Define sphere-shaped world zone

WZCylDef - Define a cylinder-shaped world zone
on page 1093

Define cylinder-shaped world zone

WZHomeJointDef - Define a world zone for home
joints on page 1106

Define a world zone for home joints

WZLimJointDef - Define a world zone for limitation
in joints on page 1109

Define a world zone for limit joints

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital output
on page 1098

Activate world zone digital output set

1092 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.358 WZBoxDef - Define a box-shaped world zone
World Zones
Continued

1.359 WZCylDef - Define a cylinder-shaped world zone

Usage
WZCylDef (World Zone Cylinder Definition) is used to define a world zone that
has the shape of a cylinder with the cylinder axis parallel to the z-axis of the World
Coordinate System.

Basic examples
The following example illustrates the instruction WZCylDef:

Example 1

xx0500002206

VAR shapedata volume;

CONST pos C2:=[300,200,200];

CONST num R2:=100;

CONST num H2:=200;

...

WZCylDef \Inside, volume, C2, R2, H2;

Define a cylinder with the center of the bottom circle in C2, radius R2, and height
H2.

Arguments
WZCylDef [\Inside] | [\Outside] Shape CentrePoint Radius Height

[\Inside]

Data type: switch
Define the volume inside the cylinder.

[\Outside]

Data type: switch
Define the volume outside the cylinder (inverse volume).
One of the arguments \Inside or \Outside must be specified.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1093
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.359 WZCylDef - Define a cylinder-shaped world zone

World Zones

Shape

Data type: shapedata
Variable for storage of the defined volume (private data for the system).

CentrePoint

Data type: pos
Position (x,y,z) in mm defining the center of one circular end of the cylinder.

Radius

Data type: num
The radius of the cylinder in mm.

Height

Data type: num
The height of the cylinder in mm. If it is positive (+z direction), the CentrePoint
argument is the center of the lower end of the cylinder (as in the above example).
If it is negative (-z direction) then the CentrePoint argument is the center of the
upper end of the cylinder.

Program execution
The definition of the cylinder is stored in the variable of type shapedata (argument
Shape) for future use in WZLimSup or WZDOSet instructions.

Limitations
If the robot is used to point out the CentrePoint then the work object wobj0must
be active (use of component trans in robtarget e.g. p1.trans as argument).

Syntax
WZCylDef

['\' Inside] | ['\' Outside] ','

[Shape ':='] <variable (VAR) of shapedata> ','

[CentrePoint ':='] <expression (IN) of pos> ','

[Radius ':='] <expression (IN) of num> ','

[Height ':='] <expression (IN) of num> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWorld Zones

shapedata - World zone shape data on page 1710World zone shape

WZBoxDef - Define a box-shaped world zone on
page 1091

Define box-shaped world zone

WZSphDef - Define a sphere-shaped world zone
on page 1116

Define sphere-shaped world zone

WZHomeJointDef - Define a world zone for home
joints on page 1106

Define a world zone for home joints

WZLimJointDef - Define a world zone for limitation
in joints on page 1109

Define a world zone for limit joints

Continues on next page
1094 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.359 WZCylDef - Define a cylinder-shaped world zone
World Zones
Continued

SeeFor information about

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital output
on page 1098

Activate world zone digital output set

Technical reference manual - RAPID Instructions, Functions and Data types 1095
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.359 WZCylDef - Define a cylinder-shaped world zone

World Zones
Continued

1.360 WZDisable - Deactivate temporary world zone supervision

Usage
WZDisable (World Zone Disable) is used to deactivate the supervision of a
temporary world zone previously defined either to stop the movement or to set an
output.

Basic examples
The following example illustrates the instruction WZDisable:

Example 1
VAR wztemporary wzone;

...

PROC...

WZLimSup \Temp, wzone, volume;

MoveL p_pick, v500, z40, tool1;

WZDisable wzone;

MoveL p_place, v200, z30, tool1;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it will
not go inside the specified volume wzone. This supervision is not performed when
going to p_place.

Arguments
WZDisable WorldZone

WorldZone

Data type: wztemporary
Variable or persistent variable of type wztemporary, which contains the identity
of the world zone to be deactivated.

Program execution
The temporary world zone is deactivated. This means that the supervision of the
robot’s TCP, relative to the corresponding volume, is temporarily stopped. It can
be re-activated via the WZEnable instruction.

Limitations
Only a temporary world zone can be deactivated. A stationary world zone is always
active.

Syntax
WZDisable

[WorldZone ':='] <variable or persistent (INOUT) of wztemporary>
';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWorld Zones

Continues on next page
1096 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.360 WZDisable - Deactivate temporary world zone supervision
World Zones

SeeFor information about

shapedata - World zone shape data on page 1710World zone shape

wztemporary - Temporary world zone data on
page 1776

Temporary world zone data

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital output
on page 1098

Activate world zone set digital output

WZEnable - Activate temporary world zone supervi-
sion on page 1102

Activate world zone

WZFree - Erase temporary world zone supervision
on page 1104

Erase world zone

Technical reference manual - RAPID Instructions, Functions and Data types 1097
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.360 WZDisable - Deactivate temporary world zone supervision

World Zones
Continued

1.361 WZDOSet - Activate world zone to set digital output

Usage
WZDOSet (World Zone Digital Output Set) is used to define the action and to activate
a world zone for supervision of the robot movements.
After this instruction is executed, when the robot’s TCP or the robot/external axes
(zone in joints) is inside the defined world zone or is approaching close to it, a
digital output signal is set to the specified value.

Basic examples
The following example illustrates the instruction WZDOSet:
See also More examples on page 1099.

Example 1
VAR wztemporary service;

PROC zone_output()

VAR shapedata volume;

CONST pos p_service:=[500,500,700];

...

WZSphDef \Inside, volume, p_service, 50;

WZDOSet \Temp, service \Inside, volume, do_service, 1;

ENDPROC

Definition of temporary world zone service in the application program that sets
the signal do_service when the robot’s TCP is inside the defined sphere during
program execution or when jogging.

Arguments
WZDOSet [\Temp] | [\Stat] WorldZone [\Inside] | [\Before] Shape

Signal SetValue

[\Temp]

Temporary
Data type: switch
The world zone to define is a temporary world zone.

[\Stat]

Stationary
Data type: switch
The world zone to define is a stationary world zone.
One of the arguments \Temp or \Stat must be specified.

WorldZone

Data type: wztemporary or wzstationary
Variable or persistent variable, that will be updated with the identity (numeric value)
of the world zone.

Continues on next page
1098 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.361 WZDOSet - Activate world zone to set digital output
World Zones

If using the switch \Temp, the data type must be wztemporary. If using the switch
\Stat, the data type must be wzstationary.

[\Inside]

Data type: switch
The digital output signal will be set when the robot’s TCP or specified axes are
inside the defined volume.

[\Before]

Data type: switch
The digital output signal will be set before the robot’s TCP or specified axes reaches
the defined volume (as soon as possible before the volume).
One of the arguments \Inside or \Before must be specified.

Shape

Data type: shapedata
The variable that defines the volume of the world zone.

Signal

Data type: signaldo
The name of the digital output signal that will be changed.
If a stationary worldzone is used then the signal must be written as protected for
access from the user (RAPID, FP). Set Access Level for the signal in System
Parameters or specified axes.

SetValue

Data type: dionum
Desired value of the signal (0 or 1) when the robot’s TCP is inside the volume or
just before it enters the volume.
When outside or just outside the volume then the signal is set to the opposite value.

Program execution
The defined world zone is activated. From this moment the robot’s TCP position
(or robot/external joint position) is supervised, and the output will be set when the
robot’s TCP position (or robot/external joint position) is inside the volume (\Inside)
or comes close to the border of the volume (\Before).
If using WZHomeJointDef or WZLimJointDef together with WZDOSet then the
digital output signal is set only if all active axes with joint space supervision are
before or inside the joint space.

More examples
More examples of how to use the instruction WZDOSet are illustrated below.

Example 1
VAR wztemporary home;

VAR wztemporary service;

PERS wztemporary equip1:=[0];

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1099
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.361 WZDOSet - Activate world zone to set digital output

World Zones
Continued

PROC main()

...

! Definition of all temporary world zones

zone_output;

...

! equip1 in robot work area

WZEnable equip1;

...

! equip1 out of robot work area

WZDisable equip1;

...

! No use for equip1 any more

WZFree equip1;

...

ENDPROC

PROC zone_output()

VAR shapedata volume;

CONST pos p_home:=[800,0,800];

CONST pos p_service:=[800,800,800];

CONST pos p_equip1:=[-800,-800,0];

...

WZSphDef \Inside, volume, p_home, 50;

WZDOSet \Temp, home \Inside, volume, do_home, 1;

WZSphDef \Inside, volume, p_service, 50;

WZDOSet \Temp, service \Inside, volume, do_service, 1;

WZCylDef \Inside, volume, p_equip1, 300, 1000;

WZLimSup \Temp, equip1, volume;

! equip1 not in robot work area

WZDisable equip1;

ENDPROC

Definition of temporary world zones home and service in the application program,
that sets the signals do_home and do_service, when the robot is inside the sphere
home or service respectively during program execution or when jogging.
Also, definition of a temporary world zone equip1, which is active only in the part
of the robot program when equip1 is inside the working area for the robot. At that
time the robot stops before entering the equip1 volume, both during program
execution and manual jogging. equip1 can be disabled or enabled from other
program tasks by using the persistent variable equip1 value.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Continues on next page
1100 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.361 WZDOSet - Activate world zone to set digital output
World Zones
Continued

Limitations
A world zone cannot be redefined by using the same variable in the argument
WorldZone.
A stationary world zone cannot be deactivated, activated again, or erased in the
RAPID program.
A temporary world zone can be deactivated (WZDisable), activated again
(WZEnable), or erased (WZFree) in the RAPID program.

Syntax
WZDOSet

[['\' Temp] | ['\' Stat] ',']

[WorldZone ':='] <variable or persistent (INOUT) of wztemporary>

['\' Inside] | ['\' Before] ','

[Shape ':='] <variable (VAR) of shapedata> ','

[Signal ':='] <variable (VAR) of signaldo> ','

[SetValue ':='] <expression (IN) of dionum> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWorld Zones

shapedata -World zone shape data on page1710World zone shape

wztemporary - Temporary world zone data on
page 1776

Temporary world zone

wzstationary - Stationary world zone data on
page 1774

Stationary world zone

WZBoxDef - Define a box-shaped world zone on
page 1091

Define straight box-shaped world zone

WZSphDef - Define a sphere-shaped world zone
on page 1116

Define sphere-shaped world zone

WZCylDef - Define a cylinder-shaped world zone
on page 1093

Define cylinder-shaped world zone

WZHomeJointDef - Define a world zone for home
joints on page 1106

Define a world zone for home joints

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

Technical referencemanual - System parametersSignal access level

Technical reference manual - RAPID Instructions, Functions and Data types 1101
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.361 WZDOSet - Activate world zone to set digital output

World Zones
Continued

1.362 WZEnable - Activate temporary world zone supervision

Usage
WZEnable (World Zone Enable) is used to re-activate the supervision of a temporary
world zone, previously defined either to stop the movement or to set an output.

Basic examples
The following example illustrates the instruction WZEnable:

Example 1
VAR wztemporary wzone;

...

PROC ...

WZLimSup \Temp, wzone, volume;

MoveL p_pick, v500, z40, tool1;

WZDisable wzone;

MoveL p_place, v200, z30, tool1;

WZEnable wzone;

MoveL p_home, v200, z30, tool1;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it will
not go inside the specified volume wzone. This supervision is not performed when
going to p_place but is reactivated before going to p_home.

Arguments
WZEnable WorldZone

WorldZone

Data type: wztemporary
Variable or persistent variable of the type wztemporary, which contains the identity
of the world zone to be activated.

Program execution
The temporary world zone is re-activated. Please note that a world zone is
automatically activated when it is created. It need only be re-activated when it has
previously been deactivated by WZDisable.

Limitations
Only a temporary world zone can be deactivated and reactivated. A stationary
world zone is always active.

Syntax
WZEnable

[WorldZone ':='] <variable or persistent (INOUT) of wztemporary>
';'

Continues on next page
1102 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.362 WZEnable - Activate temporary world zone supervision
World Zones

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWorld Zones

shapedata - World zone shape data on page 1710World zone shape

wztemporary - Temporary world zone data on
page 1776

Temporary world zone data

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital output
on page 1098

Activate world zone set digital output

WZDisable - Deactivate temporary world zone su-
pervision on page 1096

Deactivate world zone

WZFree - Erase temporary world zone supervision
on page 1104

Erase world zone

Technical reference manual - RAPID Instructions, Functions and Data types 1103
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.362 WZEnable - Activate temporary world zone supervision

World Zones
Continued

1.363 WZFree - Erase temporary world zone supervision

Usage
WZFree (World Zone Free) is used to erase the definition of a temporary world
zone, previously defined either to stop the movement or to set an output.

Basic examples
The following example illustrates the instruction WZFree:

Example 1
VAR wztemporary wzone;

...

PROC ...

WZLimSup \Temp, wzone, volume;

MoveL p_pick, v500, z40, tool1;

WZDisable wzone;

MoveL p_place, v200, z30, tool1;

WZEnable wzone;

MoveL p_home, v200, z30, tool1;

WZFree wzone;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it will
not go inside a specified volume wzone. This supervision is not performed when
going to p_place but is reactivated before going to p_home. When this position
is reached then the world zone definition is erased.

Arguments
WZFree WorldZone

WorldZone

Data type: wztemporary
Variable or persistent variable of the type wztemporary, which contains the identity
of the world zone to be erased.

Program execution
The temporary world zone is first deactivated and then its definition is erased.
Once erased, a temporary world zone cannot be re-activated or deactivated.

Limitations
Only a temporary world zone can be deactivated, reactivated, or erased. A stationary
world zone is always active.

Syntax
WZFree

[WorldZone ':='] <variable or persistent (INOUT) of wztemporary>
';'

Continues on next page
1104 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.363 WZFree - Erase temporary world zone supervision
World Zones

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWorld Zones

shapedata - World zone shape data on page 1710World zone shape

wztemporary - Temporary world zone data on
page 1776

Temporary world zone data

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital output
on page 1098

Activate world zone set digital output

WZDisable - Deactivate temporary world zone su-
pervision on page 1096

Deactivate world zone

WZEnable - Activate temporary world zone supervi-
sion on page 1102

Activate world zone

Technical reference manual - RAPID Instructions, Functions and Data types 1105
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.363 WZFree - Erase temporary world zone supervision

World Zones
Continued

1.364 WZHomeJointDef - Define a world zone for home joints

Usage
WZHomeJointDef (World Zone Home Joint Definition) is used to define a world
zone in joints coordinates for both the robot and external axes to be used as a
HOME or SERVICE position.

Basic examples
The following example illustrates the instruction WZHomeJointDef:

Example 1
VAR wzstationary home;

...

PROC power_on()

VAR shapedata joint_space;

CONST jointtarget home_pos := [[0, 0, 0, 0, 0, -45], [0, 9E9,
9E9, 9E9, 9E9, 9E9]];

CONST jointtarget delta_pos := [[2, 2, 2, 2, 2, 2], [5, 9E9,
9E9, 9E9, 9E9, 9E9]];

...

WZHomeJointDef \Inside, joint_space, home_pos, delta_pos;

WZDOSet \Stat, home \Inside, joint_space, do_home, 1;

ENDPROC

Definition and activation of stationary world zone home, that sets the signal do_home
to 1, when all robot axes and the external axis extax.eax_a are at the joint
position home_pos (within +/- delta_pos for each axis) during program execution
and jogging. The variable joint_space of data type shapedata are used to
transfer data from the instruction WZHomeJointDef to the instruction WZDOSet.

Arguments
WZHomeJointDef [\Inside] | [\Outside] Shape MiddleJointVal

DeltaJointVal

[\Inside]

Data type: switch
Define the joint space inside the MiddleJointVal +/- DeltaJointVal.

[\Outside]

Data type: switch
Define the joint space outside the MiddleJointVal +/- DeltaJointVal (inverse
joint space).

Shape

Data type: shapedata
Variable for storage of the defined joint space (private data for the system).

MiddleJointVal

Data type: jointtarget

Continues on next page
1106 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.364 WZHomeJointDef - Define a world zone for home joints
World Zones

The position in joint coordinates for the center of the joint space to define. Specifies
for each robot axis and external axis (degrees for rotational axes andmm for linear
axes). Specifies in absolute joints (not in offset coordinate system
EOffsSet-EOffsOn for external axes). Value 9E9 for some axis means that the
axis should not be supervised. Non-active external axis also gives 9E9 at
programming time.

DeltaJointVal

Data type: jointtarget
The +/- delta position in joint coordinates from the center of the joint space. The
value must be greater than 0 for all axes to supervise.
The following figure shows the definition of joint space for rotational axis.

xx0500002208

The following figure shows the definition of joint space for linear axis.

xx0500002209

Program execution
The definition of the joint space is stored in the variable of type shapedata
(argument Shape) for future use in WZLimSup or WZDOSet instructions.
If use of WZHomeJointDef together with WZDOSet then the digital output signal is
set but only if all active axes with joint space supervision are before or inside the
joint space.
If use of WZHomeJointDefwith outside joint space (argument \Outside) together
with WZLimSup then the robot is stopped as soon as one active axes with joint
space supervision reach the joint space.
If use of WZHomeJointDef with inside joint space (argument \Inside) together
with WZLimSup then the robot is stopped as soon as the last active axes with joint
space supervision reach the joint space. That means that one or several axes, but
not all active and supervised axes, can be inside the joint space at the same time.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1107
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.364 WZHomeJointDef - Define a world zone for home joints

World Zones
Continued

At execution of the instruction ActUnit or DeactUnit for activation or deactivation
of mechanical units, the supervision status for HOMEposition or work area limitation
will be updated.

Limitations

xx0100000002

Only active mechanical units and their active axes at activation time of the world
zone (with instruction WZDOSet respectively WZLimSup), are included in the
supervision of the HOME position respectively to the limitation of the working area.
Besides that, the mechanical unit and its axes must still be active at the program
movement or jogging to be supervised.
For example, if one axis with supervision is outside its HOME joint position but is
deactivated then it does not prevent the digital output signal for the HOME joint
position to be set if all other active axes with joint space supervision are inside the
HOME joint position. At activation of that axis again it will be included in the
supervision and the robot system will then be outside the HOME joint position and
the digital output will be reset.

Syntax
WZHomeJointDef

[['\' Inside] | ['\' Outside] ',']

[Shape ':='] <variable (VAR) of shapedata> ','

[MiddleJointVal ':='] <expression (IN) of jointtarget> ','

[DeltaJointVal ':='] <expression (IN) of jointtarget> ';'

Related information

SeeFor information about

Technical referencemanual - RAPID OverviewWorld Zones

shapedata -World zone shapedata onpage1710World zone shape

WZBoxDef - Define a box-shaped world zone
on page 1091

Define box-shaped world zone

WZCylDef - Define a cylinder-shaped world
zone on page 1093

Define cylinder-shaped world zone

WZSphDef - Define a sphere-shaped world
zone on page 1116

Define sphere-shaped world zone

WZLimJointDef - Define a world zone for limit-
ation in joints on page 1109

Define a world zone for limit joints

WZLimSup - Activate world zone limit supervi-
sion on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital
output on page 1098

Activate world zone digital output set

1108 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.364 WZHomeJointDef - Define a world zone for home joints
World Zones
Continued

1.365 WZLimJointDef - Define a world zone for limitation in joints

Usage
WZLimJointDef (World Zone Limit Joint Definition) is used to define a world zone
in joints coordinates for both the robot and external axes, to be used for limitation
of the working area.
With WZLimJointDef it is possible to limit the working area for each robot and
external axes in the RAPID program, besides the limitation that can be done with
system parameters Motion - Arm - robx_y - Upper Joint Bound ... Lower Joint
Bound.

Basic examples
The following example illustrates the instruction WZLimJointDef:

Example 1
VAR wzstationary work_limit;

...

PROC power_on()

VAR shapedata joint_space;

CONST jointtarget low_pos:= [[-90, 9E9, 9E9, 9E9, 9E9, 9E9],
[-1000, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST jointtarget high_pos := [[90, 9E9, 9E9, 9E9,9E9, 9E9],
[9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

...

WZLimJointDef \Outside, joint_space, low_pos, high_pos;

WZLimSup \Stat, work_limit, joint_space;

ENDPROC

Definition and activation of stationary world zone work_limit, that limit the working
area for robot axis 1 to -90 and +90 degrees and the external axis extax.eax_a
to -1000 mm during program execution and jogging. The variable joint_space
of data type shapedata are used to transfer data from the instruction
WZLimJointDef to the instruction WZLimSup.

Arguments
WZLimJointDef [\Inside] | [\Outside] Shape LowJointVal HighJointVal

[\Inside]

Data type: switch
Define the joint space inside the LowJointVal ... HighJointVal.

[\Outside]

Data type: switch
Define the joint space outside the LowJointVal ... HighJointVal (inverse
joint space).

Shape

Data type: shapedata
Variable for storage of the defined joint space (private data for the system).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1109
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.365 WZLimJointDef - Define a world zone for limitation in joints

World Zones

LowJointVal

Data type: jointtarget
The position in joint coordinates for the low limit of the joint space to define.
Specifies for each robot axes and external axes (degrees for rotational axes and
mm for linear axes). Specifies in absolute joints (not in offset coordinate system
EOffsSet or EOffsOn for external axes). Value 9E9 for some axis means that the
axis should not be supervised for low limit. Non-active external axis also gives 9E9
at programming time.

HighJointVal

Data type: jointtarget
The position in joint coordinates for the high limit of the joint space to define.
Specifies for each robot axes and external axes (degrees for rotational axes and
mm for linear axes). Specifies in absolute joints (not in offset coordinate system
EOffsSet or EOffsOn for external axes). Value 9E9 for an axis means that the
axis should not be supervised for high limit. Non-active external axis also gives
9E9 at programming time.
HighJointVal minus LowJointVal for each axis must be greater than 0 for all
axes to supervise.
The figure below shows definition of joint space for rotating axis.

xx0500002281

The figure below shows definition of joint space for linear axis.

xx0100000002

Program execution
The definition of the joint space is stored in the variable of type shapedata
(argument Shape) for future use in WZLimSup or WZDOSet instructions.
If using WZLimJointDef together with WZDOSet then the digital output signal is
set, only if all active axes with joint space supervision are before or inside the joint
space.
If using WZLimJointDef with outside joint space (argument \Outside) together
with WZLimSup then the robot is stopped as soon as one active axes with joint
space supervision reaches the joint space.

Continues on next page
1110 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.365 WZLimJointDef - Define a world zone for limitation in joints
World Zones
Continued

If using WZLimJointDef with inside joint space (argument \Inside) together
with WZLimSup then the robot is stopped as soon as the last active axes with joint
space supervision reaches the joint space. That means that one or several axes
but not all active and supervised axes can be inside the joint space at the same
time.
At execution of the instruction ActUnit or DeactUnit the supervision status will
be updated.

Limitations

xx0100000002

WARNING!
Only active mechanical units and its active axes at activation time of the world
zone (with instruction WZDOSet respective to WZLimSup), are included in the
supervision of the HOME position respectively the limitation of the working area.
Besides that, the mechanical unit and its axes must still be active at the program
movement or jogging to be supervised.
For example, if one axis with supervision is outside its HOME joint position but is
deactivated then it does not prevent the digital output signal for the HOME joint
position to be set if all other active axes with joint space supervision are inside the
HOME joint position. At activation of that axis again, it will be included in the
supervision and the robot system will the be outside the HOME joint position and
the digital output will be reset.

Syntax
WZLimJointDef

[['\' Inside] | ['\' Outside] ',']

[Shape ':='] <variable (VAR) of shapedata> ','

[LowJointVal ':='] <expression (IN) of jointtarget> ','

[HighJointVal ':='] <expression (IN) of jointtarget> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWorld Zones

shapedata -World zone shape data on page1710World zone shape

WZBoxDef - Define a box-shaped world zone on
page 1091

Define box-shaped world zone

WZCylDef - Define a cylinder-shaped world zone
on page 1093

Define cylinder-shaped world zone

WZSphDef - Define a sphere-shaped world zone
on page 1116

Define sphere-shaped world zone

WZHomeJointDef - Define a world zone for home
joints on page 1106

Define a world zone for home joints

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1111
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.365 WZLimJointDef - Define a world zone for limitation in joints

World Zones
Continued

SeeFor information about

WZDOSet - Activate world zone to set digital
output on page 1098

Activate world zone digital output set

1112 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.365 WZLimJointDef - Define a world zone for limitation in joints
World Zones
Continued

1.366 WZLimSup - Activate world zone limit supervision

Usage
WZLimSup (World Zone Limit Supervision) is used to define the action and to
activate a world zone for supervision of the working area of the robot or external
axes.
After this instruction is executed, when the robot’s TCP reaches the defined world
zone or when the robot/external axes reaches the defined world zone in joints,
then the movement is stopped both during program execution and when jogging.

Basic examples
The following example illustrates the instruction WZLimSup:
See also More examples on page 1114.

Example 1
VAR wzstationary max_workarea;

...

PROC POWER_ON()

VAR shapedata volume;

...

WZBoxDef \Outside, volume, corner1, corner2;

WZLimSup \Stat, max_workarea, volume;

ENDPROC

Definition and activation of stationary world zone max_workarea, with the shape
of the area outside a box (temporarily stored in volume) and the action work-area
supervision. The robot stops with an error message before entering the area outside
the box.

Arguments
WZLimSup [\Temp] | [\Stat] WorldZone Shape

[\Temp]

Temporary
Data type: switch
The world zone to define is a temporary world zone.

[\Stat]

Stationary
Data type: switch
The world zone to define is a stationary world zone.
One of the arguments \Temp or \Stat must be specified.

WorldZone

Data type: wztemporary or wzstationary
Variable or persistent variable that will be updated with the identity (numeric value)
of the world zone.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1113
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.366 WZLimSup - Activate world zone limit supervision

World Zones

If using switch \Temp, the data typemust be wztemporary. If using switch \Stat,
the data type must be wzstationary.

Shape

Data type: shapedata
The variable that defines the volume of the world zone.

Program execution
The defined world zone is activated. From this moment the robot’s TCP position
or the robot/external axes joint position are supervised. If it reaches the defined
area then the movement is stopped.
If using WZLimJointDef or WZHomeJointDef with outside joint space (argument
\Outside) together with WZLimSup then the robot is stopped as soon as one
active axes with joint space supervision reaches the joint space.
If using WZLimJointDef or WZHomeJointDef with inside joint space (argument
\Inside) together with WZLimSup then the robot is stopped as soon as the last
active axes with joint space supervision reaches the joint space. That means that
one or several axes but not all active and supervised axes can be inside the joint
space at the same time.
At execution of the instruction ActUnit or DeactUnit the supervision status will
be updated.

More examples
More examples of how to use the instruction WZLimSup are illustrated below.

Example 1
VAR wzstationary box1_invers;

VAR wzstationary box2;

PROC wzone_power_on()

VAR shapedata volume;

CONST pos box1_c1:=[500,-500,0];

CONST pos box1_c2:=[-500,500,500];

CONST pos box2_c1:=[500,-500,0];

CONST pos box2_c2:=[200,-200,300];

...

WZBoxDef \Outside, volume, box1_c1, box1_c2;

WZLimSup \Stat, box1_invers, volume;

WZBoxDef \Inside, volume, box2_c1, box2_c2;

WZLimSup \Stat, box2, volume;

ENDPROC

Limitation of work area for the robot with the following stationary world zones:
• Outside working area when outside box1_invers
• Outside working area when inside box2

If this routine is connected to the system event POWERON then these world zones
will always be active in the system, both for program movements and manual
jogging.

Continues on next page
1114 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.366 WZLimSup - Activate world zone limit supervision
World Zones
Continued

Limitations
Aworld zone cannot be redefined using the same variable in argument WorldZone.
A stationary world zone cannot be deactivated, activated again, or erased in the
RAPID program.
A temporary world zone can be deactivated (WZDisable), activated again
(WZEnable), or erased (WZFree) in the RAPID program.

Syntax
WZLimSup

[['\' Temp] | ['\Stat] ',']

[WorldZone ':='] <variable or persistent (INOUT) of wztemporary>
','

[Shape ':='] <variable (VAR) of shapedata> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWorld Zones

shapedata - World zone shape data on page1710World zone shape

wztemporary - Temporary world zone data on
page 1776

Temporary world zone

wzstationary - Stationary world zone data on
page 1774

Stationary world zone

WZBoxDef - Define a box-shaped world zone on
page 1091

Define straight box-shaped world zone

WZSphDef - Define a sphere-shaped world zone
on page 1116

Define sphere-shaped world zone

WZCylDef - Define a cylinder-shaped world zone
on page 1093

Define cylinder-shaped world zone

WZHomeJointDef - Define a world zone for home
joints on page 1106

Define a world zone for home joints

WZLimJointDef - Define a world zone for limitation
in joints on page 1109

Define a world zone for limit joints

WZDOSet - Activate world zone to set digital out-
put on page 1098

Activate world zone digital output set

Technical reference manual - RAPID Instructions, Functions and Data types 1115
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.366 WZLimSup - Activate world zone limit supervision

World Zones
Continued

1.367 WZSphDef - Define a sphere-shaped world zone

Usage
WZSphDef (World Zone Sphere Definition) is used to define a world zone that has
the shape of a sphere.

Basic examples
The following example illustrates the instruction WZSphDef:

Example 1

xx0500002207

VAR shapedata volume;

CONST pos C1:=[300,300,200];

CONST num R1:=200;

...

WZSphDef \Inside, volume, C1, R1;

Define a sphere named volume by its center C1 and its radius R1.

Arguments
WZSphDef [\Inside] | [\Outside] Shape CentrePoint Radius

[\Inside]

Data type: switch
Define the volume inside the sphere.

[\Outside]

Data type: switch
Define the volume outside the sphere (inverse volume).
One of the arguments \Inside or \Outside must be specified.

Shape

Data type: shapedata
Variable for storage of the defined volume (private data for the system).

CentrePoint

Data type: pos

Continues on next page
1116 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.367 WZSphDef - Define a sphere-shaped world zone
World Zones

Position (x,y,z) in mm defining the center of the sphere.

Radius

Data type: num
The radius of the sphere in mm.

Program execution
The definition of the sphere is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

Limitations
If the robot is used to point out the CentrePoint then the work object wobj0must
be active (use of component trans in robtarget e.g. p1.trans as argument).

Syntax
WZSphDef

[['\' Inside] | ['\' Outside] ',']

[Shape ':=’]<variable (VAR) of shapedata> ','

[CentrePoint ':='] <expression (IN) of pos> ','

[Radius ':='] <expression (IN) of num> ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewWorld Zones

shapedata - World zone shape data on page 1710World zone shape

WZBoxDef - Define a box-shaped world zone on
page 1091

Define box-shaped world zone

WZCylDef - Define a cylinder-shaped world zone
on page 1093

Define cylinder-shaped world zone

WZHomeJointDef - Define a world zone for home
joints on page 1106

Define a world zone for home joints

WZLimJointDef - Define a world zone for limitation
in joints on page 1109

Define a world zone for limit joints

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital output
on page 1098

Activate world zone digital output set

Technical reference manual - RAPID Instructions, Functions and Data types 1117
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

1 Instructions
1.367 WZSphDef - Define a sphere-shaped world zone

World Zones
Continued

This page is intentionally left blank

2 Functions
2.1 Abs - Gets the absolute value

Usage
Abs is used to get the absolute value, that is, a positive value of numeric data.

Basic examples
The following example illustrates the function Abs.
See also More examples on page 1119.

Example 1
reg1 := Abs(reg2);

Reg1 is assigned the absolute value of reg2.

Return value
Data type: num
The absolute value, that is, a positive numeric value, for example:

Returned valueInput value

33

3-3

2.53-2.53

Arguments
Abs (Value)

Value

Data type: num
The input value.

More examples
More examples of the function Abs are illustrated below.

Example 1
TPReadNum no_of_parts, "How many parts should be produced? ";

no_of_parts := Abs(no_of_parts);

The operator is asked to input the number of parts to be produced. To ensure that
the value is greater than zero, the value given by the operator is made positive.

Syntax
Abs '('

[Value ':='] < expression (IN) of num >')'

A function with a return value of the data type num.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1119
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.1 Abs - Gets the absolute value

RobotWare - OS

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

1120 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.1 Abs - Gets the absolute value
RobotWare - OS
Continued

2.2 AbsDnum - Gets the absolute value of a dnum

Usage
AbsDnum is used to get the absolute value, that is, a positive value of a dnum
numeric value.

Basic examples
The following example illustrates the function AbsDnum.
See also More examples on page 1121.

Example 1
VAR dnum value1;

VAR dnum value2:=-20000000;

value1 := AbsDnum(value2);

Value1 is assigned the absolute value of value2.

Return value
Data type: dnum
The absolute value, that is, a positive numeric value, for example:

Returned valueInput value

33

-3-3

2.53-2.53

4503599627370496-4503599627370496

Arguments
AbsDnum (Value)

Value

Data type: dnum
The input value.

More examples
More examples of the function AbsDnum are illustrated below.

Example 1
TPReadDnum no_of_parts, "How many parts should be produced? ";

no_of_parts := AbsDnum(no_of_parts);

The operator is asked to input the number of parts to be produced. To ensure that
the value is greater than zero, the value given by the operator is made positive.

Syntax
AbsDnum '('

[Value ':='] < expression (IN) of dnum > ')'

A function with a return value of the data type dnum.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1121
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.2 AbsDnum - Gets the absolute value of a dnum

RobotWare - OS

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

1122 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.2 AbsDnum - Gets the absolute value of a dnum
RobotWare - OS
Continued

2.3 ACos - Calculates the arc cosine value

Usage
ACos (Arc Cosine) is used to calculate the arc cosine value on data types num..

Basic examples
The following example illustrates the function ACos.

Example 1
VAR num angle;

VAR num value;

...

...

angle := ACos(value);

angle will get the arc cosine value of value.

Return value
Data type: num
The arc cosine value, expressed in degrees, range [0, 180].

Arguments
ACos (Value)

Value

Data type: num
The argument value must be in range [-1, 1].

Limitations
The execution of the function Acos(x) will give an error if x is outside the range
[-1, 1].

Syntax
ACos '('

[Value ':='] <expression (IN) of num>')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverviewMathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1123
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.3 ACos - Calculates the arc cosine value

RobotWare - OS

2.4 ACosDnum - Calculates the arc cosine value

Usage
ACosDnum (Arc Cosine dnum) is used to calculate the arc cosine value on data
types dnum.

Basic examples
The following example illustrates the function ACosDnum.

Example 1
VAR dnum angle;

VAR dnum value;

...

...

angle := ACosDnum(value);

angle will get the arc cosine value of value.

Return value
Data type: dnum
The arc cosine value, expressed in degrees, range [0, 180].

Arguments
ACosDnum (Value)

Value

Data type: dnum
The argument value must be in range [-1, 1].

Limitations
The execution of the function AcosDnum(x) will give an error if x is outside the
range [-1, 1].

Syntax
ACosDnum '('

[Value ':='] <expression (IN) of dnum>')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverviewMathematical instructions and functions

1124 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.4 ACosDnum - Calculates the arc cosine value
RobotWare - OS

2.5 AInput - Reads the value of an analog input signal

Usage
AInput is used to read the current value of an analog input signal.

Note

Note that the function AInput is a legacy function that no longer has to be used.
See the examples for an alternative and recommended way of programming.

Basic examples
The following example illustrates the function AInput.
See also More examples on page 1126.

Example 1
IF AInput(ai1) < 1.5 THEN ...

...

IF ai1 < 1.5 THEN ...

If the current value of the signal ai1 is less than 1.5, then ...

Return value
Data type: num
The current value of the signal.
The current value is scaled (in accordance with the system parameters) before it
is read by the RAPID program. A diagram of how analog signal values are scaled
is shown in the following figure:

xx0500002408

Arguments
AInput (Signal)

Signal

Data type: signalai

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1125
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.5 AInput - Reads the value of an analog input signal

RobotWare - OS

The name of the analog input to be read.

More examples
More examples of how to use the function AInput are illustrated below.

Example 1
WHILE AInput(current) > 35 DO ...

...

WHILE current > 35 DO ...

As long as the current value of the signal current is greater than 35, execute ...

Example 2
deviation := 3 * AInput(sensor) + 10;

...

deviation := 3 * sensor + 10;

The deviation is calculated based on the value of the signal sensor and stored in
the variable deviation.

Syntax
AInput '('

[Signal ':='] < variable (VAR) of signalai > ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID Overview, sec-
tion RAPID Summary - Input and Output Signals

Input/Output instructions

Technical reference manual - RAPID Overview, sec-
tion Motion and I/O Principles - I/O principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

1126 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.5 AInput - Reads the value of an analog input signal
RobotWare - OS
Continued

2.6 AND - Evaluates a logical value

Usage
AND is a function used to evaluate two conditional expressions (true/false).

Basic examples
The following examples illustrate the function AND.

Example 1
VAR num a;

VAR num b;

VAR bool c;

...

c := a>5 AND b=3;

The return value of c is TRUE if a is larger than 5 and b equals 3. Otherwise the
return value is FALSE.

Example 2
VAR num mynum;

VAR string mystring;

VAR bool mybool;

VAR bool result;

...

result := mystring="Hello" AND mynum<15 OR mybool;

The return value of result is TRUE if both mystring is "Hello" and mynum is
smaller than 15. Or if mybool is TRUE. Otherwise the return value is FALSE.
The AND statement is evaluated first, thereafter the OR statement. This is illustrated
by the parentheses in the below row.

result := (mystring="Hello" AND mynum<15) OR mybool;

Return value
Data type: bool
The return value is TRUE if both conditional expressions are correct, otherwise
the return value is FALSE.

Syntax
<expression of bool> AND <expression of bool>

A function with a return value of data type bool.

Related information

SeeFor information about

BitAnd - Logical bitwise AND - operation on byte
data on page 1140

Logical bitwise AND - operation on byte
data

BitAndDnum - Logical bitwise AND - operation
on dnum data on page 1142

Logical bitwise AND - operation on dnum
data

OR - Evaluates a logical value on page 1356OR

XOR - Evaluates a logical value on page 1559XOR

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1127
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.6 AND - Evaluates a logical value

RobotWare - OS

SeeFor information about

NOT - Inverts a logical value on page 1347NOT

Technical reference manual - RAPID OverviewExpressions

1128 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.6 AND - Evaluates a logical value
RobotWare - OS
Continued

2.7 AOutput - Reads the value of an analog output signal

Usage
AOutput is used to read the current value of an analog output signal.

Basic examples
The following example illustrates the function AOutput.

Example 1
IF AOutput(ao4) > 5 THEN ...

If the current value of the signal ao4 is greater than 5, then ...

Return value
Data type: num
The current value of the signal.
The current value is scaled (in accordance with the system parameters) before it
is read by the RAPID program. A diagram of how analog signal values are scaled
is shown in the following figure:

xx0500002408

Arguments
AOutput (Signal)

Signal

Data type: signalao
The name of the analog output to be read.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1129
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.7 AOutput - Reads the value of an analog output signal

RobotWare - OS

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
AOutput '('

[Signal ':='] < variable (VAR) of signalao > ')'

A function with a return value of data type num.

Related information

SeeFor information about

SetAO - Changes the value of an analog output signal
on page 686

Set an analog output signal

Technical reference manual - RAPID Overview, sec-
tion RAPID Summary - Input and Output Signals

Input/Output instructions

Technical reference manual - RAPID Overview, sec-
tion Motion and I/O Principles - I/O principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

1130 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.7 AOutput - Reads the value of an analog output signal
RobotWare - OS
Continued

2.8 ArgName - Gets argument name

Usage
ArgName (Argument Name) is used to get the name of the original data object for
the current argument or the current data.

Basic examples
The following example illustrates the function ArgName.
See also More examples on page 1132.

Example 1
VAR num chales :=5;

...

proc1 chales;

PROC proc1 (num par1)

VAR string name;

...

name:=ArgName(par1);

TPWrite "Argument name "+name+" with value "\Num:=par1;

ENDPROC

The variable name is assigned the string value "chales" and on FlexPendant the
following string is written: "Argument name chales with value 5".

Return value
Data type: string
The original data object name.

Arguments
ArgName (Parameter [\ErrorNumber])

Parameter

Data type: anytype
The formal parameter identifier (for the routine in which ArgName is located) or the
data identity.
All types of data with structure atomic, record, record component, array, or array
element can be used.

ErrorNumber

Data type: errnum
A variable (before used it is set to 0 by the system) that will hold the error code
when the argument is an expression value, argument is not present or argument
is of type switch. If this optional variable is omitted then the error handler will be
executed.

Program execution
The function returns the original data object name for an entire object of the type
constant, variable, or persistent. The original data object can be global, local in
the program module, or local in a routine (normal RAPID scope rules).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1131
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.8 ArgName - Gets argument name

RobotWare - OS

If it is a part of a data object then the name of the whole data object is returned.

More examples
More examples of the function ArgName are illustrated below.

Convert from identifier to string
This function can also be used to convert from identifier to string, by specifying
the identifier in the argument Parameter for any data object with global, local in
module, or local in routine scope:

VAR num chales :=5;

...

proc1;

PROC proc1 ()

VAR string name;

...

name:=ArgName(chales);

TPWrite "Global data object "+name+" has value "\Num:=chales;

ENDPROC

The variable name is assigned the string value "chales" and on FlexPendant the
following string is written: "Global data object chales has value 5".

Routine call in several steps
Note that the function returns the original data object name:

VAR num chales :=5;

...

proc1 chales;

...

PROC proc1 (num parameter1)

...

proc2 parameter1;

...

ENDPROC

PROC proc2 (num par1)

VAR string name;

...

name:=ArgName(par1);

TPWrite "Original data object name "+name+" with value"
\Num:=par1;

ENDPROC

The variable name is assigned the string value "chales" and on FlexPendant the
following string is written: "Original data object name chales with value 5".

Supress execution in error handler
PROC main()

VAR string mystring:="DUMMY";

proc1 mystring;

proc1 "This is a test";

...

Continues on next page
1132 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.8 ArgName - Gets argument name
RobotWare - OS
Continued

ENDPROC

PROC proc1 (string par1)

VAR string name;

VAR errnum myerrnum;

name := ArgName(par1 \ErrorNumber:=myerrnum);

IF myerrnum=ERR_ARGNAME THEN

TPWrite "The argument par1 is an expression value";

TPWrite "The name of the argument can not be evaluated";

ELSE

TPWrite "The name on the argument is "+name;

ENDIF

ENDPROC

The variable name is assigned the string value "mystring" when the first call to
proc1 is done. When the second call to proc1 is done, an empty string is assign
to name. On the FlexPendant the following string is written: "The argument par1
is an expression value" and "The name of the argument can not be
evaluated".

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName
• Argument is expression value
• Argument is not present
• Argument is of type switch

ERR_ARGNAME

Syntax
ArgName '('

[Parameter ':='] < reference (REF) of any type>

['\' ErrorNumber ':=' <var or pers (INOUT) of errnum>] ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

Advanced RAPIDAdvanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 1133
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.8 ArgName - Gets argument name

RobotWare - OS
Continued

2.9 ASin - Calculates the arc sine value

Usage
ASin (Arc Sine) is used to calculate the arc sine value on data types num.

Basic examples
The following example illustrates the function ASin

Example 1
VAR num angle;

VAR num value;

...

...

angle := ASin(value);

angle will get the arc sine value of value

Return value
Data type: num
The arc sine value, expressed in degrees, range [-90, 90].

Arguments
ASin (Value)

Value

Data type: num
The argument value must be in range [-1, 1].

Limitations
The execution of the function ASin(x) will give an error if x is outside the range
[1, -1].

Syntax
ASin '('

[Value ':='] <expression (IN) of num> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverviewMathematical instructions and functions

1134 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.9 ASin - Calculates the arc sine value
RobotWare - OS

2.10 ASinDnum - Calculates the arc sine value

Usage
ASinDnum (Arc Sine dnum) is used to calculate the arc sine value on data types
dnum.

Basic examples
The following example illustrates the function ASinDnum

Example 1
VAR dnum angle;

VAR dnum value;

...

...

angle := ASinDnum(value);

angle will get the arc sine value of value

Return value
Data type: dnum
The arc sine value, expressed in degrees, range [-90, 90].

Arguments
ASinDnum (Value)

Value

Data type: dnum
The argument value must be in range [-1, 1].

Limitations
The execution of the function ASinDnum(x) will give an error if x is outside the
range [1, -1].

Syntax
ASinDnum '('

[Value ':='] <expression (IN) of dnum> ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverviewMathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1135
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.10 ASinDnum - Calculates the arc sine value

RobotWare - OS

2.11 ATan - Calculates the arc tangent value

Usage
ATan (Arc Tangent) is used to calculate the arc tangent value on data types num.

Basic examples
The following example illustrates the function ATan.

Example 1
VAR num angle;

VAR num value;

...

...

angle := ATan(value);

angle will get the arc tangent value of value.

Return value
Data type: num
The arc tangent value, expressed in degrees, range [-90, 90].

Arguments
ATan (Value)

Value

Data type: num
The argument value.

Syntax
ATan '('

[Value ':='] <expression (IN) of num> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverviewMathematical instructions and functions

ATan2 - Calculates the arc tangent2 value on
page 1138

Arc tangent with a return value in the range
[-180, 180]

1136 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.11 ATan - Calculates the arc tangent value
RobotWare - OS

2.12 ATanDnum - Calculates the arc tangent value

Usage
ATanDnum (Arc Tangent dnum) is used to calculate the arc tangent value on data
types dnum.

Basic examples
The following example illustrates the function ATanDnum.

Example 1
VAR dnum angle;

VAR dnum value;

...

...

angle := ATanDnum(value);

angle will get the arc tangent value of value.

Return value
Data type: dnum
The arc tangent value, expressed in degrees, range [-90, 90].

Arguments
ATanDnum (Value)

Value

Data type: dnum
The argument value.

Syntax
ATanDnum '('

[Value ':='] <expression (IN) of dnum> ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverviewMathematical instructions and functions

ATan2 - Calculates the arc tangent2 value on
page 1138

Arc tangent with a return value in the range
[-180, 180]

Technical reference manual - RAPID Instructions, Functions and Data types 1137
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.12 ATanDnum - Calculates the arc tangent value

RobotWare - OS

2.13 ATan2 - Calculates the arc tangent2 value

Usage
ATan2 (Arc Tangent2) is used to calculate the arc tangent2 value on data types
num.

Basic examples
The following example illustrates the function ATan2.

Example 1
VAR num angle;

VAR num x_value;

VAR num y_value;

...

...

angle := ATan2(y_value, x_value);

angle will get the arc tangent value of y_value/x_value.

Return value
Data type: num
The arc tangent value, expressed in degrees, range [-180, 180]. The value will be
equal to ATan(y/x) but in the range of [-180, 180] since the function uses the sign
of both arguments to determine the quadrant of the return value.

Arguments
ATan2 (Y X)

Y

Data type: num
The numerator argument value.

X

Data type: num
The denominator argument value.

Syntax
ATan2 '('

[Y ':='] <expression (IN) of num> ','

[X ':='] <expression (IN) of num> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

ATan - Calculates the arc tangent value on
page 1136

Arc tangent with only one argument

1138 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.13 ATan2 - Calculates the arc tangent2 value
RobotWare - OS

2.14 ATan2Dnum - Calculates the arc tangent2 value

Usage
ATan2Dnum (Arc Tangent2 dnum) is used to calculate the arc tangent2 value on
data types dnum.

Basic examples
The following example illustrates the function ATan2Dnum.

Example 1
VAR dnum angle;

VAR dnum x_value;

VAR dnum y_value;

...

...

angle := ATan2Dnum(y_value, x_value);

angle will get the arc tangent value of y_value/x_value.

Return value
Data type: dnum
The arc tangent value, expressed in degrees, range [-180, 180]. The value will be
equal to ATanDnum(y/x) but in the range of [-180, 180] since the function uses the
sign of both arguments to determine the quadrant of the return value.

Arguments
ATan2Dnum (Y X)

Y

Data type: dnum
The numerator argument value.

X

Data type: dnum
The denominator argument value.

Syntax
ATan2Dnum '('

[Y ':='] <expression (IN) of dnum> ','

[X ':='] <expression (IN) of dnum> ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

ATan - Calculates the arc tangent value on
page 1136

Arc tangent with only one argument

Technical reference manual - RAPID Instructions, Functions and Data types 1139
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.14 ATan2Dnum - Calculates the arc tangent2 value

RobotWare - OS

2.15 BitAnd - Logical bitwise AND - operation on byte data

Usage
BitAnd is used to execute a logical bitwise AND - operation on data types byte.

Basic examples
The following example illustrates the function BitAnd.

Example 1
VAR byte data1 := 38;

VAR byte data2 := 34;

VAR byte data3;

data3 := BitAnd(data1, data2);

The logical bitwise AND - operation (see following figure) is executed on the data1
and data2. The result is returned to data3 (integer representation).

xx0500002454

Return value
Data type: byte
The result of the logical bitwise AND - operation in integer representation.

Arguments
BitAnd (BitData1 BitData2)

BitData1

Data type: byte
The bit data 1, in integer representation.

BitData2

Data type: byte
The bit data 2, in integer representation.

Continues on next page
1140 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.15 BitAnd - Logical bitwise AND - operation on byte data
RobotWare - OS

Limitations
The range for a data type byte is 0 - 255.

Syntax
BitAnd '('

[BitData1 ':='] <expression (IN) of byte> ','

[BitData2 ':='] <expression (IN) of byte> ')'

A function with a return value of the data type byte.

Related information

SeeFor information about

BitOr - Logical bitwise OR - operation on byte
data on page 1157

Logical bitwise OR - operation on byte data

BitXOr - Logical bitwise XOR - operation on
byte data on page 1165

Logical bitwise XOR - operation on byte data

BitNeg - Logical bitwise NEGATION - opera-
tion on byte data on page 1153

Logical bitwise NEGATION - operation on byte
data

Technical reference manual - RAPID Over-
view

Other bit functions

Product specification - Controller software
IRC5

Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 1141
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.15 BitAnd - Logical bitwise AND - operation on byte data

RobotWare - OS
Continued

2.16 BitAndDnum - Logical bitwise AND - operation on dnum data

Usage
BitAndDnum is used to execute a logical bitwise AND - operation on data types
dnum.

Basic examples
The following example illustrates the function BitAndDnum.

Example 1
VAR dnum data1 := 38;

VAR dnum data2 := 35;

VAR dnum data3;

data3 := BitAndDnum(data1, data2);

The logical bitwise AND - operation (see figure below) will be executed on the
data1 and data2. The result will be returned to data3 (integer representation).

B
it

P
o

s
 5

2

B
it

P
o

s
 1

data1 : 38

data2 : 35

data3 : 34

AND

xx1200000007

Return value
Data type: dnum
The result of the logical bitwise AND - operation in integer representation.

Arguments
BitAndDnum (Value1 Value2)

Value1

Data type: dnum
The first bit data value, in integer representation.

Value2

Data type: dnum
The second bit data value, in integer representation.

Continues on next page
1142 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.16 BitAndDnum - Logical bitwise AND - operation on dnum data
RobotWare - OS

Limitations
The range for a data type dnum is 0 - 4503599627370495.

Syntax
BitAndDnum '('

[Value1 ':='] <expression (IN) of dnum> ','

[Value2 ':='] <expression (IN) of dnum> ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

BitAnd - Logical bitwise AND - operation on
byte data on page 1140

Logical bitwise AND - operation on byte data

dnum - Double numeric values on page1611Data type dnum

BitOrDnum - Logical bitwise OR - operation
on dnum data on page 1159

Logical bitwise OR - operation on dnum data

BitXOrDnum - Logical bitwise XOR - opera-
tion on dnum data on page 1167

Logical bitwise XOR - operation on dnum data

BitNegDnum - Logical bitwise NEGATION -
operation on dnum data on page 1155

Logical bitwise NEGATION - operation on
dnum data

Technical reference manual - RAPID Over-
view

Other bit functions

Technical reference manual - RAPID Instructions, Functions and Data types 1143
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.16 BitAndDnum - Logical bitwise AND - operation on dnum data

RobotWare - OS
Continued

2.17 BitCheck - Check if a specified bit in a byte data is set

Usage
BitCheck is used to check if a specified bit in a defined byte data is set to 1.

Basic examples
The following example illustrates the function BitCheck.

Example 1
CONST num parity_bit := 8;

VAR byte data1 := 130;

IF BitCheck(data1, parity_bit) = TRUE THEN

...

ELSE

...

ENDIF

Bit number 8 (parity_bit) in the variable data1 is checked, for example, if the
specified bit is set to 1 in the variable data1 then this function will return to TRUE.
Bit check of data type byte is illustrated in the following figure.

xx0500002442

Return value
Data type: bool
TRUE if the specified bit is set to 1, FALSE if the specified bit is set to 0.

Arguments
BitCheck (BitData BitPos)

BitData

Data type: byte
The bit data, in integer representation, to be checked.

Continues on next page
1144 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.17 BitCheck - Check if a specified bit in a byte data is set
RobotWare - OS

BitPos

Bit Position
Data type: num
The bit position (1-8) in the BitData to be checked.

Limitations
The range for a data type byte is 0 - 255 decimal.
The bit position is valid from 1 - 8.

Syntax
BitCheck '('

[BitData ':='] <expression (IN) of byte> ','

[BitPos ':='] <expression (IN) of num> ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

BitSet - Set a specified bit in a byte or dnum data
on page 42

Set a specified bit in a byte data

BitClear - Clear a specified bit in a byte or dnum
data on page 39

Clear a specified bit in a byte data

Technical reference manual - RAPID OverviewOther bit functions

Product specification - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 1145
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.17 BitCheck - Check if a specified bit in a byte data is set

RobotWare - OS
Continued

2.18 BitCheckDnum - Check if a specified bit in a dnum data is set

Usage
BitCheckDnum is used to check if a specified bit in a defined dnum data is set to
1.

Basic examples
The following example illustrates the function BitCheckDnum.

Example 1
CONST num check_bit := 50;

VAR dnum data1 := 1688849860263956;

IF BitCheckDnum(data1, check_bit) = TRUE THEN

...

ELSE

...

ENDIF

Bit number 50 (check_bit) in the variable data1 will be checked, for example, if
the specified bit is 1 in the variable data1 then this function will return to TRUE.
Bit check of data type dnum is illustrated in the figure below.

B
it

P
o

s
5

2

B
it

P
o

s
1

data1 : 1688849860263956

Bit position 50 has value 1.

Return value is TRUE.

xx1200000016

Return value
Data type: bool
TRUE if the specified bit is set to 1, FALSE if the specified bit is set to 0.

Arguments
BitCheckDnum (Value BitPos)

Value

Data type: dnum
The bit data, in integer representation, to be checked.

BitPos

Bit Position
Data type: num

Continues on next page
1146 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.18 BitCheckDnum - Check if a specified bit in a dnum data is set
RobotWare - OS

The bit position (1-52) in Value to be checked.

Limitations
The range for a data type dnum is 0 - 4503599627370495 decimal.
The bit position is valid from 1 - 52.

Syntax
BitCheckDnum '('

[Value ':='] <expression (IN) of dnum> ','

[BitPos ':='] <expression (IN) of num> ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

BitCheck - Check if a specified bit in a byte data is
set on page 1144

Check if a specified bit in a byte data
is set

dnum - Double numeric values on page 1611Data type dnum

BitSet - Set a specified bit in a byte or dnum data
on page 42

Set a specified bit in a byte or dnum
data

BitClear - Clear a specified bit in a byte or dnum
data on page 39

Clear a specified bit in a byte or dnum
data

Technical reference manual - RAPID OverviewOther bit functions

Technical reference manual - RAPID Instructions, Functions and Data types 1147
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.18 BitCheckDnum - Check if a specified bit in a dnum data is set

RobotWare - OS
Continued

2.19 BitLSh - Logical bitwise LEFT SHIFT - operation on byte

Usage
BitLSh (Bit Left Shift) is used to execute a logical bitwise LEFT SHIFT-operation
on data types byte.

Basic examples
The following example illustrates the function BitLSh.

Example 1
VAR num left_shift := 3;

VAR byte data1 := 38;

VAR byte data2;

data2 := BitLSh(data1, left_shift);

The logical bitwise LEFT SHIFT- operation will be executed on the data1 with 3
(left_shift) steps of left shift, and the result will be returned to data2 (integer
representation).
The following figure shows logical bitwise LEFT SHIFT-operation.

xx0500002457

Return value
Data type: byte
The result of the logical bitwise LEFT SHIFT-operation in integer representation.
The right bit cells will be filled up with 0-bits.

Arguments
BitLSh (BitData ShiftSteps)

BitData

Data type: byte
The bit data, in integer representation, to be shifted.

ShiftSteps

Data type: num
Number of the logical shifts (1 - 8) to be executed.

Continues on next page
1148 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.19 BitLSh - Logical bitwise LEFT SHIFT - operation on byte
RobotWare - OS

Limitations
The range for a data type byte is 0 - 255.
The ShiftSteps argument is valid from 1 - 8 according to one byte.

Syntax
BitLSh '('

[BitData ':='] <expression (IN) of byte> ','

[ShiftSteps ':='] <expression (IN) of num> ')'

A function with a return value of the data type byte.

Related information

SeeFor information about

BitRSh - Logical bitwise RIGHT SHIFT - operation
on byte on page 1161

Logical bitwise RIGHT SHIFT-operation
on byte data

Technical reference manual - RAPID Overview,
sectionRAPID summary - Mathematics - Bitfunc-
tions

Other bit functions

Product specification - Controller software IRC5Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 1149
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.19 BitLSh - Logical bitwise LEFT SHIFT - operation on byte

RobotWare - OS
Continued

2.20 BitLShDnum - Logical bitwise LEFT SHIFT - operation on dnum

Usage
BitLShDnum (Bit Left Shift dnum) is used to execute a logical bitwise LEFT
SHIFT-operation on data types dnum.

Basic examples
The following example illustrates the function BitLShDnum.
See also More examples on page 1151.

Example 1
VAR num left_shift := 2;

VAR dnum data1 := 2533274790395910;

VAR dnum data2;

data2 := BitLShDnum(data1, left_shift);

The logical bitwise LEFT SHIFT- operation will be executed on the data1 with 2
(left_shift) steps of left shift, and the result will be returned to data2 (integer
representation).
The following figure shows logical bitwise LEFT SHIFT-operation.

B
it

P
o

s
5

2

B
it

P
o

s
1

data1 : 2533274790395910

data2 : 1125899906842648

ShiftSteps : 2

xx1200000008

Return value
Data type: dnum
The result of the logical bitwise LEFT SHIFT-operation in integer representation.
The right bit cells will be filled up with 0-bits.

Arguments
BitLShDnum (Value ShiftSteps [\Size])

Value

Data type: dnum
The bit data, in integer representation, to be shifted.

Continues on next page
1150 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.20 BitLShDnum - Logical bitwise LEFT SHIFT - operation on dnum
RobotWare - OS

ShiftSteps

Data type: num
Number of the logical shifts (1 - 52) to be executed.

Size

Data type: num
The size (number of bits) that should be considered when doing the logical bitwise
LEFT SHIFT-operation on argument Value. The size is valid from 1 - 52.

Limitations
The range for a data type dnum is 0 - 4503599627370495.
The ShiftSteps argument is valid from 1 - 52 since one dnum is 52 bits.

More examples
More examples of the function BitLshDnum are illustrated below.

Example 1
VAR dnum result;

VAR dnum data1:=221;

! Only consider the 8 lowest bits

result := BitLshDnum(data1, 4 \Size:=8);

TPWrite "" \Dnum:=result;

! Consider all 52 bits in the dnum datatype

result := BitLshDnum(data1, 4);

TPWrite "" \Dnum:=result;

The logical bitwise LEFT SHIFT- operation will be executed on the data1, and the
result will be returned to result (integer representation). The first value to be
written on the FlexPendant is 208. The second value to be written on the
FlexPendant is 3536.

Syntax
BitLShDnum '('

[Value ':='] <expression (IN) of dnum> ','

[ShiftSteps ':='] <expression (IN) of num>

['\' Size ':=' < expression (IN) of num>]

')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

BitLSh - Logical bitwise LEFT SHIFT - operation
on byte on page 1148

Logical bitwise LEFT SHIFT-operation on
byte data

dnum - Double numeric values on page 1611Data type dnum

BitRShDnum - Logical bitwise RIGHT SHIFT -
operation on dnum on page 1163

Logical bitwise RIGHT SHIFT-operation
on dnum data

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1151
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.20 BitLShDnum - Logical bitwise LEFT SHIFT - operation on dnum

RobotWare - OS
Continued

SeeFor information about

Technical reference manual - RAPID Overview,
sectionRAPID summary - Mathematics - Bitfunc-
tions

Other bit functions

1152 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.20 BitLShDnum - Logical bitwise LEFT SHIFT - operation on dnum
RobotWare - OS
Continued

2.21 BitNeg - Logical bitwise NEGATION - operation on byte data

Usage
BitNeg (Bit Negation) is used to execute a logical bitwise NEGATION - operation
(one’scomplement) on data types byte.

Basic examples
The following example illustrates the function BitNeg.

Example 1
VAR byte data1 := 38;

VAR byte data2;

data2 := BitNeg(data1);

The logical bitwise NEGATION - operation (see figure below) will be executed on
the data1, and the result will be returned to data2 (integer representation).

xx0500002456

Return value
Data type: byte
The result of the logical bitwise NEGATION - operation in integer representation.

Arguments
BitNeg (BitData)

BitData

Data type: byte
The byte data, in integer representation.

Limitations
The range for a data type byte is 0 - 255.

Syntax
BitNeg '('

[BitData ':='] <expression (IN) of byte>

')'

A function with a return value of the data type byte.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1153
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.21 BitNeg - Logical bitwise NEGATION - operation on byte data

RobotWare - OS

Related information

SeeFor information about

BitAnd - Logical bitwise AND - operation on
byte data on page 1140

Logical bitwise AND - operation on byte data

BitOr - Logical bitwise OR - operation on byte
data on page 1157

Logical bitwise OR - operation on byte data

BitXOr - Logical bitwise XOR - operation on
byte data on page 1165

Logical bitwise XOR - operation on byte data

Technical reference manual - RAPID Over-
view

Other bit functions

Product specification - Controller software
IRC5

Advanced RAPID

1154 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.21 BitNeg - Logical bitwise NEGATION - operation on byte data
RobotWare - OS
Continued

2.22 BitNegDnum - Logical bitwise NEGATION - operation on dnum data

Usage
BitNegDnum (Bit Negation dnum) is used to execute a logical bitwise NEGATION
- operation (one’s complement) on data types dnum.

Basic examples
The following example illustrates the function BitNegDnum.
See also More examples on page 1156.

Example 1
VAR dnum data1 := 4;

VAR dnum data2;

data2 := BitNegDnum(data1);

The logical bitwise NEGATION - operation (see figure below) will be executed on
the data1, and the result will be returned to data2 (integer representation).

B
it

P
o

s
 5

2

B
it

P
o

s
 1

data1 : 4

data2 : 4503599627370491

NEG

xx1200000012

Return value
Data type: dnum
The result of the logical bitwise NEGATION - operation in integer representation.

Arguments
BitNegDnum (Value [\Size])

Value

Data type: dnum
The dnum data, in integer representation.

Size

Data type: num
The size (number of bits) that should be considered when doing the logical bitwise
NEGATION-operation on argument Value. The size is valid from 1 - 52.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1155
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.22 BitNegDnum - Logical bitwise NEGATION - operation on dnum data

RobotWare - OS

Limitations
The range for a data type dnum is 0 - 4503599627370495.

More examples
More examples of the function BitNegDnum are illustrated below.

Example 1
VAR dnum result;

VAR dnum data1:=38;

! Only consider the 16 lowest bits

result := BitNegDnum(data1 \Size:=16);

TPWrite "" \Dnum:=result;

! Consider all 52 bits in the dnum datatype

result := BitNegDnum(data1);

TPWrite "" \Dnum:=result;

The logical bitwise NEGATION - operation will be executed on the data1, and the
result will be returned to result (integer representation). The first value to be
written on the FlexPendant is 65497. The second value to be written on the
FlexPendant is 4503599627370457.

Syntax
BitNegDnum '('

[Value ':='] <expression (IN) of dnum>

['\'Size ':=' < expression (IN) of num>]

')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

BitNeg - Logical bitwise NEGATION - opera-
tion on byte data on page 1153

Logical bitwise NEGATION - operation on byte
data

dnum - Double numeric values on page1611Data type dnum

BitAndDnum - Logical bitwise AND - opera-
tion on dnum data on page 1142

Logical bitwise AND - operation on dnum data

BitOrDnum - Logical bitwise OR - operation
on dnum data on page 1159

Logical bitwise OR - operation on dnum data

BitXOrDnum - Logical bitwise XOR - opera-
tion on dnum data on page 1167

Logical bitwise XOR - operation on dnum data

Technical reference manual - RAPID Over-
view

Other bit functions

1156 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.22 BitNegDnum - Logical bitwise NEGATION - operation on dnum data
RobotWare - OS
Continued

2.23 BitOr - Logical bitwise OR - operation on byte data

Usage
BitOr (Bit inclusive Or) is used to execute a logical bitwise OR-operation on data
types byte.

Basic examples
The following example illustrates the function BitOr.

Example 1
VAR byte data1 := 39;

VAR byte data2 := 162;

VAR byte data3;

data3 := BitOr(data1, data2);

The logical bitwise OR-operation will be executed on the data1 and data2, and
the result will be returned to data3 (integer representation).
The following figure shows logical bitwise OR-operation.

xx0500002458

Return value
Data type: byte
The result of the logical bitwise OR-operation in integer representation.

Arguments
BitOr (BitData1 BitData2)

BitData1

Data type: byte
The bit data 1, in integer representation.

BitData2

Data type: byte

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1157
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.23 BitOr - Logical bitwise OR - operation on byte data

RobotWare - OS

The bit data 2, in integer representation.

Limitations
The range for a data type byte is 0 - 255.

Syntax
BitOr '('

[BitData1 ':='] <expression (IN) of byte> ','

[BitData2 ':='] <expression (IN) of byte>

')'

A function with a return value of the data type byte.

Related information

SeeFor information about

BitAnd - Logical bitwise AND - operation on byte
data on page 1140

Logical bitwise AND - operation on byte
data

BitXOr - Logical bitwise XOR - operation on byte
data on page 1165

Logical bitwise XOR - operation on byte
data

BitNeg - Logical bitwise NEGATION - operation
on byte data on page 1153

Logical bitwise NEGATION - operation on
byte data

Technical reference manual - RAPID OverviewOther bit functions

Product specification - Controller software IRC5Advanced RAPID

1158 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.23 BitOr - Logical bitwise OR - operation on byte data
RobotWare - OS
Continued

2.24 BitOrDnum - Logical bitwise OR - operation on dnum data

Usage
BitOrDnum (Bit inclusive Or dnum) is used to execute a logical bitwise OR-operation
on data types dnum.

Basic examples
The following example illustrates the function BitOrDnum.

Example 1
VAR dnum data1 := 39;

VAR dnum data2 := 162;

VAR dnum data3;

data3 := BitOrDnum(data1, data2);

The logical bitwise OR-operation will be executed on the data1 and data2, and
the result will be returned to data3 (integer representation).
The following figure shows logical bitwise OR-operation.

B
it

P
o

s
 5

2

B
it

P
o

s
 1

data1 : 39

data2 : 162

data3 : 167

OR

xx1200000011

Return value
Data type: dnum
The result of the logical bitwise OR-operation in integer representation.

Arguments
BitOrDnum (Value1 Value2)

Value1

Data type: dnum
The first bit data value, in integer representation.

Value2

Data type: dnum
The second bit data value, in integer representation.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1159
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.24 BitOrDnum - Logical bitwise OR - operation on dnum data

RobotWare - OS

Limitations
The range for a data type dnum is 0 - 4503599627370495.

Syntax
BitOrDnum '('

[Value1 ':='] <expression (IN) of dnum> ','

[Value2 ':='] <expression (IN) of dnum>

')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

BitOr - Logical bitwise OR - operation on byte
data on page 1157

Logical bitwise OR - operation on byte
data

dnum - Double numeric values on page 1611Data type dnum

BitAndDnum - Logical bitwise AND - operation
on dnum data on page 1142

Logical bitwise AND - operation on dnum
data

BitXOrDnum - Logical bitwise XOR - operation
on dnum data on page 1167

Logical bitwise XOR - operation on dnum
data

BitNegDnum - Logical bitwise NEGATION - op-
eration on dnum data on page 1155

Logical bitwise NEGATION - operation on
dnum data

Technical reference manual - RAPID OverviewOther bit functions

1160 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.24 BitOrDnum - Logical bitwise OR - operation on dnum data
RobotWare - OS
Continued

2.25 BitRSh - Logical bitwise RIGHT SHIFT - operation on byte

Usage
BitRSh (Bit Right Shift) is used to execute a logical bitwise RIGHT SHIFT-operation
on data types byte.

Basic examples
The following example illustrates the function BitRSh.

Example 1
VAR num right_shift := 3;

VAR byte data1 := 38;

VAR byte data2;

data2 := BitRSh(data1, right_shift);

The logical bitwise RIGHT SHIFT-operation will be executed on the data1 with 3
(right_shift) steps of right shift, and the result will be returned to data2 (integer
representation)
The following figure shows logical bitwise RIGHT SHIFT-operation.

xx0500002455

Return value
Data type: byte
The result of the logical bitwise RIGHT SHIFT-operation in integer representation.
The left bit cells will be filled up with 0-bits.

Arguments
BitRSh (BitData ShiftSteps)

BitData

Data type: byte
The bit data, in integer representation, to be shifted.

ShiftSteps

Data type: num
Number of the logical shifts (1 - 8) to be executed.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1161
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.25 BitRSh - Logical bitwise RIGHT SHIFT - operation on byte

RobotWare - OS

Limitations
The range for a data type byte is 0 - 255.
The ShiftSteps argument is valid from 1 - 8 according to one byte.

Syntax
BitRSh '('

[BitData ':='] <expression (IN) of byte> ','

[ShiftSteps ':='] <expression (IN) of num>

')'

A function with a return value of the data type byte.

Related information

SeeFor information about

BitLSh - Logical bitwise LEFT SHIFT - operation
on byte on page 1148

Logical bitwise LEFT SHIFT-operation on
byte data

Technical reference manual - RAPID OverviewOther bit functions

Product specification - Controller software IRC5Advanced RAPID

1162 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.25 BitRSh - Logical bitwise RIGHT SHIFT - operation on byte
RobotWare - OS
Continued

2.26 BitRShDnum - Logical bitwise RIGHT SHIFT - operation on dnum

Usage
BitRShDnum (Bit Right Shift dnum) is used to execute a logical bitwise RIGHT
SHIFT-operation on data types dnum.

Basic examples
The following example illustrates the function BitRShDnum.

Example 1
VAR num right_shift := 3;

VAR dnum data1 := 2251799813685304;

VAR dnum data2;

data2 := BitRShDnum(data1, right_shift);

The logical bitwise RIGHT SHIFT-operation will be executed on the data1 with 3
(right_shift) steps of right shift, and the result will be returned to data2 (integer
representation)
The following figure shows logical bitwise RIGHT SHIFT-operation.

B
it

P
o

s
5

2

B
it

P
o

s
1

data1 : 2251799813685304

data2 : 281474976710663

ShiftSteps : 3

xx1200000009

Return value
Data type: dnum
The result of the logical bitwise RIGHT SHIFT-operation in integer representation.
The left bit cells will be filled up with 0-bits.

Arguments
BitRShDnum (Value ShiftSteps)

Value

Data type: dnum
The bit data, in integer representation, to be shifted.

ShiftSteps

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1163
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.26 BitRShDnum - Logical bitwise RIGHT SHIFT - operation on dnum

RobotWare - OS

Number of the logical shifts (1 - 52) to be executed.

Limitations
The range for a data type dnum is 0 - 4503599627370495.
The ShiftSteps argument is valid from 1 - 52 since one dnum is 52 bits.

Syntax
BitRShDnum '('

[Value ':='] <expression (IN) of dnum> ','

[ShiftSteps ':='] <expression (IN) of num>

')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

BitRSh - Logical bitwise RIGHT SHIFT - opera-
tion on byte on page 1161

Logical bitwise RIGHT SHIFT-operation
on byte data

dnum - Double numeric values on page 1611Data type dnum

BitLShDnum - Logical bitwise LEFT SHIFT -
operation on dnum on page 1150

Logical bitwise LEFT SHIFT-operation on
dnum data

Technical reference manual - RAPID OverviewOther bit functions

1164 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.26 BitRShDnum - Logical bitwise RIGHT SHIFT - operation on dnum
RobotWare - OS
Continued

2.27 BitXOr - Logical bitwise XOR - operation on byte data

Usage
BitXOr (Bit eXclusive Or) is used to execute a logical bitwise XOR-operation on
data types byte.

Basic examples
The following example illustrates the function BitXOr.

Example 1
VAR byte data1 := 39;

VAR byte data2 := 162;

VAR byte data3;

data3 := BitXOr(data1, data2);

The logical bitwise XOR -operation will be executed on the data1 and data2, and
the result will be returned to data3 (integer representation).
The following figure shows logical bitwise XOR-operation.

xx0500002459

Return value
Data type: byte
The result of the logical bitwise XOR-operation in integer representation.

Arguments
BitXOr (BitData1 BitData2)

BitData1

Data type: byte
The bit data 1, in integer representation.

BitData2

Data type: byte

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1165
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.27 BitXOr - Logical bitwise XOR - operation on byte data

RobotWare - OS

The bit data 2, in integer representation.

Limitations
The range for a data type byte is 0 - 255.

Syntax
BitXOr '('

[BitData1 ':='] <expression (IN) of byte> ','

[BitData2 ':='] <expression (IN) of byte>

')'

A function with a return value of the data type byte.

Related information

SeeFor information about

BitAnd - Logical bitwise AND - operation on byte
data on page 1140

Logical bitwise AND - operation on byte
data

BitOr - Logical bitwise OR - operation on byte
data on page 1157

Logical bitwise OR - operation on byte
data

BitNeg - Logical bitwise NEGATION - operation
on byte data on page 1153

Logical bitwise NEGATION - operation on
byte data

Technical reference manual - RAPID OverviewOther bit functions

Product specification - Controller software IRC5Advanced RAPID

1166 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.27 BitXOr - Logical bitwise XOR - operation on byte data
RobotWare - OS
Continued

2.28 BitXOrDnum - Logical bitwise XOR - operation on dnum data

Usage
BitXOrDnum (Bit eXclusive Or dnum) is used to execute a logical bitwise
XOR-operation on data types dnum.

Basic examples
The following example illustrates the function BitXOrDnum.

Example 1
VAR dnum data1 := 39;

VAR dnum data2 := 162;

VAR dnum data3;

data3 := BitXOrDnum(data1, data2);

The logical bitwise XOR -operation will be executed on the data1 and data2, and
the result will be returned to data3 (integer representation).
The following figure shows logical bitwise XOR-operation.

B
it

P
o

s
 5

2

B
it

P
o

s
 1

data1 : 39

data2 : 162

data3 : 133

XOR

xx1200000010

Return value
Data type: dnum
The result of the logical bitwise XOR-operation in integer representation.

Arguments
BitXOrDnum (Value1 Value2)

Value1

Data type: dnum
The first bit data value, in integer representation.

Value2

Data type: dnum

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1167
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.28 BitXOrDnum - Logical bitwise XOR - operation on dnum data

RobotWare - OS

The second bit data value, in integer representation.

Limitations
The range for a data type dnum is 0 - 4503599627370495.

Syntax
BitXOrDnum '('

[Value1 ':='] <expression (IN) of dnum> ','

[Value2 ':='] <expression (IN) of dnum>

')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

BitXOr - Logical bitwise XOR - operation on byte
data on page 1165

Logical bitwise XOR - operation on byte
data

dnum - Double numeric values on page 1611Data type dnum

BitAndDnum - Logical bitwise AND - operation
on dnum data on page 1142

Logical bitwise AND - operation on dnum
data

BitOrDnum - Logical bitwise OR - operation on
dnum data on page 1159

Logical bitwise OR - operation on dnum
data

BitNegDnum - Logical bitwise NEGATION - oper-
ation on dnum data on page 1155

Logical bitwise NEGATION - operation on
dnum data

Technical reference manual - RAPID OverviewOther bit functions

1168 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.28 BitXOrDnum - Logical bitwise XOR - operation on dnum data
RobotWare - OS
Continued

2.29 ByteToStr - Converts a byte to a string data

Usage
ByteToStr (Byte To String) is used to convert a byte into a string data with a
defined byte data format.

Basic examples
The following example illustrates the function ByteToStr.

Example 1
VAR string con_data_buffer{5};

VAR byte data1 := 122;

con_data_buffer{1} := ByteToStr(data1);

The content of the array component con_data_buffer{1} will be "122" after the
ByteToStr ... function.

con_data_buffer{2} := ByteToStr(data1\Hex);

The content of the array component con_data_buffer{2} will be "7A" after the
ByteToStr ... function.

con_data_buffer{3} := ByteToStr(data1\Okt);

The content of the array component con_data_buffer{3} will be "172" after the
ByteToStr ... function.

con_data_buffer{4} := ByteToStr(data1\Bin);

The content of the array component con_data_buffer{4}will be "01111010"after
the ByteToStr ... function.

con_data_buffer{5} := ByteToStr(data1\Char);

The content of the array component con_data_buffer{5} will be "z" after the
ByteToStr ... function.

Return value
Data type: string
The result of the conversion operation with the following format:

RangeString lengthCharactersFormat

"0" - "255"1-3’0’ -’ 9’Dec:

"00" - "FF"2’0’ -’ 9’, ’A’ -’F’Hex:

"000" - "377"3’0’ - ’7’Okt:

"00000000" - "11111111"8’0’ - ’1’Bin:

One ASCII char1Any ASCII char (*)Char:

(*) If it is a non-writable ASCII character then the return format will be RAPID
character code format (for example, “ \07” for BEL control character).

Arguments
ByteToStr (BitData [\Hex] | [\Okt] | [\Bin] | [\Char])

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1169
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.29 ByteToStr - Converts a byte to a string data

RobotWare - OS

BitData

Data type: byte
The bit data to be converted.
If the optional switch argument is omitted then the data will be converted in decimal
(Dec) format.

[\Hex]

Hexadecimal
Data type: switch
The data will be converted in hexadecimal format.

[\Okt]

Octal
Data type: switch
The data will be converted in octal format.

[\Bin]

Binary
Data type: switch
The data will be converted in binary format.

[\Char]

Character
Data type: switch
The data will be converted in ASCII character format.

Limitations
The range for a data type byte is 0 to 255 decimal.

Syntax
ByteToStr '('

[BitData ':='] <expression (IN) of byte>

['\' Hex] | ['\' Okt] | ['\' Bin] | ['\' Char]

')'

A function with a return value of the data type string.

Related information

SeeFor information about

StrToByte - Converts a string to a byte data on page1466Convert a string to a byte data

Technical reference manual - RAPID OverviewOther bit (byte) functions

Technical reference manual - RAPID OverviewOther string functions

1170 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.29 ByteToStr - Converts a byte to a string data
RobotWare - OS
Continued

2.30 CalcJointT - Calculates joint angles from robtarget

Usage
CalcJointT (Calculate Joint Target) is used to calculate joint angles of the robot
axes and external axes from a specified robtarget data.
The input robtarget data should be specified in the same coordinate system as
specified in argument for Tool, WObj, and at execution time active program
displacement (ProgDisp) and external axes offset (EOffs). The returned
jointtarget data is expressed in the calibration coordinate system.
If MultiMove application type semicoordinated or synchronized coordinated mode
with the coordinated workobject, and is moved by some mechanical unit located
in another program task, then the function CalcJointT can be used if:

• It is appropriate that the current position of the coordinated work object
moved by the mechanical unit is used in the calculation (current user frame).
All other data will be fetched from the RAPID program.

• The mechanical unit located in another program task is standing still.
• The argument \UseCurWObjPos is used.

Basic examples
The following examples illustrate the function CalcJointT.

Example 1
VAR jointtarget jointpos1;

CONST robtarget p1 := [...];

jointpos1 := CalcJointT(p1, tool1 \WObj:=wobj1);

The jointtarget value corresponding to the robtarget value p1 is stored in
jointpos1. The tool tool1 and work object wobj1 are used for calculating the
joint angles jointpos1.

Example 2
VAR jointtarget jointpos2;

CONST robtarget p2 := [...];

jointpos2 := CalcJointT(\UseCurWObjPos, p2, tool2 \WObj:=orb1);

The jointtarget value corresponding to the robtarget value p2 is stored in
jointpos2. The tool tool2 and work object orb1 are used for calculating the
joint angles jointpos2. The current position of the standing still manipulator orb1
is not located in the same program task as the TCP robot but is used for the
calculation.

Example 3
VAR jointtarget jointpos3;

CONST robtarget p3 := [...];

VAR errnum myerrnum;

jointpos3 := CalcJointT(p3, tool2 \WObj:=orb1
\ErrorNumber:=myerrnum);

IF myerrnum = ERR_ROBLIMIT THEN

TPWrite "Joint jointpos3 can not be reached.";

TPWrite "jointpos3.robax.rax_1: "+ValToStr(jointpos3.robax.rax_1);

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1171
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.30 CalcJointT - Calculates joint angles from robtarget

RobotWare - OS

..

..

TPWrite "jointpos3.extax.eax_f"+ValToStr(jointpos3.extax.eax_f);

ELSEIF myerrnum = ERR_OUTSIDE_REACH THEN

TPWrite "Joint jointpos3 is outside reach.";

TPWrite "jointpos3.robax.rax_1: "+ValToStr(jointpos3.robax.rax_1);

..

..

TPWrite "jointpos3.extax.eax_f"+ValToStr(jointpos3.extax.eax_f);

ELSE

MoveAbsJ jointpos3, v100, fine, tool2 \WObj:=orb1;

ENDIF

The jointtarget value corresponding to the robtarget value p3 is stored in
jointpos3. If the position can be reached, it is used, otherwise the jointtarget
value is written on the FlexPendant.

Return value
Data type: jointtarget
The angles in degrees for the axes of the robot on the arm side.
The values for the external axes, in mm for linear axes, in degrees for rotational
axes.
The returned values are always related to the calibration position.

Arguments
CalcJointT ([\UseCurWObjPos] Rob_target Tool [\WObj]

[\ErrorNumber])

[\UseCurWObjPos]

Data type: switch
Use current position of the coordinated work object moved by the mechanical unit
in another task for the calculation (current user frame). All other data is fetched
from the RAPID program.

Rob_target

Data type: robtarget
The position of the robot and external axes in the outermost coordinate system,
related to the specified tool and work object and at execution time active program
displacement (ProgDisp) and/or external axes offset (EOffs).

Tool

Data type: tooldata
The tool used for calculation of the robot joint angles.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position is related.

Continues on next page
1172 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.30 CalcJointT - Calculates joint angles from robtarget
RobotWare - OS
Continued

If this argument is omitted then the work object wobj0 is used. This argument must
be specified when using stationary tool, coordinated external axes, or conveyor.

[\ErrorNumber]

Error number
Data type: errnum
A variable (VAR or PERS) that will hold the error constant ERR_ROBLIMIT if at least
one axis is outside the joint limits or if the limits are exceeded for at least one
coupled joint, or ERR_OUTSIDE_REACH if the position (robtarget) is outside the
robot's working area. If this optional argument is used and the variable is set to
ERR_ROBLIMIT or ERR_OUTSIDE_REACH after the execution of the function, the
return value will be a jointtarget value corresponding to the used robtarget.
If this optional variable is omitted then the error handler will be executed and the
jointarget returned will not be updated if an axis is outside the working area or
the limits are exceeded.

Program execution
The returned jointtarget is calculated from the input robtarget. If the argument
\UseCurWObjPos is used, then the position that is used comes from the current
position of the mechanical unit that controls the user frame. To calculate the robot
joint angles, the specified Tool, WObj (including coordinated user frame), and the
ProgDisp active at execution time are taken into consideration. To calculate the
external axes position at the execution time, active EOffs is taken into
consideration.
The calculation always selects the robot configuration according to the specified
configuration data in the input robtarget data. Instructions ConfL and ConfJ do
not affect this calculation principle. When wrist singularity is used, robot axis 4 will
be set to 0 degrees.
If there is any active program displacement (ProgDisp) and/or external axis offset
(EOffs) at the time the robtarget is stored then the same program displacement
and/or external axis offset must be active when CalcJointT is executed.

Limitation
If a coordinate frame is used then the coordinated unit has to be activated before
using CalcJointT.
The mechanical unit that controls the user frame in the work object must normally
be available in the same program task as the TCP robot which executes
CalcJointT.
Normally CalcJointT uses robtarget, tooldata, and wobjdata from the
RAPID program to calculate jointtarget. For coordinated workobjects, the
position of themechanical unit is given as external axes position in the robtarget.
That is not the case if the mechanical unit is controlled by another program task
(MultiMove system) or the mechanical unit is not controlled by the control system
(Conveyor). For the MultiMove System but not for the conveyor it is possible to
use the argument \UseCurWObjPos if the mechanical unit is standing still at the
execution time of CalCJointT.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1173
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.30 CalcJointT - Calculates joint angles from robtarget

RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The position is reachable, but at least one axis is outside
the joint limits or the limits are exceeded for at least one
coupled joint.

ERR_ROBLIMIT

The position (robtarget) is outside the robot's working
range.

ERR_OUTSIDE_REACH

The mechanical unit that controls the work object (user
frame) isn’t standing still at execution time of CalJointT
\UseCurWobjPos.

ERR_WOBJ_MOVING

Syntax
CalcJointT '('

['\'UseCurWObjPos ',']

[Rob_target ':='] <expression (IN) of robtarget> ','

[Tool ':='] <persistent (PERS) of tooldata>

['\' WObj ':=' <persistent (PERS) of wobjdata>]

['\' ErrorNumber ':=' <variable or persistent (INOUT) of errnum>]

')'

A function with a return value of the data type jointtarget.

Related information

SeeFor information about

CalcRobT - Calculates robtarget from jointtar-
get on page 1175

Calculate robtarget from jointtarget

robtarget - Position data on page 1702Definition of position

jointtarget - Joint position data on page1647Definition of joint position

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

Technical reference manual - RAPID Over-
view

Coordinate systems

PDispOn - Activates program displacement
on page 532

Program displacement coordinate system

EOffsOn - Activates an offset for additional
axes on page 223

External axis offset coordinate system

1174 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.30 CalcJointT - Calculates joint angles from robtarget
RobotWare - OS
Continued

2.31 CalcRobT - Calculates robtarget from jointtarget

Usage
CalcRobT (Calculate Robot Target) is used to calculate a robtarget data from
a given jointtarget data.
This function returns a robtarget value with position (x, y, z), orientation (q1 ...
q4), robot axes configuration, and external axes position.
The input jointtarget data should be specified in the calibration coordinate
system.
The returned robtarget data is expressed in the outermost coordinate system.
It takes the specified tool, work object, and at execution time active program
displacement (ProgDisp) and external axis offset (EOffs) into consideration.

Basic examples
The following example illustrates the function CalcRobT.

Example 1
VAR robtarget p1;

CONST jointtarget jointpos1 := [...];

p1 := CalcRobT(jointpos1, tool1 \WObj:=wobj1);

The robtarget value corresponding to the jointtarget value jointpos1 is
stored in p1. The tool tool1 and work object wobj1 are used for calculating the
position of p1.

Return value
Data type: robtarget
The robot and external axes position is returned in data type robtarget and
expressed in the outermost coordinate system. It takes the specified tool, work
object, and at execution time active program displacement (ProgDisp) and external
axes offset (EOffs) into consideration.
If there is no active ProgDisp then the robot position is expressed in the object
coordinate system. If there are no active EOffs then the external axis position is
expressed in the calibration coordinate system.

Arguments
CalcRobT(Joint_target Tool [\WObj])

Joint_target

Data type: jointtarget
The joint position for the robot axes and external axes related to the calibration
coordinate system.

Tool

Data type: tooldata
The tool used for calculation of the robot position.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1175
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.31 CalcRobT - Calculates robtarget from jointtarget

RobotWare - OS

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the robot position returned by the
function is related.
If this argument is omitted the work object wobj0 is used. This argument must be
specified when using stationary tool, coordinated external axes, or conveyor.

Program execution
The returned robtarget is calculated from the input jointtarget. To calculate
the cartesian robot position the specified Tool, WObj (including coordinated user
frame), and at the execution time active ProgDisp, are taken into consideration.
To calculate the external axes position, the EOffs active at execution time is also
taken into consideration.

Limitation
If a coordinate frame is used then the coordinated unit has to be activated before
using CalcRobT. The coordinated unit also has to be situated in the same task as
the robot.

Syntax
CalcRobT '('

[Joint_target ':='] <expression (IN) of jointtarget> ','

[Tool ':='] <persistent (PERS) of tooldata>

['\' WObj ':=' <persistent (PERS) of wobjdata>] ')'

A function with a return value of the data type robtarget.

Related information

SeeFor information about

CalcJointT - Calculates joint angles from robtar-
get on page 1171

Calculate jointtarget from robtarget

robtarget - Position data on page 1702Definition of position

jointtarget - Joint position data on page 1647Definition of joint position

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

Technical reference manual - RAPID OverviewCoordinate systems

PDispOn - Activates program displacement on
page 532

Program displacement coordinate system

EOffsOn - Activates an offset for additional axes
on page 223

External axes offset coordinate system

1176 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.31 CalcRobT - Calculates robtarget from jointtarget
RobotWare - OS
Continued

2.32 CalcRotAxFrameZ - Calculate a rotational axis frame

Usage
CalcRotAxFrameZ (Calculate Rotational Axis Frame with positive Z-point) is used
to calculate the user coordinate system of a mechanical unit that is of the type
rotational axis. This function is to be used when the master robot and the additional
axis are located in different RAPID tasks. If they are in the same task then the
function CalcRotAxisFrame should be used.

Description
The definition of a user frame for a rotational external axis requires that the turntable
(or similar mechanical structure) on the external axis has a marked reference point.
Moreover, the TCP robot’s base frame and TCPmust be calibrated. The calibration
procedure consists of a number of positions for the robot’s TCP on the reference
point when the turntable is rotated to different angles. A positioning of the robots
TCP in the positive z direction is also needed. For definition of points for a rotational
axis, see the figure below.

xx0500002468

The user coordinate system for the rotational axis has its origin in the center of
the turntable. The z direction coincides with the axis of rotation and the x axis goes
through the reference point.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1177
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.32 CalcRotAxFrameZ - Calculate a rotational axis frame

RobotWare - OS

The figure below shows the user coordinate system for two different positions of
the turntable (turntable seen from above).

xx0500002469

Basic examples
The following example illustrates the function CalcRotAxFrameZ.

Example 1
CONST robtarget pos1 := [...];

CONST robtarget pos2 := [...];

CONST robtarget pos3 := [...];

CONST robtarget pos4 := [...];

CONST robtarget zpos;

VAR robtarget targetlist{10};

VAR num max_err := 0;

VAR num mean_err := 0;

VAR pose resFr:=[...];

PERS tooldata tMyTool:= [...];

! Instructions for creating/ModPos pos1 - pos4 with TCP pointing
at the turntable.

MoveJ pos1, v10, fine, tMyTool;

MoveJ pos2, v10, fine, tMyTool;

MoveJ pos3, v10, fine, tMyTool;

MoveJ pos4, v10, fine, tMyTool;

!Instruction for creating/ModPos zpos with TCP pointing at a point
in positive z direction

MoveJ zpos, v10, fine, tMyTool;

! Add the targets to the array

targetlist{1}:= pos1;

targetlist{2}:= pos2;

targetlist{3}:= pos3;

targetlist{4}:= pos4;

resFr:=CalcRotAxFrameZ(targetlist, 4, zpos, max_err, mean_err);

! Update the system parameters.

Continues on next page
1178 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.32 CalcRotAxFrameZ - Calculate a rotational axis frame
RobotWare - OS
Continued

IF (max_err < 1.0) AND (mean_err < 0.5) THEN

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_pos_x",
resFr.trans.x/1000;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_pos_y",
resFr.trans.y/1000;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_pos_z",
resFr.trans.z/1000;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u0",
resFr.rot.q1;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u1",
resFr.rot.q2;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u2",
resFr.rot.q3;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u3",
resFr.rot.q4;

TPReadFK reg1,"Warmstart required for calibration to take
effect.", stEmpty, stEmpty, stEmpty, stEmpty,"OK";

WarmStart;

ENDIF

Four positions, pos1 - pos4, are created/modposed so that the robot’s tool tMyTool
points to the same reference point on the external axis STN_1 but with different
external axis rotations. Position, zpos, is created/modposed so that the robot’s
tool tMyTool points in the positive z direction according to the definition of the
positive z-direction of an external rotational mechanical unit. Using the definition
of the positive z-direction of an external rotational mechanical unit, seeDescription
on page1177. The points are then used for calculating the external axis base frame,
resFr, in relation to the world coordinate system. Finally, the frame is written to
the configuration file and a WarmStart instruction is executed to let the change
take effect.

Note

Definition of the positive z-direction of an external rotational mechanical unit:
Let the right hand’s fingers coincide with the positive rotation axis of the rotational
axis. The direction of the thumb then defines the positive z-direction. See the
following figure.

xx0500002472

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1179
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.32 CalcRotAxFrameZ - Calculate a rotational axis frame

RobotWare - OS
Continued

Return value
Data type: pose
The calculated frame.

Arguments
CalcRotAxFrameZ (TargetList TargetsInList PositiveZPoint

MaxErrMeanErr)

TargetList

Data type: robtarget
Array of robtargets holding the positions defined by pointing out the turntable.
Minimum number of robtargets is 4, maximum 10.

TargetsInList

Data type: num
Number of robtargets in an array.

PositiveZPoint

Data type: robtarget
robtarget holding the position defined by pointing out a point in the positive z
direction. Using the definition of the positive z-direction of an external rotational
mechanical unit, see Description on page 1177.

MaxErr

Maximum Error
Data type: num
The estimated maximum error in mm.

MeanErr

Mean Error
Data type: num
The estimated mean error in mm.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The positions don’t have the required relation or are not
specified with enough accuracy.

ERR_FRAME

Syntax
CalcRotAxFrameZ '('

[TargetList ':='] <array {*} (IN) of robtarget> ','

[TargetsInList ':='] <expression (IN) of num> ','

[PositiveZPoint ':='] <expression (IN) of robtarget> ','

[MaxErr ':='] <variable (VAR) of num> ','

[MeanErr ':='] <variable (VAR) of num> ')'

Continues on next page
1180 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.32 CalcRotAxFrameZ - Calculate a rotational axis frame
RobotWare - OS
Continued

A function with a return value of the data type pose.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1181
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.32 CalcRotAxFrameZ - Calculate a rotational axis frame

RobotWare - OS
Continued

2.33 CalcRotAxisFrame - Calculate a rotational axis frame

Usage
CalcRotAxisFrame (Calculate Rotational Axis Frame) is used to calculate the
user coordinate system of a mechanical unit that is of type rotational axis. This
function is to be used when the master robot and the additional axis are located
in the sameRAPID task. If they are in different tasks the function CalcRotAxFrameZ
should be used.

Description
The definition of a user frame for a rotational external axis requires that the turntable
(or similar mechanical structure) on the external axis has a marked reference point.
Moreover, the master robot’s base frame and TCP must be calibrated. The
calibration procedure consists of a number of positions for the robot’s TCP on the
reference point when the turntable is rotated to different angles. Definition of points
for a rotational axis is illustrated in the figure below.

xx0500002468

The user coordinate system for the rotational axis has its origin in the center of
the turntable. The z direction coincides with the axis of rotation and the x axis goes
through the reference point.

Continues on next page
1182 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.33 CalcRotAxisFrame - Calculate a rotational axis frame
RobotWare - OS

The figure below shows the user coordinate system for two different positions of
the turntable (turntable seen from above).

xx0500002469

Basic examples
The following example illustrates the function CalcRotAxisFrame.

Example 1
CONST robtarget pos1 := [...];

CONST robtarget pos2 := [...];

CONST robtarget pos3 := [...];

CONST robtarget pos4 := [...];

VAR robtarget targetlist{10};

VAR num max_err := 0;

VAR num mean_err := 0;

VAR pose resFr:=[...];

PERS tooldata tMyTool:= [...];

! Instructions needed for creating/ModPos pos1 - pos4 with TCP
pointing at the turntable.

MoveJ pos1, v10, fine, tMyTool;

MoveJ pos2, v10, fine, tMyTool;

MoveJ pos3, v10, fine, tMyTool;

MoveJ pos4, v10, fine, tMyTool;

! Add the targets to the array

targetlist{1}:= pos1;

targetlist{2}:= pos2;

targetlist{3}:= pos3;

targetlist{4}:= pos4;

resFr:=CalcRotAxisFrame(STN_1 , targetlist, 4, max_err, mean_err);

! Update the system parameters.

IF (max_err < 1.0) AND (mean_err < 0.5) THEN

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_pos_x",
resFr.trans.x/1000;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_pos_y",
resFr.trans.y/1000;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1183
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.33 CalcRotAxisFrame - Calculate a rotational axis frame

RobotWare - OS
Continued

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_pos_z",
resFr.trans.z/1000;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u0",
resFr.rot.q1;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u1",
resFr.rot.q2;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u2",
resFr.rot.q3;

WriteCfgData "/MOC/SINGLE/STN_1", "base_frame_orient_u3",
resFr.rot.q4;

TPReadFK reg1,"Warmstart required for calibration to take
effect.", stEmpty, stEmpty, stEmpty, stEmpty, "OK";

WarmStart;

ENDIF

Four positions, pos1 - pos4, are created/modposed so that the robot’s tool tMyTool
points to the same reference point on the external axis STN_1 but with different
external axis rotations. The points are then used for calculating the external axis
base frame, resFr, in relation to the world coordinate system. Finally, the frame
is written to the configuration file and a WarmStart instruction is executed to let
the change take effect.

Return value
Data type: pose
The calculated frame.

Arguments
CalcRotAxisFrame (MechUnit [\AxisNo] TargetList TargetsInList MaxErr

MeanErr)

MechUnit

Mechanical Unit
Data type: mecunit
Name of the mechanical unit to be calibrated.

[\AxisNo]

Data type: num
Optional argument defining the axis number for which a frame should be
determined. Default value is 1 applying to single rotational axis. For mechanical
units with several axes, the axis number should be supplied with this argument.

TargetList

Data type: robtarget
Array of robtargets holding the positions defined by pointing out the turntable.
Minimum number of robtargets is 4, maximum is 10.

TargetsInList

Data type: num
Number of robtargets in an array.

Continues on next page
1184 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.33 CalcRotAxisFrame - Calculate a rotational axis frame
RobotWare - OS
Continued

MaxErr

Maximum Error
Data type: num
The estimated maximum error in mm.

MeanErr

Mean Error
Data type: num
The estimated mean error in mm.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The positions don’t have the required relation or are not
specified with enough accuracy.

ERR_FRAME

Syntax
CalcRotAxisFrame '('

[MechUnit ':='] <variable (VAR) of mecunit>

[\AxisNo ':=' <expression (IN) of num>] ','

[TargetList ':='] <array {*} (IN) of robtarget> ','

[TargetsInList ':='] <expression (IN) of num> ','

[MaxErr ':='] <variable (VAR) of num> ','

[MeanErr ':='] <variable (VAR) of num> ')'

A function with a return value of the data type pose.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1185
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.33 CalcRotAxisFrame - Calculate a rotational axis frame

RobotWare - OS
Continued

2.34 CamGetExposure - Get camera specific data

Usage
CamGetExposure (Camera Get Exposure) is a function that reads the current
settings for a camera.With this function and with the instruction CamSetExposure
it is possible to adapt the camera images depending on environment in runtime.

Basic examples
The following example illustrates the function CamGetExposure.

Example 1
VAR num exposuretime;

...

exposuretime:=CamGetExposure(mycamera \ExposureTime);

IF exposuretime = 10 THEN

CamSetExposure mycamera \ExposureTime:=9.5;

ENDIF

Order camera mycamera to change the exposure time to 9.5 ms if the current
setting is 10 ms.

Return value
Data type: num
One of the settings exposure time, brightness, or contrast returned from the camera
as a numerical value.

Arguments
CamGetExposure (Camera [\ExposureTime] | [\Brightness] |

[\Contrast])

Camera

Data type: cameradev
The name of the camera.

[\ExposureTime]

Data type: num
Returns the cameras exposure time. The value is in millseconds (ms).

[\Brightness]

Data type: num
Returns the brightness setting of the camera

[\Contrast]

Data type: num
Returns the contrast setting of the camera

Continues on next page
1186 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.34 CamGetExposure - Get camera specific data
Integrated Vision

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

Syntax
CamGetExposure '('

[Camera ':='] < variable (VAR) of cameradev >

['\'ExposureTime]

| ['\'Brightness]

| ['\'Contrast] ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

Technical reference manual - RAPID Instructions, Functions and Data types 1187
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.34 CamGetExposure - Get camera specific data

Integrated Vision
Continued

2.35 CamGetLoadedJob - Get name of the loaded camera task

Usage
CamGetLoadedJob (Camera Get Loaded Job) is a function that reads the name
of the current loaded job from the camera and returns it in a string.

Basic examples
The following example illustrates the function CamGetLoadedJob.

Example 1
VAR string currentjob;

...

currentjob:=CamGetLoadedJob(mycamera);

IF CurrentJob = "" THEN

TPWrite "No job loaded in camera "+CamGetName(mycamera);

ELSE

TPWrite "Job "+CurrentJob+" is loaded in camera "
"+CamGetName(mycamera);

ENDIF

Write the loaded job name on the FlexPendant.

Return value
Data type: string
The current loaded job name for the specified camera.

Arguments
CamGetLoadedJob (Camera)

Camera

Data type: cameradev
The name of the camera.

Program execution
The function CamGetLoadedJob gets the current loaded job name from the camera.
If no job is loaded into the camera, an empty string is returned.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Communication error with camera. The camera is probably
disconnected.

ERR_CAM_COM_TIMEOUT

Syntax
CamGetLoadedJob '('

[Camera ':='] < variable (VAR) of cameradev > ')'

Continues on next page
1188 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.35 CamGetLoadedJob - Get name of the loaded camera task
Integrated Vision

A function with a return value of the data type string.

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

Technical reference manual - RAPID Instructions, Functions and Data types 1189
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.35 CamGetLoadedJob - Get name of the loaded camera task

Integrated Vision
Continued

2.36 CamGetName - Get the name of the used camera

Usage
CamGetName (Camera Get Name) is used to get the configured name of the
camera.

Basic examples
The following example illustrates the function CamGetName.

Example 1
...

logcameraname camera1;

CamReqImage camera1;

...

logcameraname camera2;

CamReqImage camera2;

...

PROC logcameraname(VAR cameradev camdev)

TPWrite "Now using camera: "+CamGetName(camdev);

ENDPROC

The procedure logs the name of the currently used camera to the FlexPendant.

Return value
Data type: string
The name of the currently used camera returned as a string.

Arguments
CamGetName(Camera)

Camera

Data type: cameradev
The name of the camera.

Syntax
CamGetName('('

[Camera ':='] < variable (VAR) of cameradev > ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

1190 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.36 CamGetName - Get the name of the used camera
Integrated Vision

2.37 CamNumberOfResults - Get number of available results

Usage
CamNumberOfResults (Camera Number of Results) is a function that reads
the number of available vision results and returns it as a numerical value.

Basic examples
The following example illustrates the function CamNumberOfResults.

Example 1
VAR num foundparts;

...

CamReqImage mycamera;

WaitTime 1;

FoundParts := CamNumberOfResults(mycamera);

TPWrite "Number of identified parts in the camera image:
"\Num:=foundparts;

Acquire an image.Wait for the image processing to complete, in this case 1 second.
Read the number of identified parts and write it to the FlexPendant.

Return value
Data type: num
Returns the number of results in the collection for the specified camera.

Arguments
CamNumberOfResults (Camera [\SceneId])

Camera

Data type: cameradev
The name of the camera.

[\SceneId]

Scene Identification
Data type: num
The SceneId is an identifier that specifies from which image to read the number
of identified parts.

Program execution
CamNumberOfResults is a function that reads the number of available vision
results and returns it as a numerical value. Can be used to loop through all available
results.
The function returns the queue level directly when the function is executed. If the
function is executed directly after requesting an image, the result is often 0 because
the camera has not yet finished processing the image.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1191
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.37 CamNumberOfResults - Get number of available results

Integrated Vision

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Syntax
CamNumberOfResults '('

[Camera ':='] < variable (VAR) of cameradev >

['\'SceneId ':=' < expression (IN) of num >] ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

1192 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.37 CamNumberOfResults - Get number of available results
Integrated Vision
Continued

2.38 CapGetFailSigs - Get failed I/O signals

Usage
CapGetFailSigs is used to return the names on the signal or signals that failed
during supervision of CapL or CapC.
If supervision of one or several signals fails during the process a recoverable error
will be returned from the CapL/CapC instruction. To determine which signal or
signals that failed, CapGetFailSigs can be used in an error handler for all cases
of supervision errors.

Basic example
Stringcopied := CapGetFailSigs(Failstring);

Stringcopied is assigned the value TRUE if the copy succeeds, and FALSE if it
fails.
Failstring contains the signals that failed as text. If no string could be copied
the string EMPTY is returned.

Return value
Data type: bool
TRUE or FALSE depending on if the fail string is modified.

Arguments
CapGetFailSigs (ErrorNames)

ErrorNames
Data type: string
CapGetFailSigs requires a string variable as input parameter.

Limitations
If many signals in a supervision list failed at the same time, only three of them are
reported with CapGetFailSigs.

Syntax
CapGetFailSigs '('

[ErrorNames ':='] < variable (INOUT) of string >')'

A function with a return value of the data type bool.

Related information

SeeFor information about

Application manual - Continuous Application
Platform

Continuous Application Platform

InitSuperv - Reset all supervision for CAP on
page 305

InitSuperv instruction

SetupSuperv - Setup conditions for signal
supervision in CAP on page 709

SetupSuperv instruction

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1193
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.38 CapGetFailSigs - Get failed I/O signals

Continuous Application Platform (CAP)

SeeFor information about

RemoveSuperv - Remove condition for one
signal on page 598

RemoveSuperv instruction

1194 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.38 CapGetFailSigs - Get failed I/O signals
Continuous Application Platform (CAP)
Continued

2.39 CDate - Reads the current date as a string

Usage
CDate (Current Date) is used to read the current system date.
This function can be used to present the current date to the operator on the
FlexPendant display or to paste the current date into a text file that the program
writes to.

Basic examples
The following example illustrates the function CDate.
See also More examples on page 1195.

Example 1
VAR string date;

date := CDate();

The current date is stored in the variable date.

Return value
Data type: string
The current date in a string.
The standard date format is “year-month-day”, for example, ”1998-01-29”.

More examples
More examples of the function CDate are illustrated below.

Example 1
VAR string date;

date := CDate();

TPWrite "The current date is: "+date;

Write logfile, date;

The current date is written to the FlexPendant display and into a text file.

Syntax
CDate '(' ')'

A function with a return value of the type string.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewTime instructions

Operating manual - IRC5 with FlexPendantSetting the system clock

Technical reference manual - RAPID Instructions, Functions and Data types 1195
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.39 CDate - Reads the current date as a string

RobotWare-OS

2.40 CJointT - Reads the current joint angles

Usage
CJointT (Current Joint Target) is used to read the current angles of the robot axes
and external axes.

Basic examples
The following example illustrates the function CJointT.
See also More examples on page 1196.

Example 1
VAR jointtarget joints;

joints := CJointT();

The current angles of the axes for a robot and external axes are stored in joints.

Return value
Data type: jointtarget
The current angles in degrees for the axes of the robot on the arm side.
The current values for the external axes, in mm for linear axes, in degrees for
rotational axes.
The returned values are related to the calibration position.

Arguments
CJointT ([\TaskRef]|[\TaskName])

[\TaskRef]

Task Reference
Data type: taskid
The program task identity from which the jointtarget should be read.
For all program tasks in the system, predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", for example, for the
T_ROB1 task, and the variable identity will be T_ROB1Id.

[\TaskName]

Data type: string
The program task name from which the jointtarget should be read.
If none of the arguments \TaskRef or \TaskName are specified then the current
task is used.

More examples
More examples of the function CJointT are illustrated below.

Example 1
! In task T_ROB1

VAR jointtarget joints;

joints := CJointT(\TaskRef:=T_ROB2Id);

Continues on next page
1196 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.40 CJointT - Reads the current joint angles
RobotWare - OS

The current position of the robot and external axes in task T_ROB2 are stored in
joints in task T_ROB1.
Note that the robot in task T_ROB2 may be moving when the position is read. To
ensure that the robot stands still, a stop point fine in the preceding movement
instruction in task T_ROB2 could be programmed and instruction WaitSyncTask
could be used to synchronize the instructions in task T_ROB1.

Example 2
! In task T_ROB1

VAR jointtarget joints;

joints := CJointT(\TaskName:="T_ROB2");

The same effect as Example 1 above.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

Argument \TaskRef or \TaskName specify some non-
motion task.

ERR_NOT_MOVETASK

No error will be generated if argument \TaskRef or \TaskName specifies the
non-motion task that executes this function CJointT (reference to my own
non-motion task). The position will then be fetched from the connected motion
task.

Syntax
CJointT '('

['\' TaskRef ':=' <variable (VAR) of taskid>]

|['\' TaskName ':=' <expression (IN) of string>] ')'

A function with a return value of the data type jointtarget.

Related information

SeeFor information about

jointtarget - Joint position data on page 1647Definition of joint

ReadMotor - Reads the current motor angles on
page 1397

Reading the current motor angle

Technical reference manual - RAPID Instructions, Functions and Data types 1197
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.40 CJointT - Reads the current joint angles

RobotWare - OS
Continued

2.41 ClkRead - Reads a clock used for timing

Usage
ClkReadis used to read a clock that functions as a stop-watch used for timing.

Basic examples
The following examples illustrate the function ClkRead.

Example 1
reg1:=ClkRead(clock1);

The clock clock1 is read and the time in seconds is stored in the variable reg1.

Example 2
reg1:=ClkRead(clock1 \HighRes);

The clock clock1 is read and the time in seconds is stored with high resolution
in the variable reg1.

Return value
Data type: num
The time in seconds stored in the clock. Resolution is normally 0.001 seconds. If
using HighRes switch it is possible to get a resolution of 0.000001 seconds.

Argument
ClkRead (Clock \HighRes)

Clock

Data type: clock
The name of the clock to read.

[\HighRes]

High Resolution
Data type: switch
Specifies that the time should be read with a higher resolution. If this switch is
used it is possible to read the time with resolution 0.000001.
Due to the precision of the data type num, you can only get the micro second
resolution as long as the read value is less than 1 second.

Program execution
A clock can be read when it is stopped or running.
Once a clock is read it can be read again, started again, stopped, or reset.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The clock runs for 4,294,967 seconds (49 days 17 hours 2
minutes 47 seconds) then it becomes overflowed.

ERR_OVERFLOW

Continues on next page
1198 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.41 ClkRead - Reads a clock used for timing
RobotWare-OS

If using the HighRes switch, then the error ERR_OVERFLOW can not occur, but the
clock will wrap around after approximately 49700 days.

Syntax
ClkRead '('

[Clock ':='] < variable (VAR) of clock >

['\' HighRes] ')'

A function with a return value of the type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewClock instructions

ClkStart - Starts a clock used for timing on page136More examples

Technical reference manual - RAPID Instructions, Functions and Data types 1199
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.41 ClkRead - Reads a clock used for timing

RobotWare-OS
Continued

2.42 CorrRead - Reads the current total offsets

Usage
CorrRead is used to read the total corrections delivered by all connected correction
generators.
CorrRead can be used to:

• find out how much the current path differs from the original path.
• take actions to reduce the difference.

Basic examples
The following example illustrates the function CorrRead.
See also More examples on page 1200.

Example 1
VAR pos offset;

...

offset := CorrRead();

The current offsets delivered by all connected correction generators are available
in the variable offset.

Return value
Data type: pos
The total absolute offsets delivered from all connected correction generators so
far.

More examples
For more examples of the function CorrRead, see instruction CorrCon.

Syntax
CorrRead '(' ')'

A function with a return value of the data type pos.

Related information

SeeFor information about

CorrCon - Connects to a correction generator
on page 162

Connects to a correction generator

CorrDiscon - Disconnects from a correction
generator on page 167

Disconnects from a correction generator

CorrWrite - Writes to a correction generator
on page 168

Writes to a correction generator

CorrClear - Removes all correction generators
on page 161

Removes all correction generators

corrdescr - Correction generator descriptor on
page 1606

Correction descriptor

1200 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.42 CorrRead - Reads the current total offsets
Path Offset

2.43 Cos - Calculates the cosine value

Usage
Cos (Cosine) is used to calculate the cosine value from an angle value on data
types num.

Basic examples
The following example illustrates the function Cos.

Example 1
VAR num angle;

VAR num value;

...

...

value := Cos(angle);

value will get the cosine value of angle.

Return value
Data type: num
The cosine value, range = [-1, 1] .

Arguments
Cos (Angle)

Angle

Data type: num
The angle value, expressed in degrees.

Syntax
Cos '('

[Angle ':='] <expression (IN) of num> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1201
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.43 Cos - Calculates the cosine value

RobotWare - OS

2.44 CosDnum - Calculates the cosine value

Usage
CosDnum (Cosine dnum) is used to calculate the cosine value from an angle value
on data types dnum.

Basic examples
The following example illustrates the function CosDnum.

Example 1
VAR dnum angle;

VAR dnum value;

...

...

value := CosDnum(angle);

value will get the cosine value of angle.

Return value
Data type: dnum
The cosine value, range = [-1, 1] .

Arguments
CosDnum (Angle)

Angle

Data type: dnum
The angle value, expressed in degrees.

Syntax
CosDnum '('

[Angle ':='] <expression (IN) of dnum> ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

1202 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.44 CosDnum - Calculates the cosine value
RobotWare - OS

2.45 CPos - Reads the current position (pos) data

Usage
CPos (Current Position) is used to read the current position of the robot.
This function returns the x, y, and z values of the robot TCP as data of type pos.
If the complete robot position (robtarget) is to be read then use the function
CRobT instead.

Basic examples
The following example illustrates the function CPos.
See also More examples on page 1204.

Example 1
VAR pos pos1;

MoveL *, v500, fine \Inpos := inpos50, tool1;

pos1 := CPos(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot TCP is stored in variable pos1. The tool tool1
and work object wobj0 are used for calculating the position.
Note that the robot is standing still before the position is read and calculated. This
is achieved by using the stop point fine within position accuracy inpos50 in the
preceding movement instruction.

Return value
Data type: pos
The current position (pos) of the robot with x, y, and z in the outermost coordinate
system, taking the specified tool, work object, and active ProgDisp coordinate
system into consideration.

Arguments
CPos([\Tool] [\WObj])

[\Tool]

Data type: tooldata
The tool used for calculation of the current robot position.
If this argument is omitted then the current active tool is used.

[\WObj]

Work Object
Data type: wobjdata
The work object (coordinate system) to which the current robot position returned
by the function is related.
If this argument is omitted then the current active work object is used.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1203
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.45 CPos - Reads the current position (pos) data

RobotWare - OS

WARNING

It is advised to always specify the arguments \Tool and \WObj during
programming. The function will then always return the wanted position even if
another tool or work object are activated.

Program execution
The coordinates returned represent the TCP position in the ProgDisp coordinate
system.

More examples
More examples of the function CPos are illustrated below.

VAR pos pos2;

VAR pos pos3;

VAR pos pos4;

pos2 := CPos(\Tool:=grip3 \WObj:=fixture);

...

pos3 := CPos(\Tool:=grip3 \WObj:=fixture);

pos4 := pos3-pos2;

The x, y, and z position of the robot is captured at two places within the program
using the CPos function. The tool grip3 and work object fixture are used for
calculating the position. The x, y, and z distances travelled between these positions
are then calculated and stored in variable pos4.

Syntax
CPos '('

['\' Tool ':=' <persistent (PERS) of tooldata>]

['\' WObj ':=' <persistent (PERS) of wobjdata>] ')'

A function with a return value of the data type pos.

Related information

SeeFor information about

pos - Positions (only X, Y and Z) on page 1683Definition of position

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

PDispOn - Activates program displacement on page532ProgDisp coordinate system

Technical reference manual - RAPID OverviewCoordinate systems

CRobT - Reads the current position (robtarget) data on
page 1205

Reading the current robtarget

1204 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.45 CPos - Reads the current position (pos) data
RobotWare - OS
Continued

2.46 CRobT - Reads the current position (robtarget) data

Usage
CRobT(Current Robot Target) is used to read the current position of a robot and
external axes.
This function returns a robtarget value with position (x, y, z), orientation (q1 ...
q4), robot axes configuration, and external axes position. If only the x, y, and z
values of the robot TCP (pos) are to be read then use the function CPos instead.

Basic examples
The following example illustrates the function CRobT.
See also More examples on page 1206.

Example 1
VAR robtarget p1;

MoveL *, v500, fine \Inpos := inpos50, tool1;

p1 := CRobT(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot and external axes is stored in p1. The tool tool1
and work object wobj0 are used for calculating the position.
Note that the robot is standing still before the position is read and calculated. This
is achieved by using the stop point fine within position accuracy inpos50 in the
preceding movement instruction.

Return value
Data type: robtarget
The current position of a robot and external axes in the outermost coordinate
system, taking the specified tool, work object, and active ProgDisp/ExtOffs
coordinate system into consideration.

Arguments
CRobT ([\TaskRef]|[\TaskName] [\Tool] [\WObj])

[\TaskRef]

Task Reference
Data type: taskid
The program task identity from which the robtarget should be read.
For all program tasks in the system, predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", for example, for the
T_ROB1 task the variable identity will be T_ROB1Id.

[\TaskName]

Data type: string
The program task name from which the robtarget should be read.
If none of the arguments \TaskRef or \TaskName are specified then the current
task is used.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1205
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.46 CRobT - Reads the current position (robtarget) data

RobotWare - OS

[\Tool]

Data type: tooldata
The persistent variable for the tool used to calculate the current robot position.
If this argument is omitted then the current active tool is used.

[\WObj]

Work Object
Data type: wobjdata
The persistent variable for the work object (coordinate system) to which the current
robot position returned by the function is related.
If this argument is omitted then the current active work object is used.

WARNING

It is advised to always specify the arguments \Tool and \WObj during
programming. The function will then always return the wanted position even if
another tool or work object are activated.

Program execution
The coordinates returned represent the TCP position in the ProgDisp coordinate
system. External axes are represented in the ExtOffs coordinate system.
If one of the arguments \TaskRef or \TaskName are used but arguments Tool
and WObj are not used then the current tool and work object in the specified task
will be used.

More examples
More examples of the function CRobT are illustrated below.

Example 1
VAR robtarget p2;

p2 := ORobT(CRobT(\Tool:=grip3 \WObj:=fixture));

The current position in the object coordinate system (without any ProgDisp or
ExtOffs) of the robot and external axes is stored in p2. The tool grip3 and work
object fixture are used for calculating the position.

Example 2
! In task T_ROB1

VAR robtarget p3;

p3 := CRobT(\TaskRef:=T_ROB2Id \Tool:=tool1 \WObj:=wobj0);

The current position of the robot and external axes in task T_ROB2 are stored in
p3 in task T_ROB1. The tool tool1 and work object wobj0 are used for calculating
the position.
Note that the robot in task T_ROB2 may be moving when the position is read and
calculated. To make sure the robot stands still, a stop point fine in the preceding
movement instruction in task T_ROB2 could be programmed and instruction
WaitSyncTask could be used to synchronize the instructions in task T_ROB1.

Continues on next page
1206 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.46 CRobT - Reads the current position (robtarget) data
RobotWare - OS
Continued

Example 3
! In task T_ROB1

VAR robtarget p4;

p4 := CRobT(\TaskName:="T_ROB2");

The current position of the robot and external axes in task T_ROB2 are stored in
p4 in task T_ROB1. The current tool and work object in task T_ROB2 are used for
calculating the position.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

Argument \TaskRef or \TaskName specify some non-
motion task.

ERR_NOT_MOVETASK

No error will be generated if the arguments \TaskRef or \TaskName specify the
non-motion task that executes this function CRobT (reference tomy own non-motion
task). The position will then be fetched from the connected motion task.

Syntax
CRobT '('

['\' TaskRef ':=' <variable (VAR) of taskid>]

|['\' TaskName ':=' <expression (IN) of string>]

['\'Tool ':=' <persistent (PERS) of tooldata>]

['\' WObj ':=' <persistent (PERS) of wobjdata>] ')'

A function with a return value of the data type robtarget.

Related information

SeeFor information about

robtarget - Position data on page 1702Definition of position

tooldata - Tool data on page 1743Definition of tools

wobjdata - Work object data on page 1770Definition of work objects

Technical reference manual - RAPID OverviewCoordinate systems

PDispOn - Activates program displacement on
page 532

ProgDisp coordinate system

EOffsOn - Activates an offset for additional axes
on page 223

ExtOffs coordinate system

CPos - Reads the current position (pos) data on
page 1203

Reading the current pos (x, y, z only)

Technical reference manual - RAPID Instructions, Functions and Data types 1207
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.46 CRobT - Reads the current position (robtarget) data

RobotWare - OS
Continued

2.47 CrossProd - Cross product of two pos vectors

Usage
CrossProd (Cross Product) is used to calculate the cross product (or vector
product) of two pos vectors.
The cross product of two vectors A and B is a vector, perpendicular to both
argument vectors. The length of the result vector is equal to the products of the

length of A and B and the sine of the angle between them .

x

Note

• The magnitude of the cross product equals the area of a parallelogram with
the vectors as sides.

• The cross product of two parallel vectors is zero.
• A x B = - B x A

Basic examples
The following example illustrates the function CrossProd with perpendicular
vectors.
For other examples, see More examples on page 1209.

Example 1

X

Y

Z

vector2

crossprod

vector1

xx1700001570

VAR pos crossprod_1;

Continues on next page
1208 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.47 CrossProd - Cross product of two pos vectors
RobotWare - OS

VAR pos vector1;

VAR pos vector2;

...

...

vector1 := [2,0,0];

vector2 := [0,2,0];

crossprod_1 := CrossProd(vector1, vector2);

In this example, vector1 is parallel to the x axis, vector2 is parallel to the y axis.
The cross product is perpendicular to both of them, i.e. parallel to the z axis.
Since the angle between vector1 and vector2 is 90°, themagnitude of the cross

product is:

Return value
Data type: pos
A vector that is the result of the cross product of the two vectors.

Arguments
CrossProd (Vector1 Vector2)

Vector1

Data type: pos
The first vector described by the pos data type.

Vector2

Data type: pos
The second vector described by the pos data type.

More examples
More examples of the function CrossProd are illustrated below.

Example 2

X

Y

Z

vector2

crossprod

vector1

xx1700001571

VAR pos crossprod_1;

VAR pos vector1;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1209
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.47 CrossProd - Cross product of two pos vectors

RobotWare - OS
Continued

VAR pos vector2;

...

...

vector1 := [2,0,0];

vector2 := [2,1,0];

crossprod_1 := CrossProd(vector1, vector2);

In this example, vector1 and vector2 are both in the xy plane. The cross product
is perpendicular to both of them, i.e. parallel to the z axis.

The magnitude of vector1 is 2. The magnitude of vector2 is . The angle
between vector1 and vector2 is 26.565°. The magnitude of the cross product

is:

Syntax
CrossProd '('

[Vector1 ':='] <expression (IN) of pos>','

[Vector2 ':='] <expression (IN) of pos>

')'

A function with a return value of the data type pos.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section RAPID summary - Mathematics

Mathematical instructions and functions

1210 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.47 CrossProd - Cross product of two pos vectors
RobotWare - OS
Continued

2.48 CSpeedOverride - Reads the current override speed

Usage
CSpeedOverride is used to read the speed override set by the operator from the
FlexPendant. The return value is displayed as a percentage where 100%
corresponds to the programmed speed.
In applications with instruction SpeedRefresh, this function can also be used to
read current speed override value for this or connected motion program tasks.
Note! Must not be mixed up with the argument Override in the RAPID instruction
VelSet.

Basic examples
The following example illustrates the function CSpeedOverride.

Example 1
VAR num myspeed;

myspeed := CSpeedOverride();

The current override speed will be stored in the variable myspeed. For example,
if the value is 100 then this is equivalent to 100%.

Return value
Data type: num
The override speed value in percent of the programmed speed. This will be a
numeric value in the range of 0 - 100.

Arguments
CSpeedOverride ([\CTask])

[\CTask]
Data type: switch
Get current speed override value for this or connected motion program task. Used
together with the instruction SpeedRefresh.
If this argument is not used then the function returns current speed override for
the whole system (all motion program tasks). Meaning the manual speed override,
set from FlexPendant.

Syntax
CSpeedOverride '('

['\' CTask] ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Operatingmanual - IRC5 with FlexPendant, section
Programming and Testing Production Running -
Quickset menu, Speed

Changing the Override Speed

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1211
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.48 CSpeedOverride - Reads the current override speed

RobotWare - OS

SeeFor information about

SpeedRefresh - Update speed override for ongoing
movement on page 771

Update speed override from RAPID

1212 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.48 CSpeedOverride - Reads the current override speed
RobotWare - OS
Continued

2.49 CTime - Reads the current time as a string

Usage
CTime is used to read the current system time.
This function can be used to present the current time to the operator on the
FlexPendant display or to paste the current time into a text file that the program
writes to.

Basic examples
The following example illustrates the function CTime.
See also More examples on page 1213.

Example 1
VAR string time;

time := CTime();

The current time is stored in the variable time.

Return value
Data type: string
The current time in a string.
The standard time format is "hours:minutes:seconds", for example, "18:20:46".

More examples
More examples of the function CTime are illustrated below.

Example 1
VAR string time;

time := CTime();

TPWrite "The current time is: "+time;

Write logfile, time;

The current time is written to the FlexPendant display and written into a text file.

Syntax
CTime '(' ')'

A function with a return value of the type string.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID summary - System & Time

Time and date instructions

Operating manual - IRC5 with FlexPendant, section
Changing FlexPendant settings

Setting the system clock

Technical reference manual - RAPID Instructions, Functions and Data types 1213
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.49 CTime - Reads the current time as a string

RobotWare-OS

2.50 CTool - Reads the current tool data

Usage
CTool (Current Tool) is used to read the data of the current tool.

Basic examples
The following example illustrates the function CTool.

Example 1
PERS tooldata temp_tool:= [TRUE, [[0, 0, 0], [1, 0, 0 ,0]],

[0.001, [0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]];

temp_tool := CTool();

The value of the current tool is stored in the variable temp_tool.

Return value
Data type: tooldata
This function returns a tooldata value holding the value of the current tool, that
is, the tool last used in a movement instruction.
The value returned represents the TCP position and orientation in the wrist centre
coordinate system. See tooldata.

Arguments
CTool ([\TaskRef]|[\TaskName])

[\TaskRef]

Task Reference
Data type: taskid
The program task identity from which the data of the current tool should be read.
For all program tasks in the system, predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", for example, for the
T_ROB1 task the variable identity will be T_ROB1Id.

[\TaskName]

Data type: string
The program task name from which the data of the current tool should be read.
If none of the arguments \TaskRef or \TaskName are specified then the current
task is used.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

Argument \TaskRef or \TaskName specify some non-
motion task.

ERR_NOT_MOVETASK

Continues on next page
1214 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.50 CTool - Reads the current tool data
RobotWare - OS

No error will be generated if the arguments \TaskRef or \TaskName specify the
non-motion task that executes this function CTool (reference tomy own non-motion
task). The tool data will then be fetched from the connected motion task.

Syntax
CTool '('

['\' TaskRef ':=' <variable (VAR) of taskid>]

|['\' TaskName ':=' <expression (IN) of string>] ')'

A function with a return value of the data type tooldata.

Related information

SeeFor information about

tooldata - Tool data on page 1743Definition of tools

Technical reference manual - RAPID Overview,
section Motion and I/O principles - Coordinate
Systems

Coordinate systems

Technical reference manual - RAPID Instructions, Functions and Data types 1215
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.50 CTool - Reads the current tool data

RobotWare - OS
Continued

2.51 CWObj - Reads the current work object data

Usage
CWObj (Current Work Object) is used to read the data of the current work object.

Basic examples
The following example illustrates the function CWObj.

Example 1
PERS wobjdata temp_wobj:= [FALSE, TRUE, "", [[0,0,0], [1,0,0,0]],

[[0,0,0], [1,0,0,0]]];

temp_wobj := CWObj();

The value of the current work object is stored in the variable temp_wobj.

Return value
Data type: wobjdata
This function returns a wobjdata value holding the value of the current work object,
that is, the work object last used in a movement instruction.
The value returned represents the work object position and orientation in the world
coordinate system. See wobjdata.

Arguments
CWobj ([\TaskRef]|[\TaskName])

[\TaskRef]

Task Reference
Data type: taskid
The program task identity from which the data of the current work object should
be read.
For all program tasks in the system, predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", for example, for the
T_ROB1 task the variable identity will be T_ROB1Id.

[\TaskName]

Data type: string
The program task name from which the data of the current work object should be
read.
If none of the arguments \TaskRef or \TaskName are specified then the current
task is used.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

Continues on next page
1216 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.51 CWObj - Reads the current work object data
RobotWare - OS

Cause of errorName

Argument \TaskRef or \TaskName specify some non-
motion task.

ERR_NOT_MOVETASK

No error will be generated if the arguments \TaskRef or \TaskName specify the
non-motion task that executes this function CWobj (reference tomy own non-motion
task). The work object data will then be fetched from the connected motion task.

Syntax
CWobj '('

['\' TaskRef ':=' <variable (VAR) of taskid>]

|['\' TaskName ':=' <expression (IN) of string>] ')'

A function with a return value of the data type wobjdata.

Related information

SeeFor information about

wobjdata - Work object data on page 1770Definition of work objects

Technical reference manual - RAPID Overview,
section Motion and I/O Principles - Coordinate
Systems

Coordinate systems

Technical reference manual - RAPID Instructions, Functions and Data types 1217
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.51 CWObj - Reads the current work object data

RobotWare - OS
Continued

2.52 DecToHex - Convert from decimal to hexadecimal

Usage
DecToHex is used to convert a number specified in a readable string in the base
10 to the base16.
The resulting string is constructed from the character set [0-9,A-F,a-f].
This routine handle numbers from 0 up to 9223372036854775807dec or
7FFFFFFFFFFFFFFF hex.

Basic examples
The following example illustrates the function DecToHex.

Example 1
VAR string str;

str := DecToHex("99999999");

The variable str is given the value "5F5E0FF".

Return value
Data type: string
The string converted to a hexadecimal representation of the given number in the
inparameter string.

Arguments
DecToHex (Str)

Str

String
Data type: string
The string to convert.

Syntax
DecToHex '('

[Str ':='] <expression (IN) of string> ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID summary - String functions

String functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID Overview,
section Basic characteristics - Basic elements

String values

1218 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.52 DecToHex - Convert from decimal to hexadecimal
RobotWare - OS

2.53 DefAccFrame - Define an accurate frame

Usage
DefAccFrame (Define Accurate Frame) is used to define a framed from three to
ten original positions and the same number of displaced positions.

Description
A frame can be defined when a set of targets are known at two different locations.
Thus, the same physical positions are used but expressed differently.
Consider it in two different approaches:

1 The same physical positions are expressed in relation to different coordinate
systems. For example, a number of positions are retrieved from a CAD
drawing, thus the positions are expressed in a CAD local coordinate system.
The same positions are then expressed in robot world coordinate system.
From these two sets of positions the frame between CAD coordinate system
and robot world coordinate system is calculated.

2 A number of positions are related to an object in an original position. After
a displacement of the object, the positions are determined again (often
searched for). From these two sets of positions (old positions, new positions)
the displacement frame is calculated.

Three targets are enough to define a frame, but to improve accuracy several points
should be used.

Basic examples
The following example illustrates the function DefAccFrame.

Example 1

xx0500002179

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

CONST robtarget p4 := [...];

CONST robtarget p5 := [...];

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1219
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.53 DefAccFrame - Define an accurate frame

RobotWare - OS

VAR robtarget p6 := [...];

VAR robtarget p7 := [...];

VAR robtarget p8 := [...];

VAR robtarget p9 := [...];

VAR robtarget p10 := [...];

VAR robtarget pWCS{5};

VAR robtarget pCAD{5};

VAR pose frame1;

VAR num max_err;

VAR num mean_err;

! Add positions to robtarget arrays

pCAD{1}:=p1;

...

pCAD{5}:=p5;

pWCS{1}:=p6;

...

pWCS{5}:=p10;

frame1 := DefAccFrame (pCAD, pWCS, 5, max_err, mean_err);

Five positions p1- p5 related to an object have been stored. The five positions
are also stored in relation to world coordinate system as p6-p10. From these 10
positions the frame, frame1, between the object and the world coordinate system
is calculated. The frame will be the CAD frame expressed in the world coordinate
system. If the input order of the targetlists is exchanged, that is, DefAccFrame
(pWCS, pCAD....) then the world frame will be expressed in the CAD coordinate
system.

Return value
Data type: pose
The calculatedTargetListOne frame expressed in the TargetListTwo coordinate
system.

Arguments
DefAccFrame (TargetListOne TargetListTwo TargetsInList

MaxErrMeanErr)

TargetListOne

Data type: robtarget
Array of robtargets holding the positions defined in coordinate system one.Minimum
number of robtargets is 3, maximum is 10.

TargetListTwo

Data type: robtarget
Array of robtargets holding the positions defined in coordinate system two.Minimum
number of robtargets is 3, maximum is 10.

Continues on next page
1220 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.53 DefAccFrame - Define an accurate frame
RobotWare - OS
Continued

TargetsInList

Data type: num
Number of robtargets in an array.

MaxErr

Data type: num
The estimated maximum error in mm.

MeanErr

Data type: num
The estimated mean error in mm.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The positions don’t have the required relation or are not
specified with enough accuracy.

ERR_FRAME

Syntax
DefAccFrame '('

[TargetListOne ':='] <array {*} (IN) of robtarget> ','

[TargetListTwo ':='] <array {*} (IN) of robtarget> ','

[TargetsInList ':='] <expression (IN) of num> ','

[MaxErr ':='] <variable (VAR) of num> ','

[MeanErr ':='] <variable (VAR) of num> ')'

A function with a return value of the data type pose.

Related information

SeeFor information about

DefFrame - Define a frame on page 1225Calculating a frame from three positions

DefDFrame - Define a displacement frame on
page 1222

Calculate a frame from 6 positions

Technical reference manual - RAPID Instructions, Functions and Data types 1221
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.53 DefAccFrame - Define an accurate frame

RobotWare - OS
Continued

2.54 DefDFrame - Define a displacement frame

Usage
DefDFrame(Define Displacement Frame) is used to calculate a displacement frame
from three original positions and three displaced positions.

Basic examples
The following example illustrates the function DefDFrame.

Example 1

xx0500002177

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

VAR robtarget p4;

VAR robtarget p5;

VAR robtarget p6;

VAR pose frame1;

...

!Search for the new positions

SearchL sen1, p4, *, v50, tool1;

...

SearchL sen1, p5, *, v50, tool1;

...

SearchL sen1, p6, *, v50, tool1;

frame1 := DefDframe (p1, p2, p3, p4, p5, p6);

...

!Activation of the displacement defined by frame1

PDispSet frame1;

Three positions p1-p3 related to an object in an original position have been stored.
After a displacement of the object, three new positions are searched for and stored
as p4-p6. The displacement frame is calculated from these six positions. Then
the calculated frame is used to displace all the stored positions in the program.

Return value
Data type: pose
The displacement frame.

Continues on next page
1222 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.54 DefDFrame - Define a displacement frame
RobotWare - OS

Arguments
DefDFrame (OldP1 OldP2 OldP3 NewP1 NewP2 NewP3)

OldP1

Data type: robtarget
The first original position.

OldP2

Data type: robtarget
The second original position.

OldP3

Data type: robtarget
The third original position.

NewP1

Data type: robtarget
The first displaced position. The difference between OldP1 and NewP1 will define
the translation part of the frame and must be measured and determined with great
accuracy.

NewP2

Data type: robtarget
The second displaced position. The line NewP1 ... NewP2will define the rotation
of the old line OldP1 ... OldP2.

NewP3

Data type: robtarget
The third displaced position. This position will define the rotation of the plane, for
example, it should be placed on the new plane of NewP1, NewP2, and NewP3.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

It is not possible to calculate the frame because of bad ac-
curacy in the positions.

ERR_FRAME

Syntax
DefDFrame '('

[OldP1 ':='] <expression (IN) of robtarget> ','

[OldP2 ':='] <expression (IN) of robtarget> ','

[OldP3 ':='] <expression (IN) of robtarget> ','

[NewP1 ':='] <expression (IN) of robtarget> ','

[NewP2 ':='] <expression (IN) of robtarget> ','

[NewP3 ':='] <expression (IN) of robtarget> ')'

A function with a return value of the data type pose.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1223
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.54 DefDFrame - Define a displacement frame

RobotWare - OS
Continued

Related information

SeeFor information about

PDispSet - Activates program displacement us-
ing known frame on page 537

Activation of displacement frame

Operating manual - IRC5 with FlexPendant,
section Calibrating

Manual definition of displacement frame

1224 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.54 DefDFrame - Define a displacement frame
RobotWare - OS
Continued

2.55 DefFrame - Define a frame

Usage
DefFrame (Define Frame) is used to calculate a frame, from three positions defining
the frame.

Basic examples
The following example illustrates the function DefFrame.

Example 1

xx0500002181

Three positions, p1- p3 related to the object coordinate system are used to define
the new coordinate system, frame1. The first position, p1, is defining the origin
of the new coordinate system. The second position, p2, is defining the direction
of the x-axis. The third position, p3, is defining the location of the xy-plane. The
defined frame1 may be used as a displacement frame, as shown in the example
below:

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

VAR pose frame1;

...

...

frame1 := DefFrame (p1, p2, p3);

...

...

!Activation of the displacement defined by frame1

PDispSet frame1;

Return value
Data type: pose
The calculated frame.
The calculation is related to the active object coordinate system.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1225
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.55 DefFrame - Define a frame

RobotWare - OS

Arguments
DefFrame (NewP1 NewP2 NewP3 [\Origin])

NewP1

Data type: robtarget
The first position, which will define the origin of the new coordinate system.

NewP2

Data type: robtarget
The second position, which will define the direction of the x-axis of the new
coordinate frame.

NewP3

Data type: robtarget
The third position, which will define the xy-plane of the new coordinate system.
The position of point 3 will be on the positive y side, see the figure above.

[\Origin]

Data type: num
Optional argument, which will define how the origin of the new coordinate system
will be placed. Origin = 1 means that the origin is placed in NewP1, that is, the
same as if this argument is omitted. Origin = 2 means that the origin is placed in
NewP2. See the figure below.

xx0500002178

Origin = 3 means that the origin is placed on the line going through NewP1 and
NewP2 and so that NewP3 will be placed on the y axis. See the figure below.

xx0500002180

Other values, or if Origin is omitted, will place the origin in NewP1.

Continues on next page
1226 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.55 DefFrame - Define a frame
RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The frame cannot be calculated because of the below limit-
ations.

ERR_FRAME

Limitations
The three positions p1 - p3, defining the frame, must define a well shaped triangle.
The most well shaped triangle is the one with all sides of equal length.

xx0500002182

The triangle is not considered to be well shaped if the angle α is too small. The
angle α is too small if:
|cos α| < 1 - 10 -4

The triangle p1, p2, p3 must not be too small, that is, the positions cannot be too
close. The distances between the positions p1 - p2 and p1 - p3 must not be
less than 0.1 mm.

Syntax
DefFrame '('

[NewP1 ':='] <expression (IN) of robtarget> ','

[NewP2 ':='] <expression (IN) of robtarget> ','

[NewP3 ':='] <expression (IN) of robtarget>

['\' Origin ':=' <expression (IN) of num >] ')'

A function with a return value of the data type pose.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID summary - Mathematics

Mathematical instructions and functions

PDispSet - Activates program displacement us-
ing known frame on page 537

Activation of displacement frame

Technical reference manual - RAPID Instructions, Functions and Data types 1227
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.55 DefFrame - Define a frame

RobotWare - OS
Continued

2.56 Dim - Obtains the size of an array

Usage
Dim (Dimension) is used to obtain the number of elements in an array.

Basic examples
The following example illustrates the function Dim.
See also More examples on page 1228.

Example 1
PROC arrmul(VAR num array{*}, num factor)

FOR index FROM 1 TO Dim(array, 1) DO

array{index} := array{index} * factor;

ENDFOR

ENDPROC

All elements of a num array are multiplied by a factor. This procedure can take any
one-dimensional array of data type num as an input.

Return value
Data type: num
The number of array elements of the specified dimension.

Arguments
Dim (ArrPar DimNo)

ArrPar

Array Parameter
Data type: Any type
The name of the array.

DimNo

Dimension Number
Data type: num
The desired array dimension:
1 = first dimension
2 = second dimension
3 = third dimension

More examples
More examples of how to use the function Dim are illustrated below.

Example 1
PROC add_matrix(VAR num array1{*,*,*}, num array2{*,*,*})

IF Dim(array1,1) <> Dim(array2,1) OR Dim(array1,2) <>
Dim(array2,2) OR Dim(array1,3) <> Dim(array2,3) THEN

TPWrite "The size of the matrices are not the same";

Stop;

Continues on next page
1228 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.56 Dim - Obtains the size of an array
RobotWare - OS

ELSE

FOR i1 FROM 1 TO Dim(array1, 1) DO

FOR i2 FROM 1 TO Dim(array1, 2) DO

FOR i3 FROM 1 TO Dim(array1, 3) DO

array1{i1,i2,i3} := array1{i1,i2,i3} + array2{i1,i2,i3};

ENDFOR

ENDFOR

ENDFOR

ENDIF

RETURN;

ENDPROC

Two matrices are added. If the size of the matrices differs then the program stops
and an error message appears.
This procedure can take any three-dimensional array of data type num as an input.

Syntax
Dim '('

[ArrPar ':='] <reference (REF) of any type> ','

[DimNo ':='] <expression (IN) of num> ')'

A REF parameter requires that the corresponding argument be either a constant,
a variable, or an entire persistent. The argument could also be an IN parameter, a
VAR parameter, or an entire PERS parameter.
A function with a return value of the data type num.

Related information

SeeFor information about

Technical referencemanual - RAPID Overview,
section Basic characteristics - Routines

Array parameters

Technical referencemanual - RAPID Overview,
section Basic characteristics - Data

Array declaration

Technical reference manual - RAPID Instructions, Functions and Data types 1229
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.56 Dim - Obtains the size of an array

RobotWare - OS
Continued

2.57 DInput - Reads the value of a digital input signal

Usage
DInput is used to read the current value of a digital input signal.

Note

Note that the function DInput is a legacy function that no longer has to be used.
See the examples for an alternative and recommended way of programming.

Basic examples
The following example illustrates the function DInput.
See also More examples on page 1230.

Example 1
IF DInput(di2) = 1 THEN ...

...

IF di2 = 1 THEN ...

If the current value of the signal di2 is equal to 1, then ...

Return value
Data type: num
The current value of the signal (0 or 1).

Arguments
DInput (Signal)

Signal

Data type: signaldi
The name of the digital input to be read.

Program execution
The value read depends on the configuration of the signal. If the signal is inverted
in the system parameters, the value returned by this function is the opposite of the
value of the physical channel.

More examples
More examples of how to use the function DInput are illustrated below.

Example 1
weld_flag := DInput(weld);

...

weld_flag := weld;

Continues on next page
1230 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.57 DInput - Reads the value of a digital input signal
RobotWare - OS

The variable weld_flag is set to the same value as the current value of the signal
weld.

Note

Note that, in this case, the weld_flag reflects the current value of the signal.
Thus, if weld_flag is used later in the program, you cannot be certain that it
will reflect the current value of the signal.

Syntax
DInput '('

[Signal ':='] < variable (VAR) of signaladi > ')'

A function with a return value of the data type dionum.

Related information

SeeFor information about

Technical reference manual - RAPID Overview, sec-
tion RAPID Summary - Input and Output Signals

Input/Output instructions

Technical reference manual - RAPID Overview, sec-
tion Motion and I/O Principles - I/O principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 1231
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.57 DInput - Reads the value of a digital input signal

RobotWare - OS
Continued

2.58 Distance - Distance between two points

Usage
Distance is used to calculate the distance between two points in the space.

Basic examples
The following example illustrates the function Distance.

Example 1

xx0500002321

VAR num dist;

CONST pos p1 := [4,0,4];

CONST pos p2 := [-4,4,4];

...

dist := Distance(p1, p2);

The distance in space between the points p1 and p2 is calculated and stored in
the variable dist.

Return value
Data type: num
The distance (always positive) in mm between the points.

Arguments
Distance (Point1 Point2)

Point1

Data type: pos
The first point described by the pos data type.

Point2

Data type: pos
The second point described by the pos data type.

Continues on next page
1232 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.58 Distance - Distance between two points
RobotWare - OS

Program execution
Calculation of the distance between the two points:

xx0500002322

xx0500002323

Syntax
Distance '('

[Point1 ':='] <expression (IN) of pos> ','

[Point2 ':='] <expression (IN) of pos> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, sectionRAPID Summary - Mathematics

Mathematical instructions and functions

pos - Positions (only X, Y and Z) on page1683Definition of pos

Technical reference manual - RAPID Instructions, Functions and Data types 1233
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.58 Distance - Distance between two points

RobotWare - OS
Continued

2.59 DIV - Evaluates an integer division

Usage
DIV is a conditional expression used to evaluate a division of integers.

Basic examples
The following examples illustrate the function DIV.

Example 1
reg1 := 14 DIV 4;

The return value is 3 because 14 can be divided by 4 for 3 times.

Example 2
VAR dnum mydnum1 := 10;

VAR dnum mydnum2 := 5;

VAR dnum mydnum3;

...

mydnum3 := mydnum1 DIV mydnum2;

The return value is 2 because 10 can be divided by 5 for 2 times.

Return value
Data type: num, dnum
Returns the integer, whole number, from a division of integers.

Syntax
<expression of num> DIV <expression of num>

A function with a return value of data type num.
<expression of dnum> DIV <expression of dnum>

A function with a return value of data type dnum.

Related information

SeeFor information about

num - Numeric values on page 1666num - Numeric values

dnum - Double numeric values on page 1611dnum - Double numeric values

MOD - Evaluates an integermodulo on page1339MOD

Technical reference manual - RAPID OverviewExpressions

1234 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.59 DIV - Evaluates an integer division
RobotWare - OS

2.60 DnumToNum - Converts dnum to num

Usage
DnumToNum converts a dnum to a num if possible, otherwise it generates a
recoverable error.

Basic examples
The following example illustrates the function DnumToNum.

Example 1
VAR num mynum:=0;

VAR dnum mydnum:=8388607;

VAR dnum testFloat:=8388609;

VAR dnum anotherdnum:=4294967295;

! Works OK

mynum:=DnumToNum(mydnum);

! Accept floating point value

mynum:=DnumToNum(testFloat);

! Cause error recovery error

mynum:=DnumToNum(anotherdnum \Integer);

The dnum value 8388607 is returned by the function as the num value 8388607.
The dnum value 8388609 is returned by the function as the num value
8.38861E+06.
The dnum value 4294967295 generates the recoverable error ERR_ARGVALERR.

Return value
Data type: num
The input dnum value can be in the range -8388607 to 8388608 and return the
same value as a num. If the \Integer switch is not used, the input dnum value
can be in the range -3.40282347E+38 to 3.40282347E+38 and the return value
might become a floating point value.

Arguments
DnumToNum (Value [\Integer])

Value

Data type: dnum
The numeric value to be converted.

[\Integer]

Data type: switch
Only integer values.
If the switch \Integer is not used, a down cast is made even if the value becomes
a floating point value. If it is used, a check is made whether the value is an integer
between -8388607 to 8388608. If the value is not in the interval, a recoverable error
is generated.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1235
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.60 DnumToNum - Converts dnum to num

RobotWare - OS

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Value is above 8388608 or below -8388607 or not an integer
(if optional argument Integer is used)

ERR_ARGVALERR

Value is above 3.40282347E+38 or below -3.40282347E+38ERR_NUM_LIMIT

Value is not an integerERR_INT_NOTVAL

Syntax
DnumToNum '('

[Value ':='] < expression (IN) of dnum >

['\' Integer ')'

A function with a return value of the data type num.

Related information

SeeFor information about

dnum - Double numeric values on page1611.Dnum data type

num - Numeric values on page 1666.Num data type

1236 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.60 DnumToNum - Converts dnum to num
RobotWare - OS
Continued

2.61 DnumToStr - Converts numeric value to string

Usage
DnumToStr (Numeric To String) is used to convert a numeric value to a string.

Basic examples
The following examples illustrate the function DnumToStr.

Example 1
VAR string str;

str := DnumToStr(0.3852138754655357,3);

The variable str is given the value "0.385".

Example 2
VAR dnum val;

val:= 0.3852138754655357;

str := DnumToStr(val, 2\Exp);

The variable str is given the value "3.85E-01".

Example 3
VAR dnum val;

val := 0.3852138754655357;

str := DnumToStr(val, 15);

The variable str is given the value "0.385213875465536".

Example 4
VAR dnum val;

val:=4294967295.385215;

str := DnumToStr(val, 4);

The variable str is given the value "4294967295.3852".

Return value
Data type: str
The numeric value converted to a string with the specified number of decimals,
with exponent if so requested. The numeric value is rounded if necessary. The
decimal point is suppressed if no decimals are included.

Arguments
DnumToStr (Val Dec [\Exp])

Val

Value
Data type: dnum
The numeric value to be converted.

Dec

Decimals
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1237
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.61 DnumToStr - Converts numeric value to string

RobotWare - OS

Number of decimals. The number of decimals must not be negative or greater than
the available precision for numeric values.
Max number of decimals that can be used is 15.

[\Exp]

Exponent
Data type: switch
To use exponent in return value.

Syntax
DnumToStr '('

[Val ':='] <expression (IN) of dnum>

[Dec ':='] <expression (IN) of num>

['\' Exp ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section RAPID summary - String func-
tions

String functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID Over-
view, section Basic characteristics - Basic
elements

String values

NumToStr - Converts numeric value to string
on page 1351

Convert a num numeric value to a string

1238 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.61 DnumToStr - Converts numeric value to string
RobotWare - OS
Continued

2.62 DotProd - Dot product of two pos vectors

Usage
DotProd (Dot Product) is used to calculate the dot (or scalar) product of two pos
vectors. The typical use is to calculate the projection of one vector upon the other
or to calculate the angle between the two vectors.

Basic examples
The following example illustrates the function DotProd.

Example 1

xx0500002449

The dot or scalar product of two vectors A and B is a scalar, which equals the
products of the magnitudes of A and B and the cosine of the angle between them.

The dot product:
• is less than or equal to the product of their magnitudes.
• can be either a positive or a negative quantity, depending on whether the

angle between them is smaller or larger then 90 degrees.
• is equal to the product of the magnitude of one vector and the projection of

the other vector upon the first one.
• is zero when the vectors are perpendicular to each other.

The vectors are described by the data type pos and the dot product by the data
type num:

VAR num dotprod;

VAR pos vector1;

VAR pos vector2;

...

...

vector1 := [1,1,1];

vector2 := [1,2,3];

dotprod := DotProd(vector1, vector2);

Return value
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1239
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.62 DotProd - Dot product of two pos vectors

RobotWare - OS

The value of the dot product of the two vectors.

Arguments
DotProd (Vector1 Vector2)

Vector1

Data type: pos
The first vector described by the pos data type.

Vector2

Data type: pos
The second vector described by the pos data type.

Syntax
DotProd '('

[Vector1 ':='] <expression (IN) of pos>','

[Vector2 ':='] <expression (IN) of pos>

')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section RAPID summary - Mathematics

Mathematical instructions and functions

1240 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.62 DotProd - Dot product of two pos vectors
RobotWare - OS
Continued

2.63 DOutput - Reads the value of a digital output signal

Usage
DOutput is used to read the current value of a digital output signal.

Note

Note that the function DOutput is a legacy function that no longer has to be
used. See the examples for an alternative and recommendedway of programming.

Basic examples
The following example illustrates the function DOutput.
See also More examples on page 1242.

Example 1
IF DOutput(do2) = 1 THEN ...

...

IF do2 = 1 THEN ...

If the current value of the signal do2 is equal to 1, then ...

Return value
Data type: dionum
The current value of the signal (0 or 1).

Arguments
DOutput (Signal)

Signal

Data type: signaldo
The name of the signal to be read.

Program execution
The value read depends on the configuration of the signal. If the signal is inverted
in the system parameters then the value returned by this function is the opposite
of the true value of the physical channel.

Error handling
The following recoverable errors can be generated. The errors can be handled in
an ERROR handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

If there is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1241
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.63 DOutput - Reads the value of a digital output signal

RobotWare - OS

More examples
More examples of the function DOutput are illustrated below.

Example 1
IF DOutput(auto_on) <> active THEN ...

...

IF auto_on <> active THEN ...

If the current value of the system signal auto_on is not active then ..., that
is, if the robot is in the manual operating mode, then ...

Note

The signal must first be defined as a system output in the system parameters.

Syntax
DOutput '('

[Signal ':='] < variable (VAR) of signaldo > ')'

A function with a return value of the data type dionum.

Related information

SeeFor information about

SetDO - Changes the value of a digital output signal
on page 695

Set a digital output signal

Technical reference manual - RAPID Overview,
section RAPID Summary - Input and Output Signals

Input/Output instructions

Technical reference manual - RAPID Overview,
section Motion and I/O Principles - I/O Principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

1242 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.63 DOutput - Reads the value of a digital output signal
RobotWare - OS
Continued

2.64 EGMGetState - Gets the current EGM state

Usage
EGMGetState retrieves the state of an EGM process (EGMid).

Basic examples
VAR egmident egmID1;

VAR egmstate egmState1:= EGM_STATE_DISCONNECTED;

EGMGetId egmID1;

egmState1 := EGMGetState(egmID1);

Return value
Data type: egmstate
The current state of the EGM process identified by the EGM identity specified in
the argument.

Arguments
EGMGetState (EGMid)

EGMid

Data type: egmident
EGM identity.

Limitations
• EGMGetState can only be used in RAPID motion tasks.
• The mechanical unit has to be a TCP robot.

Syntax
EGMGetState '('

[EGMid ':='] < variable (VAR) of egmident >')'

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

Technical reference manual - RAPID Instructions, Functions and Data types 1243
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.64 EGMGetState - Gets the current EGM state

Externally Guided Motion

2.65 EulerZYX - Gets euler angles from orient

Usage
EulerZYX (Euler ZYX rotations) is used to get an Euler angle component from an
orient type variable.

Basic examples
The following example illustrates the function EulerZYX.

Example 1
VAR num anglex;

VAR num angley;

VAR num anglez;

VAR pose object;

...

...

anglex := EulerZYX(\X, object.rot);

angley := EulerZYX(\Y, object.rot);

anglez := EulerZYX(\Z, object.rot);

Return value
Data type: num
The corresponding Euler angle, expressed in degrees, range from [-180, 180].

Arguments
EulerZYX ([\X] | [\Y] | [\Z] Rotation)

[\X]

Data type: switch
Gets the rotation around the X axis.

[\Y]

Data type: switch
Gets the rotation around the Y axis.

[\Z]

Data type: switch
Gets the rotation around the Z axis.
Note!
The arguments \X, \Y, and \Z are mutually exclusive. If none of these are specified
then a run-time error is generated.

Rotation

Data type: orient
The rotation in its quaternion representation.

Continues on next page
1244 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.65 EulerZYX - Gets euler angles from orient
RobotWare - OS

Syntax
EulerZYX '('

['\' X ','] | ['\' Y ','] | ['\' Z ',']

[Rotation ':='] <expression (IN) of orient> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, sectionRAPID summary - Mathematics

Mathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1245
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.65 EulerZYX - Gets euler angles from orient

RobotWare - OS
Continued

2.66 EventType - Get current event type inside any event routine

Usage
EventType can be used in any event routine and then returns the current executed
event type.
If EventType is called from any program task routine then EventType always
returns 0 meaning EVENT_NONE.

Basic examples
The following example illustrates the function EventType.

Example 1
TEST EventType()

CASE EVENT_NONE:

! Not executing any event

CASE EVENT_POWERON:

! Executing POWER ON event

CASE EVENT_START:

! Executing START event

CASE EVENT_STOP:

! Executing STOP event

CASE EVENT_QSTOP:

! Executing QSTOP event

CASE EVENT_RESTART:

! Executing RESTART event

CASE EVENT_RESET:

! Executing RESET event

CASE EVENT_STEP:

! Executing STEP event

ENDTEST

Use of function EventType inside any event routine to find out which system event,
if any, is executing now.

Return value
Data type: event_type
The current executed event type 1 ... 7, or 0 if no event routine is executed.

Predefined data
The following predefined symbolic constants of type event_type can be used to
check the return value:

CONST event_type EVENT_NONE := 0;

CONST event_type EVENT_POWERON := 1;

CONST event_type EVENT_START := 2;

CONST event_type EVENT_STOP := 3;

CONST event_type EVENT_QSTOP:= 4;

CONST event_type EVENT_RESTART := 5;

CONST event_type EVENT_RESET := 6;

CONST event_type EVENT_STEP := 7;

Continues on next page
1246 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.66 EventType - Get current event type inside any event routine
RobotWare - OS

Syntax
EventType '(' ')'

A function with a return value of the data type event_type.

Related information

SeeFor information about

Technical referencemanual - System paramet-
ers, section Controller - Event Routine

Event routines in general

event_type - Event routine type on page 1631Data type event_type, predefined constants

Technical reference manual - RAPID Instructions, Functions and Data types 1247
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.66 EventType - Get current event type inside any event routine

RobotWare - OS
Continued

2.67 ExecHandler - Get type of execution handler

Usage
ExecHandler can be used to find out if the actual RAPID code is executed in any
RAPID program routine handler.

Basic examples
The following example illustrates the function ExecHandler.

Example 1
TEST ExecHandler()

CASE HANDLER_NONE:

! Not executing in any routine handler

CASE HANDLER_BWD:

! Executing in routine BACKWARD handler

CASE HANDLER_ERR:

! Executing in routine ERROR handler

CASE HANDLER_UNDO:

! Executing in routine UNDO handler

ENDTEST

Use of function ExecHandler to find out if the code is executing in some type
of routine handler or not.
HANDLER_ERR will be returned even if the call is executed in a submethod to the
error handler.

Return value
Data type: handler_type
The current executed handler type 1 ... 3, or 0 if not executing in any routine handler.

Predefined data
The following predefined symbolic constants of type handler_type can be used
to check the return value:

CONST handler_type HANDLER_NONE := 0;

CONST handler_type HANDLER_BWD := 1;

CONST handler_type HANDLER_ERR := 2;

CONST handler_type HANDLER_UNDO := 3;

Syntax
ExecHandler '(' ')'

A function with a return value of the data type handler_type.

Related information

SeeFor information about

handler_type - Type of execution handler on
page 1638

Type of execution handler

1248 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.67 ExecHandler - Get type of execution handler
RobotWare - OS

2.68 ExecLevel - Get execution level

Usage
ExecLevel can be used to find out current execution level for the RAPID code
that currently is executed.

Basic examples
The following example illustrates the function ExecLevel.

Example 1
TEST ExecLevel()

CASE LEVEL_NORMAL:

! Execute on base level

CASE LEVEL_TRAP:

! Execute in TRAP routine

CASE LEVEL_SERVICE:

! Execute in service, event or system input interrupt routine

ENDTEST

Use of function ExecLevel to find out the current execution level.

Return value
Data type: exec_level
The current execution level 0... 2.

Predefined data
The following predefined symbolic constants of type exec_level can be used to
check the return value:

CONST exec_level LEVEL_NORMAL := 0;

CONST exec_level LEVEL_TRAP := 1;

CONST exec_level LEVEL_SERVICE := 2;

Syntax
ExecLevel '(' ')'

A function with a return value of the data type exec_level.

Related information

SeeFor information about

exec_level - Execution level on page 1632Data type for execution level

Technical reference manual - RAPID Instructions, Functions and Data types 1249
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.68 ExecLevel - Get execution level

RobotWare - OS

2.69 Exp - Calculates the exponential value

Usage
Exp (Exponential) is used to calculate the exponential value, ex .

Basic examples
The following example illustrates the function Exp.

Example 1
VAR num x;

VAR num value;

...

value:= Exp(x);

value will get the exponential value of x.

Return value
Data type: num
The exponential value ex .

Arguments
Exp (Exponent)

Exponent

Data type: num
The exponent argument value.

Syntax
Exp '('

[Exponent ':='] <expression (IN) of num> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverview,
section RAPID Summary - Mathematics

Mathematical instructions and functions

1250 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.69 Exp - Calculates the exponential value
RobotWare - OS

2.70 FileSize - Retrieve the size of a file

Usage
FileSize is used to retrieve the size of the specified file.

Basic examples
The following example illustrates the function FileSize.
See also More examples on page 1251.

Example 1
PROC listfile(string filename)

VAR num size;

size := FileSize(filename);

TPWrite filename+" size: "+NumToStr(size,0)+" Bytes";

ENDPROC

This procedure prints out the name of specified file together with a size specification.

Return value
Data type: num
The size in bytes.

Arguments
FileSize (Path)

Path

Data type: string
The file name specified with full or relative path.

Program execution
This function returns a numeric that specifies the size in bytes of the specified file.
It is also possible to get the same information about a directory.

More examples
Basic example of the function is illustrated below.

Example 1
This example lists all files bigger than 1KByte under the "HOME:" directory structure,
including all subdirectories.

PROC searchdir(string dirname, string actionproc)

VAR dir directory;

VAR string filename;

IF IsFile(dirname \Directory) THEN

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

! .. and . is the parent and resp. this directory

IF filename <> ".." AND filename <> "." THEN

searchdir dirname+"/"+filename, actionproc;

ENDIF

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1251
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.70 FileSize - Retrieve the size of a file

RobotWare - OS

ENDWHILE

CloseDir directory;

ELSE

%actionproc% dirname;

ENDIF

ERROR

RAISE;

ENDPROC

PROC listfile(string filename)

IF FileSize(filename) > 1024 THEN

TPWrite filename;

ENDIF

ENDPROC

PROC main()

! Execute the listfile routine for all files found under the

! tree of HOME:

searchdir "HOME:","listfile";

ENDPROC

This program traverses the directory structure under "HOME:" and for each file
found it calls the listfile procedure. The searchdir is a generic part that knows
nothing about the start of the search or which routine should be called for each
file. It uses IsFile to check whether it has found a subdirectory or a file and it
uses the late binding mechanism to call the procedure specified in actionproc
for all files found. The actionproc routine listfile checks whether the file is
bigger than 1KBytes.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The file does not exist.ERR_FILEACC

Syntax
FileSize '('

[Path ':='] < expression (IN) of string> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

MakeDir - Create a new directory on page 372Make a directory

RemoveDir - Delete a directory on page 595Remove a directory

RenameFile - Rename a file on page 600Rename a file

RemoveFile - Delete a file on page 597Remove a file

CopyFile - Copy a file on page 155Copy a file

Continues on next page
1252 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.70 FileSize - Retrieve the size of a file
RobotWare - OS
Continued

SeeFor information about

IsFile - Check the type of a file on page 1314Check file type

FSSize - Retrieve the size of a file system on page 1257Check file system size

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1253
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.70 FileSize - Retrieve the size of a file

RobotWare - OS
Continued

2.71 FileTimeDnum - Retrieve time information about a file

Usage
FileTimeDnum is used to retrieve the last time for modification, access or file
status change of a file. The time is measured in seconds since 00:00:00 GMT, Jan.
1 1970. The time is returned as a dnum and optionally also in a stringdig.

Basic example
The following example illustrates the function FileTimeDnum.
See also More examples on page 1255.

Example 1
IF FileTimeDnum ("HOME:/mymod.mod" \ModifyTime) > ModTimeDnum

("mymod") THEN

UnLoad "HOME:/mymod.mod";

Load \Dynamic, "HOME:/mymod.mod";

ENDIF

This program reloads amodule if the source file is newer. It uses the ModTimeDnum
to retrieve the latest modify time for the specified module, and compares it to the
FileTimeDnum ("HOME:/mymod.mod" \ModifyTime) at the source. Then, if
the source is newer, the program unloads and loads the module again.

Return value
Data type: dnum
The time measured in seconds since 00:00:00 GMT, Jan. 1 1970.

Arguments
FileTimeDnum (Path [\ModifyTime] | [\AccessTime] | [\StatCTime]

[\StrDig])

Path

Data type: string
The file specified with a full or relative path.

[\ModifyTime]

Data type: switch
Last modification time.

[\AccessTime]

Data type: switch
Time of last access (read, execute of modify).

[\StatCTime]

Data type: switch
Last file status (access qualification) change time.

[\StrDig]

String Digit

Continues on next page
1254 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.71 FileTimeDnum - Retrieve time information about a file

Data type: stringdig
To get the file time in a stringdig representation.

Program execution
This function returns a numeric that specifies the time since the last:

• Modification
• Access
• File status change

of the specified file.
It is also possible to get the same information about a directory.

More examples
More examples of the function FileTimeDnum are illustrated below.
This is a complete example that implements an alert service for maximum 10 files.

LOCAL RECORD falert

string filename;

dnum ftime;

ENDRECORD

LOCAL VAR falert myfiles[10];

LOCAL VAR num currentpos:=0;

LOCAL VAR intnum timeint;

PROC alertInit(num freq)

currentpos:=0;

CONNECT timeint WITH mytrap;

ITimer freq,timeint;

ENDPROC

LOCAL TRAP mytrap

VAR num pos:=1;

WHILE pos <= currentpos DO

IF FileTimeDnum(myfiles{pos}.filename \ModifyTime) >
myfiles{pos}.ftime THEN

TPWrite "The file "+myfiles{pos}.filename+" is changed";

ENDIF

pos := pos+1;

ENDWHILE

ENDTRAP

PROC alertNew(string filename)

currentpos := currentpos+1;

IF currentpos <= 10 THEN

myfiles{currentpos}.filename := filename;

myfiles{currentpos}.ftime := FileTimeDnum (filename
\ModifyTime);

ENDIF

ENDPROC

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1255
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.71 FileTimeDnum - Retrieve time information about a file

Continued

PROC alertFree()

IDelete timeint;

ENDPROC

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The file does not exist.ERR_FILEACC

Syntax
FileTimeDnum '('

[Path ':='] < expression (IN) of string>

['\' ModifyTime] |

['\' AccessTime] |

['\' StatCTime]

['\' StrDig ':=' < variable (VAR) of stringdig>] ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

ModTimeDnum - Get file modify time for the
loaded module on page 1341

Last modify time of a loaded module

stringdig - String with only digits on page1730String with only digits

StrDigCmp - Compare two strings with only
digits on page 1451

Compare two strings with only digits

1256 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.71 FileTimeDnum - Retrieve time information about a file
Continued

2.72 FSSize - Retrieve the size of a file system

Usage
FSSize (File System Size) is used to retrieve the size of the file system in which
a specified file resides. The size in bytes, kilo bytes or mega bytes are returned
as a num.

Basic example
The following example illustrates the function FSSize.
See also More examples on page 1258.

Example 1
PROC main()

VAR num totalfsyssize;

VAR num freefsyssize;

freefsyssize := FSSize("HOME:/spy.log" \Free);

totalfsyssize := FSSize("HOME:/spy.log" \Total);

TPWrite NumToStr(((totalfsyssize -
freefsyssize)/totalfsyssize)*100,0) +" percent used";

ENDPROC

This procedure prints out the amount of disk space used on the HOME: file system
(flash disk /hd0a/) as a percentage.

Return value
Data type: num
The size in bytes.

Arguments
FSSize (Name [\Total] | [\Free] [\Kbyte] [\Mbyte])

Name

Data type: string
The name of a file in the file system, specified with full or relative path.

[\Total]

Data type: switch
Retrieves the total amount of space in the file system.

[\Free]

Data type: switch
Retrieves the amount of free space in the file system.

[\Kbyte]

Data type: switch
Convert the number of bytes read to kilobytes, for example, divide the size with
1024.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1257
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.72 FSSize - Retrieve the size of a file system

RobotWare - OS

[\Mbyte]

Data type: switch
Convert the number of bytes read to megabytes, for example, divide the size with
1048576 (1024*1024).

Program execution
This function returns a numeric that specifies the size of the file system in which
the specified file resides.

More examples
More examples of the function FSSize are illustrated below.

Example 1
LOCAL VAR intnum timeint;

LOCAL TRAP mytrap

IF FSSize("HOME:/spy.log" \Free)/FSSize("HOME:/spy.log" \Total)
<= 0.1 THEN

TPWrite "The disk is almost full";

alertFree;

ENDIF

ENDTRAP

PROC alertInit(num freq)

CONNECT timeint WITH mytrap;

ITimer freq,timeint;

ENDPROC

PROC alertFree()

IDelete timeint;

ENDPROC

This is a complete example for implementing an alert service that prints a warning
on the FlexPendant when the remaining free space in the "HOME:" file system is
less than 10%.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The file system does not existERR_FILEACC

The size exceeds the max integer value for a num, 8388608ERR_FILESIZE

Syntax
FSSize '('

[Name ':='] < expression (IN) of string>

['\' Total] | ['\' Free]

['\' Kbyte]

['\' Mbyte] ')'

Continues on next page
1258 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.72 FSSize - Retrieve the size of a file system
RobotWare - OS
Continued

A function with a return value of the data type num.

Related information

SeeFor information about

MakeDir - Create a new directory on page 372Make a directory

RemoveDir - Delete a directory on page 595Remove a directory

RenameFile - Rename a file on page 600Rename a file

RemoveFile - Delete a file on page 597Remove a file

CopyFile - Copy a file on page 155Copy a file

IsFile - Check the type of a file on page 1314Check file type

FileSize - Retrieve the size of a file on page1251Check file size

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1259
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.72 FSSize - Retrieve the size of a file system

RobotWare - OS
Continued

2.73 GetAxisDistance - Get the traversed distance counter of the axis

Usage
GetAxisDistance is used to read the current distance the axis has been moving
since the last reset. If the axis is rotational the distance will be in degrees and if
the axis is linear the distance will be in meters.

Basic examples
The following examples illustrate the function GetAxisDistance.

Example 1
PERS dnum distance;

distance := GetAxisDistance(Track,1);

The total distance that axis 1 on mechanical unit Track has been moving since
the last reset is stored in distance.

Example 2
PERS dnum distanceLimit := 1000;

PERS dnum remaining;

remaining := distanceLimit – GetAxisDistance(Track,1);

The remaining distance for axis 1 onmechanical unit Track is stored in remaining.

Return value
Data type: dnum
The return value is the distance, in meters or degrees, that the axis has moved
since the last reset.

Arguments
GetAxisDistance (MechUnit AxisNo)

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

AxisNo

Data type: num
The number of the axis for which the traversed distance is to be read.

Syntax
GetAxisDistance '('

[MechUnit ':='] < variable (VAR) of mecunit > ','

[AxisNo ':='] < variable (VAR) of num > ')'

A function with a return value of the data type dnum.

Continues on next page
1260 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.73 GetAxisDistance - Get the traversed distance counter of the axis

Related information

SeeFor information about

ResetAxisDistance - Reset the traversed distance
information for the axis on page 604

ResetAxisDistance

ResetAxisMoveTime - Reset the move time
counter of the axis on page 606

ResetAxisMoveTime

GetAxisMoveTime - Get the move time counter
of the axis on page 1262

GetAxisMoveTime

Technical reference manual - RAPID Instructions, Functions and Data types 1261
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.73 GetAxisDistance - Get the traversed distance counter of the axis

Continued

2.74 GetAxisMoveTime - Get the move time counter of the axis

Usage
GetAxisMoveTime is used to read the current amount of time the axis has been
moving since the last reset.

Basic examples
The following examples illustrate the function GetAxisMoveTime.

Example 1
PERS dnum movetime;

movetime := GetAxisMoveTime(Track,1);

The total amount of time that axis 1 on mechanical unit Track has been moving
since the last reset is stored in movetime.

Example 2
PERS dnum timeLimit := 1000;

PERS dnum remaining;

remaining := timeLimit – GetAxisMoveTime(Track,1);

The remaining time for axis 1 on mechanical unit Track is stored in remaining.

Return value
Data type: dnum
The return value is the total amount of time in hours that the axis has been moving
since the last reset.

Arguments
GetAxisMoveTime (MechUnit AxisNo)

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

AxisNo

Data type: num
The number of the axis for which the move time is to be read.

Syntax
GetAxisMoveTime '('

[MechUnit ':='] < variable (VAR) of mecunit > ','

[AxisNo ':='] < variable (VAR) of num > ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

ResetAxisDistance - Reset the traversed distance
information for the axis on page 604

ResetAxisDistance

Continues on next page
1262 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.74 GetAxisMoveTime - Get the move time counter of the axis

SeeFor information about

ResetAxisMoveTime - Reset the move time
counter of the axis on page 606

ResetAxisMoveTime

GetAxisDistance - Get the traversed distance
counter of the axis on page 1260

GetAxisDistance

Technical reference manual - RAPID Instructions, Functions and Data types 1263
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.74 GetAxisMoveTime - Get the move time counter of the axis

Continued

2.75 GetMaxNumberOfCyclicBool - Get the maximum number of Cyclic bool
conditions

Usage
GetMaxNumberOfCyclicBool is used for retrieving the maximum number of
Cyclic bool conditions that can be connected at the same time.

Basic examples
The following example illustrates the function GetMaxNumberOfCyclicBool.

Example 1
VAR num maxno := 0;

maxno := GetMaxNumberOfCyclicBool();

TPWrite "Maximum cyclic bool: " \Num:=maxno;

The maximum number of Cyclic bool conditions is displayed on the FlexPendant.

Return value
Data type: num

Syntax
GetMaxNumberOfCyclicBool '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

SetupCyclicBool - Setup a Cyclic bool condition
on page 706

Setup a Cyclic bool condition

RemoveCyclicBool - Remove a Cyclic bool con-
dition on page 593

Remove a Cyclic bool condition

RemoveAllCyclicBool - Remove all Cyclic bool
conditions on page 591

Remove all Cyclic bool conditions

Application manual - Controller software IRC5Cyclically evaluated logical conditions,
Cyclic bool.

Technical referencemanual - System parametersConfiguring Cyclic bool.

1264 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.75 GetMaxNumberOfCyclicBool - Get the maximum number of Cyclic bool conditions
RobotWare - OS

2.76 GetMecUnitName - Get the name of the mechanical unit

Usage
GetMecUnitName is used to get the name of a mechanical unit with one of the
installed mechanical units as the argument. This function returns the mechanical
units name as a string.

Basic examples
The following example illustrates the function GetMecUnitName.

Example 1
VAR string mecname;

mecname:= GetMecUnitName(ROB1);

mecname is assigned the value "ROB1" as a string. All mechanical units (data
type mecunit) such as ROB1 are predefined in the system.

Return value
Data type: string
The return value will be the mechanical unit name as a string.

Arguments
GetMecUnitName (MechUnit)

MechUnit

Mechanical Unit
Data type: mecunit
MechUnit takes one of the predefinedmechanical units found in the configuration.

Syntax
GetMecUnitName '('

[MechUnit ':='] < variable (VAR) of mecunit > ')'

A function with a return value of the data type string.

Related information

SeeFor information about

mecunit - Mechanical unit on page 1658Mechanical unit

Technical reference manual - RAPID Instructions, Functions and Data types 1265
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.76 GetMecUnitName - Get the name of the mechanical unit

RobotWare - OS

2.77 GetModalPayLoadMode - Get the ModalPayLoadMode value

Usage
GetModalPayLoadMode is used to get the ModalPayLoadMode.

Basic examples
The following example illustrates the function GetModalPayLoadMode.

Example 1
IF GetModalPayloadMode() = 1 THEN

GripLoad piece1;

MoveL p1, v1000, fine, gripper;

ELSE

MoveL p1, v1000, fine, tool2 \TLoad:=gripperpiece1;

ENDIF

Read the ModalPayLoadMode value from the system and depending on value,
use different code to specify the load used in the movement instruction.

Return value
Data type: num
The return value will be the ModalPayLoadMode setting as a num.

Syntax
GetModalPayloadMode '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - System parametersSystem parameter ModalPayLoad-
Mode for activating and deactivating
payload.
(Topic Controller, Type General RAP-
ID, Action values, ModalPayLoad-
Mode)

MoveL - Moves the robot linearly on page 457Using payload in motion instructions.

1266 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.77 GetModalPayLoadMode - Get the ModalPayLoadMode value
RobotWare - OS

2.78 GetMotorTorque - Reads the current motor torque

Usage
GetMotorTorque is used to read the current torque of the robot and external axes
motors.
GetMotorTorque is primarily used to detect if a servo gripper holds a load or not.

Basic examples
The following example illustrates the function GetMotorTorque.
See also More examples on page 1268.

Example 1
VAR num motor_torque2;

motor_torque2 := GetMotorTorque(2);

The current motor torque of the second axis of the robot is stored in
motor_torque2.

Return value
Data type: num
The current motor torque in newton metre (Nm) of the stated axis of the robot or
external axes.

Arguments
GetMotorTorque [\MecUnit] AxisNo

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit for which an axis is to be read. If this argument
is omitted, the axis for the connected robot is read.

AxisNo

Data type: num
The number of the axis to be read (1 - 6).

Program execution
The function reads the current filtered motor torque applied on the motors of the
robot and external axes.
The motor torque value can also be seen as test signal number 2000 when using
TuneMaster.

Limitations
The result of GetMotorTorque will vary depending on the gear friction, motor
temperature etc. Twomeasurements in the same position can differ. As an example
gearbox temperature can change the friction and thus the result.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1267
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.78 GetMotorTorque - Reads the current motor torque

RobotWare - OS

The limitations described above canmake it impossible to detect very small changes
in the torque.
It is only possible to read the current torque for the mechanical units that are
controlled from current program task. For a non-motion task, it is possible to read
the torque for the mechanical units controlled by the connected motion task.

More examples
The following examples illustrates the function GetMotorTorque.

Example 1
VAR num torque_value;

torque_value := GetMotorTorque(\MecUnit:=STN1, 1);

The current motor torque of the first axis of STN1 is stored in torque_value.

Example 2
VAR num pre_grip_torque;

VAR num post_grip_torque;

..

MoveJ p10, v1000, fine, Gripper;

! Read the torque for axis 5 before gripping the piece

pre_grip_torque:=GetMotorTorque(5);

! Grip the piece

grip_piece;

! Read the torque for axis 5 after gripping the piece

post_grip_torque:=GetMotorTorque(5);

! Compare torque for axis 5 before and after gripping the piece

piece_gripped:=check_gripped_piece(pre_grip_torque,
post_grip_torque);

IF piece_gripped = TRUE THEN

GripLoad piece1;

ELSE

TPWrite "Failed to grip the piece";

Stop;

ENDIF

..

The current motor torque of axis 5 of the robot is read before gripping the piece.
The piece is then gripped. The torque is read once again and the torques are
compared to detect if there is an actual extra load in the gripper.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Parameter axis in function is wrong.ERR_AXIS_PAR

Syntax
GetMotorTorque '('

['\' MecUnit ':=' < variable (VAR) of mecunit> ',']

[AxisNo ':='] < expression (IN) of num> ')'

Continues on next page
1268 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.78 GetMotorTorque - Reads the current motor torque
RobotWare - OS
Continued

A function with a return value of the data type num.

Related information

SeeFor information about

ReadMotor - Reads the current motor angles
on page 1397

Reads the current motor angles

Technical reference manual - RAPID Instructions, Functions and Data types 1269
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.78 GetMotorTorque - Reads the current motor torque

RobotWare - OS
Continued

2.79 GetNextCyclicBool - Get the names of all Cyclic bools

Usage
GetNextCyclicBool is used for retrieving the names of all Cyclic bools.

Basic examples
The following examples illustrates the function GetNextCyclicBool.

Example 1
VAR num listno := 0;

VAR string name;

...

WHILE GetNextCyclicBool(listno, name) DO

TPWrite "Cyclic bool: "+name;

! listno := listno + 1 is done by GetNextCyclicBool

ENDWHILE

The names of all connected Cyclic bools in the system will be displayed on the
FlexPendant.

Example 2
PERS bool cyclicflag1;

TASK PERS bool cyclicflag2;

PROC main()

SetupCyclicBool cyclicflag1, di1=1 AND do2=1;

SetupCyclicBool cyclicflag2, di3=1 AND do4=0;

WHILE GetNextCyclicBool(listno, name) DO

TPWrite name;

! listno := listno + 1 is done by GetNextCyclicBool

ENDWHILE

...

cyclicflag1 and T_ROB1/cyclicflag1 will be displayed on the FlexPendant
if the RAPID code is executed in T_ROB1 RAPID task.

Return value
Data type: bool
The return value is TRUE if a Cyclic bool name was found, otherwise FALSE.

Arguments
GetNextCyclicBool(ListNumber Name)

ListNumber

Data type: num
This specifies which Cyclic bool in the system internal list of Cyclic bool names
that should be retrieved. At return, this variable is always incremented by one by
the system to make it easy to access the next Cyclic bool name in the list. The first
Cyclic bool name in the list has index 0.

Continues on next page
1270 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.79 GetNextCyclicBool - Get the names of all Cyclic bools
RobotWare - OS

Name

Data type: string
The name of the Cyclic bool persistent variable. If the persistent variable is defined
as a TASK PERS, the name retrievedwill be "TASK name/persistent boolean variable
name".

Syntax
GetNextCyclicBool '('

[ListNumber ':='] < variable (VAR) of num> ','

[Name ':='] < variable (VAR) of string>

’)’

A function with a return value of the data type bool.

Related information

SeeFor information about

IsCyclicBool - Checks if a persistent variable is
a Cyclic bool on page 1311

Check if a persistent variable is a Cyclic
bool

SetupCyclicBool - Setup a Cyclic bool condition
on page 706

Setup a Cyclic bool condition

RemoveCyclicBool - Remove a Cyclic bool con-
dition on page 593

Remove a Cyclic bool condition

RemoveAllCyclicBool - Remove all Cyclic bool
conditions on page 591

Remove all Cyclic bool conditions

Application manual - Controller software IRC5Cyclically evaluated logical conditions,
Cyclic bool.

Technical referencemanual - System parametersConfiguring Cyclic bool.

Technical reference manual - RAPID Instructions, Functions and Data types 1271
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.79 GetNextCyclicBool - Get the names of all Cyclic bools

RobotWare - OS
Continued

2.80 GetNextMechUnit - Get name and data for mechanical units

Usage
GetNextMechUnit (Get Next Mechanical Unit) is used for retrieving the name of
mechanical units in the robot system. Besides the mechanical unit name, several
optional properties of the mechanical unit can be retrieved.

Basic examples
The following example illustrates the function GetNextMechUnit.
See also More examples on page 1273.

Example 1
VAR num listno := 0;

VAR string name := "";

TPWrite "List of mechanical units:";

WHILE GetNextMechUnit(listno, name) DO

TPWrite name;

! listno := listno + 1 is done by GetNextMechUnit

ENDWHILE

The name of all mechanical units available in the system, will be displayed on the
FlexPendant.

Return value
Data type: bool
TRUE if a mechanical unit was found, otherwise FALSE.

Arguments
GetNextMechUnit(ListNumber UnitName [\MecRef] [\TCPRob] [\NoOfAxes]

[\MecTaskNo] [\MotPlanNo] [\Active] [\DriveModule]
[\OKToDeact])

ListNumber

Data type: num
This specifies which items in the system internal list of mechanical units are to be
retrieved. At return, this variable is always incremented by one by the system to
make it easy to access the next unit in the list. The first mechanical unit in the list
has index 0.

UnitName

Data type: string
The name of the mechanical unit.

[\MecRef]

Data type: mecunit
The system reference to the mechanical unit.

[\TCPRob]

Data type: bool
Continues on next page
1272 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.80 GetNextMechUnit - Get name and data for mechanical units
RobotWare - OS

TRUE if the mechanical unit is a TCP robot, otherwise FALSE.

[\NoOfAxes]

Data type: num
Number of axes for the mechanical unit. Integer value.

[\MecTaskNo]

Data type: num
The program task number that controls the mechanical unit. Integer value in range
1-20. If not controlling by any program task, -1 is returned.
This actual connection is defined in the system parameters domain controller (can
in some application be redefined at runtime).

[\MotPlanNo]

Data type: num
The motion planner number that controls the mechanical unit. Integer value in
range 1-6. If not controlling by any motion planner, -1 is returned.
This connection is defined in the system parameters domain controller.

[\Active]

Data type: bool
TRUE if the mechanical unit is active, otherwise FALSE.

[\DriveModule]

Data type: num
The Drive Module number 1 - 4 used by this mechanical unit.

[\OKToDeact]

Data type: bool
Return TRUE, if allowed to deactivate the mechanical unit from RAPID program.

More examples
More examples of the instruction GetNextMechUnit are illustrated below.

Example 1
VAR num listno := 4;

VAR string name := "";

VAR bool found := FALSE;

found := GetNextMechUnit (listno, name);

If found is set to TRUE, the name of mechanical unit number 4will be in the variable
name, else name contains only an empty string.

Syntax
GetNextMechUnit '('

[ListNumber ':='] < variable (VAR) of num> ','

[UnitName ':='] < variable (VAR) of string> ','

['\' MecRef ':=' < variable (VAR) of mecunit>]

['\' TCPRob ':=' < variable (VAR) of bool>]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1273
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.80 GetNextMechUnit - Get name and data for mechanical units

RobotWare - OS
Continued

['\' NoOfAxes ':=' < variable (VAR) of num>]

['\' MecTaskNo ':=' < variable (VAR) of num>]

['\' MotPlanNo ':=' < variable (VAR) of num>]

['\' Active ':=' < variable (VAR) of bool>]

['\' DriveModule ':=' < variable (VAR) of num>]

['\' OKToDeact ':=' < variable (VAR) of bool>]

’)’

A function with a return value of the data type bool.

Related information

SeeFor information about

mecunit - Mechanical unit on page 1658Mechanical unit

ActUnit - Activates a mechanical unit on
page 26

Activating/Deactivating mechanical units

DeactUnit - Deactivates a mechanical unit on
page 172

Technical reference manual - RAPID Over-
view, section Basic Characteristics - Data
types

Characteristics of non-value data types

1274 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.80 GetNextMechUnit - Get name and data for mechanical units
RobotWare - OS
Continued

2.81 GetNextSym - Get next matching symbol

Usage
GetNextSym (Get Next Symbol) is used together with SetDataSearch to retrieve
data objects from the system.

Basic examples
The following example illustrates the function GetNextSym.

Example 1
VAR datapos block;

VAR string name;

VAR bool truevar:=TRUE;

...

SetDataSearch "bool" \Object:="my.*" \InMod:="mymod"\LocalSym;

WHILE GetNextSym(name,block) DO

SetDataVal name\Block:=block,truevar;

ENDWHILE

This session will set all local bool data objects that begin with my in the module
mymod to TRUE.

Return value
Data type: bool
TRUE if a new object has been retrieved, the object name and its enclosed block
is then returned in its arguments.
FALSE if no more objects match.

Arguments
GetNextSym (Object Block [\Recursive])

Object

Data type: string
Variable (VAR or PERS) to store the name of the data object that will be retrieved.

Block

Data type: datapos
The enclosed block to the object.

[\Recursive]

Data type: switch
This will force the search to enter the block below, for example, if the search session
has begun at the task level, it will also search modules and routines below the
task.

Syntax
GetNextSym '('

[Object ':='] < variable or persistent (INOUT) of string > ','

[Block ':='] <variable (VAR) of datapos>

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1275
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.81 GetNextSym - Get next matching symbol

RobotWare - OS

['\' Recursive] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

SetDataSearch - Define the symbol set in a search
sequence on page 688

Define a symbol set in a search
session

GetDataVal - Get the value of a data object on page254Get the value of a data object

SetDataVal - Set the value of a data object on page692Set the value of a data object

SetAllDataVal - Set a value to all data objects in a
defined set on page 684

Set the value of many data objects

datapos - Enclosing block for a data object on page1608The related data type datapos

Product specification - Controller software IRC5Advanced RAPID

1276 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.81 GetNextSym - Get next matching symbol
RobotWare - OS
Continued

2.82 GetNumberOfCyclicBool - Get the number of Cyclic bool conditions

Usage
GetNumberOfCyclicBool is used for retrieving the number of connected Cyclic
bool conditions.

Basic examples
The following example illustrates the function GetNumberOfCyclicBool.

Example 1
VAR num listno := 0;

listno := GetNumberOfCyclicBool();

TPWrite "Connected Cyclic bool: " \Num:=listno;

The number of connected Cyclic bool conditions is displayed on the FlexPendant.

Return value
Data type: num

Syntax
GetNumberOfCyclicBool '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

SetupCyclicBool - Setup a Cyclic bool condition
on page 706

Setup a Cyclic bool condition

RemoveCyclicBool - Remove a Cyclic bool con-
dition on page 593

Remove a Cyclic bool condition

RemoveAllCyclicBool - Remove all Cyclic bool
conditions on page 591

Remove all Cyclic bool conditions

Application manual - Controller software IRC5Cyclically evaluated logical conditions,
Cyclic bool.

Technical referencemanual - System parametersConfiguring Cyclic bool.

Technical reference manual - RAPID Instructions, Functions and Data types 1277
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.82 GetNumberOfCyclicBool - Get the number of Cyclic bool conditions

RobotWare - OS

2.83 GetServiceInfo - Get service information from the system

Usage
GetServiceInfo is used to read service information from the system. This function
returns the service information as a string.

Basic examples
The following example illustrates the function GetServiceInfo.
See also More examples on page 1279.

Example 1
VAR string mystring;

VAR num mynum;

IF TaskRunRob() THEN

mystring:=GetServiceInfo(ROB_ID \DutyTimeCnt);

IF StrToVal(mystring, mynum) = FALSE THEN

TPWrite "Conversion failed!";

Stop;

ENDIF

ENDIF

If the task controls a robot, use the predefined variable ROB_ID to read the duty
time counter. Then convert the string value to a numeric value.

Return value
Data type: string
The value of the service information for the specified mechanical unit. Read more
about the return values in Arguments below.

Arguments
GetServiceInfo (MechUnit [\DutyTimeCnt])

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit to get information for.

[\DutyTimeCnt]

Duty Time Counter
Data type: switch
Returns the duty time counter for the mechanical unit used in argument MechUnit.
A string with "0" is returned if this option is used in the Virtual Controller.
The duty time counter is the value in hours that the mechanical unit has been in
motors on and brakes have been released.

Program execution
Service information is read for the used optional parameter.

Continues on next page
1278 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.83 GetServiceInfo - Get service information from the system
RobotWare - OS

More examples
More examples of how to use the function GetServiceInfo are illustrated below.

Example 1
VAR string mystring;

mystring:=GetServiceInfo(ROB_1 \DutyTimeCnt);

TPWrite "DutyTimeCnt for ROB_1: " + mystring;

mystring:=GetServiceInfo(ROB_2 \DutyTimeCnt);

TPWrite "DutyTimeCnt for ROB_2: " + mystring;

mystring:=GetServiceInfo(INTERCH \DutyTimeCnt);

TPWrite "DutyTimeCnt for INTERCH: " + mystring;

mystring:=GetServiceInfo(STN_1 \DutyTimeCnt);

TPWrite "DutyTimeCnt for STN_1: " + mystring;

mystring:=GetServiceInfo(STN_2 \DutyTimeCnt);

TPWrite "DutyTimeCnt for STN_2: " + mystring;

Get information about the duty time counter for all mechanical units in a multimove
system, and write the values on the FlexPendant.

Syntax
GetServiceInfo '('

[MechUnit ':='] <variable (VAR) of mecunit> ','

['\' DutyTimeCnt] ')'

A function with a return value of the data type string.

Related information

SeeFor information about

mecunit - Mechanical unit on page 1658.Mechanical unit

Technical reference manual - RAPID Instructions, Functions and Data types 1279
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.83 GetServiceInfo - Get service information from the system

RobotWare - OS
Continued

2.84 GetSignalOrigin - Get information about the origin of an I/O signal

Usage
GetSignalOrigin is used to get information about the origin of an I/O signal.

Basic examples
The following examples illustrate the function GetSignalOrigin:

Example 1
VAR signalorigin myorig;

VAR string signalname;

...

myorig:=GetSignalOrigin(mysignal, signalname);

IF myorig = SIGORIG_NONE THEN

TPWrite "Signal cannot be used. AliasIO needed.";

ELSEIF myorig = SIGORIG_CFG THEN

TPWrite "Signal "+signalname+" is defined in I/O configuration.";

ELSEIF myorig = SIGORIG_ALIAS THEN

TPWrite "Signal is declared in RAPID.";

TPWrite "Name according to the I/O configuration: "+signalname;

ENDIF

The code above can be used to determine the origin of the signal named mysignal.

Return value
Data type: signalorigin
The signalorigin as described in the table below.

CommentSymbolic constantReturn
value

The I/O signal variable is declared in RAPID and
has no alias coupling.

SIGORIG_NONE0

The signal is configured in I/O configuration.SIGORIG_CFG1

The I/O signal variable is declared in RAPID and
has an alias coupling to an I/O signal configured in
I/O configuration.

SIGORIG_ALIAS2

Arguments
GetSignalOrigin Signal SignalName

Signal

Data type: signalxx
The signal name.Must be of data type signaldo, signaldi, signalgo, signalgi,
signalao, or signalai.

SignalName

Data type: string
The signal name according to the I/O configuration, or empty string.

Continues on next page
1280 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.84 GetSignalOrigin - Get information about the origin of an I/O signal
RobotWare - OS

Program execution
The function returns one of the following predefined signal origins: SIGORIG_NONE,
SIGORIG_CFG, or SIGORIG_ALIAS.
If SIGORIG_NONE is returned, SignalName consists of an an empty string.
If SIGORIG_CFG or SIGORIG_ALIAS is returned, the argument SignalName
contains the I/O signal name according to the I/O configuration.
GetSignalOrigin can be used in generic programs to check if a signal has an
alias coupling and if it is a coupling to the right physical I/O signal.

Syntax
GetSignalOrigin

[Signal':='] < variable (VAR) of anytype > ','

[SignalName ':='] < variable (VAR) of string > ';'

Related information

SeeFor information about

Technical reference manual - RAPID OverviewInput/Output instructions

Technical reference manual - RAPID OverviewInput/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

AliasIO - Define I/O signal with alias name on page32Defining I/O signals with alias name

signalorigin - Describes the I/O signal origin on
page 1712

Data type signalorigin

Technical reference manual - RAPID Instructions, Functions and Data types 1281
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.84 GetSignalOrigin - Get information about the origin of an I/O signal

RobotWare - OS
Continued

2.85 GetSysInfo - Get information about the system

Usage
GetSysInfo is used to read information about the system. Available information
includes Serial Number, SoftWare Version, SoftWare Version Name, Robot Type,
Controller ID, WAN ip address, Controller language or System Name.

Basic examples
The following example illustrates the function GetSysInfo.

Example 1
VAR string serial;

VAR string version;

VAR string versionname;

VAR string rtype;

VAR string cid;

VAR string lanip;

VAR string clang;

VAR string sysname;

serial := GetSysInfo(\SerialNo);

version := GetSysInfo(\SWVersion);

versionname := GetSysInfo(\SWVersionName);

rtype := GetSysInfo(\RobotType);

cid := GetSysInfo(\CtrlId);

lanip := GetSysInfo(\LanIp);

clang := GetSysInfo(\CtrlLang);

sysname := GetSysInfo(\SystemName);

The serial number will be stored in the variable serial, the RobotWare version
will be stored in the variable version, the RobotWare version name will be stored
in the variable versionname, the robot number will be stored in the variable rtype,
the controller ID number will be stored in the variable cid, the WAN ip address
will be stored in the variable lanip, the controller language will be stored in the
variable clang and the name of current active system will be stored in sysname.
Examples of returned strings:
Serial number: 24-12345
Software version: ROBOTWARE_6.03.xxxx
Software version name: 6.03.00.00
Robot type: IRB 2400-16/1.5 Type A
Controller ID: MyRobot
WAN IP address: 192.168.8.103
Language: en
System name: MySystem

Return value
Data type: string

Continues on next page
1282 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.85 GetSysInfo - Get information about the system
RobotWare - OS

One of Serial Number, SoftWare Version, SoftWare Version Name, Robot Type,
Controller ID, WAN IP address, Controller Language, or System Name. Read more
about the return values in Arguments on page 1283 below.

Arguments
GetSysInfo ([\SerialNo] | [\SWVersion] | [\SWVersionName] |

[\RobotType] | [\CtrlId] | [\LanIp] | [\CtrlLang] |
[\SystemName])

One of the arguments SerialNo, SWVersion, SWVersionName, RobotType ,
CtrlId, LanIp CtrlLang or SystemName must be present.

[\SerialNo]

Serial Number
Data type: switch
Returns the serial number.

[\SWVersion]

Software Version
Data type: switch
Returns the RobotWare media version, as installed in the PRODUCTS folder.

[\SWVersionName]

Software Version Name
Data type: switch
Returns the RobotWare media version display name.

[\RobotType]

Data type: switch
Returns the robot type in the current or connected task. If the mechanical unit is
not a TCP-robot, a "-" is returned.

[\CtrlId]

Controller ID
Data type: switch
Returns the controller ID. Returns an empty string if no Controller ID is specified.
A string with "VC" is returned if this option is used in the Virtual Controller.

[\LanIp]

Lan Ip address
Data type: switch
Returns the WAN ip address for the controller. A string with "VC" is returned if this
option is used in the Virtual Controller. An empty string is returned if no WAN ip
address is configured in the system.

[\CtrlLang]

Controller Language
Data type: switch

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1283
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.85 GetSysInfo - Get information about the system

RobotWare - OS
Continued

Returns the language used on the controller.

LanguageReturn value

Czechcs

Chinese (simplified Chinese, mainland Chinese)zh

Danishda

Dutchnl

Englishen

Finnishfi

Frenchfr

Germande

Hungarianhu

Italianit

Japaneseja

Koreanko

Polishpl

Portuguese (Brazilian Portuguese)pt

Romanianro

Russianru

Sloveniansl

Spanishes

Swedishsv

Turkishtr

[\SystemName]

Data type: switch
Returns the active system name.

Syntax
GetSysInfo '('

['\'SerialNo]

| ['\' SWVersion]

| ['\' SWVersionName]

| ['\' RobotType]

| ['\' CtrlId]

| ['\' LanIp]

| ['\' CtrlLang]

| ['\' SystemName] ')'

A function with a return value of the data type string.

Related information

SeeFor information about

IsSysId - Test system identity on page 1329Test the identity of the system

1284 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.85 GetSysInfo - Get information about the system
RobotWare - OS
Continued

2.86 GetTaskName - Gets the name and number of current task

Usage
GetTaskName is used to get the identity of the current program task, with its name
and number.
It is also possible from some Non Motion Task to get the name and number of its
connected Motion Task. For MultiMove System the system parameter
Controller/Tasks/Use Mechanical Unit Group define the connected Motion Task
and in a base system the main task is always the connectedMotion Task from any
other task.

Basic examples
The following examples illustrate the function GetTaskName.

Example 1
VAR string taskname;

...

taskname := GetTaskName();

The current task name is returned in the variable taskname.

Example 2
VAR string taskname;

VAR num taskno;

...

taskname := GetTaskName(\TaskNo:=taskno);

The current task name is returned in the variable taskname. The integer identity
of the task is stored in the variable taskno.

Example 3
VAR string taskname;

VAR num taskno;

...

taskname := GetTaskName(\MecTaskNo:=taskno);

If current task is a Non Motion Task task, the name of the connected motion task
is returned in the variable taskname. The numerical identity of the connected
motion task is stored in the variable taskno.
If current task controls some mechanical units, current task name is returned in
the variable taskname. The numerical identity of the task is stored in the variable
taskno.

Return value
Data type: string
The name of the task in which the function is executed or the name of the connected
motion task.

Arguments
GetTaskName ([\TaskNo] | [\MecTaskNo])

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1285
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.86 GetTaskName - Gets the name and number of current task

RobotWare - OS

[\TaskNo]

Data type: num
Return current task name (same functionality if none of the switch \TaskNo or
\MecTaskNo is used). Also get the identity of the current task represented as a
integer value. The numbers returned will be in the range 1-20.

[\MecTaskNo]

Data type: num
Return connected motion task name or current motion task name. Also get the
identity of connected or current motion task represented as a integer value. The
numbers returned will be in the range 1-20.

Syntax
GetTaskName '('

[\TaskNo ':='] < variable (VAR) of num >

[\MecTaskNo ':='] < variable (VAR) of num > ')'

A function with a return value of the data type string.

Related information

SeeFor information about

TaskRunRob - Check if task controls some
robot on page 1473

Check if task run some TCP robot

Technical reference manual - RAPID Over-
view, sectionRAPID Overview - RAPID sum-
mary Multitasking

Multitasking

Technical reference manual - RAPID Over-
view, sectionBasic characteristics - Multitask-
ing

1286 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.86 GetTaskName - Gets the name and number of current task
RobotWare - OS
Continued

2.87 GetTime - Reads the current time as a numeric value

Usage
GetTime is used to read a specified component of the current system time as a
numeric value.
GetTime can be used to:

• have the program perform an action at a certain time
• perform certain activities on a weekday
• abstain from performing certain activities on the weekend
• respond to errors differently depending on the time of day.

Basic examples
The following example illustrates the function GetTime.
See also More examples on page 1288.

Example 1
hour := GetTime(\Hour);

The current hour is stored in the variable hour.

Return value
Data type: num
One of the four time components specified below.

Argument
GetTime ([\WDay] | [\Hour] | [\Min] | [\Sec])

[\WDay]
Data type: switch
Return the current weekday. Range: 1 to 7 (Monday to Sunday).

[\Hour]
Data type: switch
Return the current hour. Range: 0 to 23.

[\Min]
Data type: switch
Return the current minute. Range: 0 to 59.

[\Sec]
Data type: switch
Return the current second. Range: 0 to 59.
One of the arguments must be specified, otherwise program execution stops with
an error message.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1287
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.87 GetTime - Reads the current time as a numeric value

RobotWare - OS

More examples
More examples of the function GetTime are illustrated below.

Example 1
weekday := GetTime(\WDay);

hour := GetTime(\Hour);

IF weekday < 6 AND hour >6 AND hour < 16 THEN

production;

ELSE

maintenance;

ENDIF

If it is a weekday and the time is between 7:00 and 15:59 the robot performs
production. At all other times, the robot is in the maintenance mode.

Syntax
GetTime '('

['\' WDay]

| ['\' Hour]

| ['\' Min]

| ['\' Sec] ')'

A function with a return value of the type num.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID summary - System & time

Time and date instructions

Operating manual - IRC5 with FlexPendant,
section Changing FlexPendant settings

Setting the system clock

1288 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.87 GetTime - Reads the current time as a numeric value
RobotWare - OS
Continued

2.88 GetTSPStatus - Get current task selection panel status

Usage
GetTSPStatus is used to check if a task is checked or unchecked in the Task
Selection Panel on the FlexPendant.

Basic examples
The following example illustrates the function GetTSPStatus.

Example 1
VAR tsp_status tspstatus;

...

tspstatus:=GetTSPStatus("MYTASK");

IF tspstatus >= TSP_NORMAL_UNCHECKED AND tspstatus <=
TSP_SEMISTATIC_UNCHECKED THEN

TPWrite "Task MYTASK is unchecked in the Task Selection Panel";

ELSEIF tspstatus >= TSP_NORMAL_CHECKED THEN

TPWrite "Task MYTASK is checked in the Task Selection Panel";

ELSE

TPWrite "Task MYTASK is unchecked in TSP due to execution in
service routine";

ENDIF

Check if program task MYTASK is checked or unchecked in the Task Selection
Panel on the FlexPendant.

Return value
Data type: tsp_status
The current task selection panel status.

Predefined data
The following predefined symbolic constants of type tsp_status can be used to
check the return value:

CONST tsp_status TSP_UNCHECKED_RUN_SERV_ROUT := 10;

CONST tsp_status TSP_NORMAL_UNCHECKED := 11;

CONST tsp_status TSP_STATIC_UNCHECKED := 12;

CONST tsp_status TSP_SEMISTATIC_UNCHECKED := 13;

CONST tsp_status TSP_NORMAL_CHECKED := 14;

CONST tsp_status TSP_STATIC_CHECKED := 15;

CONST tsp_status TSP_SEMISTATIC_CHECKED := 16;

Arguments
GetTSPStatus (TaskRef | TaskName)

TaskRef

Data type: taskid
The program task identity of the task that should be checked.
The predefined variables of the data type taskid is available for all program tasks
in the system.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1289
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.88 GetTSPStatus - Get current task selection panel status

RobotWare - OS

The variable identity is "taskname"+"Id", for example the variable identity for the
T_ROB1 task is T_ROB1Id.

TaskName

Data type: string
The program task name of the task that should be checked.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

Syntax
GetTSPStatus '('

[TaskRef ':='] <variable (VAR) of taskid>

|[TaskName ':='] <expression (IN) of string> ')'

A function with a return value of the data type tsp_status.

Related information

SeeFor information about

tsp_status - Task selection panel status on
page 1764

Task selection panel status

TaskIsActive - Check if a normal task is active
on page 1476

Check if a normal task is active

1290 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.88 GetTSPStatus - Get current task selection panel status
RobotWare - OS
Continued

2.89 GetUASUserName - Get user name of logged in user

Usage
GetUASUserName is used to get the user name of the user currently logged in
from the FlexPendant.

Basic examples
The following example illustrates the function GetUASUserName.

Example 1
VAR string strUser;

...

strUser := GetUASUserName();

The user name of the currently logged in user is returned in the variable strUser.

Return value
Data type: string
The user name of the currently logged in user.

Syntax
GetUASUserName'(' ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Operating manual - RobotStudioUser Authorization System (UAS)

Technical reference manual - RAPID Instructions, Functions and Data types 1291
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.89 GetUASUserName - Get user name of logged in user

RobotWare - OS

2.90 GInput - Read value of group input signal

Usage
GInput is used to read the current value of a group of digital input signals.

Note

Note that the function GInput is a legacy function that no longer has to be used.
See the examples for an alternative and recommended way of programming.

Basic examples
The following example illustrates the function GInput.

Example 1
IF GInput(gi2) = 5 THEN ...

...

IF gi2 = 5 THEN ...

If the current value of the signal gi2 is equal to 5, then ...

Return value
Data type: num
The current value of the signal (a positive integer).
The values of each signal in the group are read and interpreted as an unsigned
binary number. This binary number is then converted to an integer.
The value returned lies within a range that is dependent on the number of signals
in the group.

Allowed valueNumber of signals

0-11

0-32

0-73

0-154

0-315

0-636

0-1277

0-2558

0-5119

0-102310

0-204711

0-409512

0-819113

0-1638314

0-3276715

0-6553516

Continues on next page
1292 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.90 GInput - Read value of group input signal
RobotWare - OS

Allowed valueNumber of signals

0-13107117

0-26214318

0-52428719

0-104857520

0-209715121

0-419430322

0-838860723

Arguments
GInput (Signal)

Signal

Data type: signalgi
The name of the signal group to be read.

Syntax
GInput '('

[Signal ':='] < variable (VAR) of signalgi > ')'

A function with a return value of data type num.

Related information

SeeFor information about

GInputDnum - Read value of group input signal on
page 1294

Read value of group input signal with
more than 23 bits

Technical reference manual - RAPID Overview, sec-
tion RAPID Summary - Input and Output Signals

Input/Output instructions

Technical reference manual - RAPID Overview, sec-
tion Motion and I/O Principles - I/O principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 1293
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.90 GInput - Read value of group input signal

RobotWare - OS
Continued

2.91 GInputDnum - Read value of group input signal

Usage
GInputDnum is used to read the current value of a group of digital input signals
larger than 23 bits.

Basic examples
The following examples illustrate the function GInputDnum.

Example 1
IF GInputDnum(gi2) = 55 THEN ...

If the current value of the signal gi2 is equal to 55, then ...

Example 2
IF GInputDnum(gi2) = 4294967295 THEN ...

If the current value of the signal gi2 is equal to 4294967295, then ...

Return value
Data type: dnum
The current value of the signal (a positive integer).
The values of each signal in the group are read and interpreted as an unsigned
binary number. This binary number is then converted to an integer.
The value returned lies within a range that is dependent on the number of signals
in the group.

Allowed valueNumber of signals

0-11

0-32

0-73

0-154

0-315

0-636

0-1277

0-2558

0-5119

0-102310

0-204711

0-409512

0-819113

0-1638314

0-3276715

0-6553516

0-13107117

0-26214318

Continues on next page
1294 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.91 GInputDnum - Read value of group input signal
RobotWare - OS

Allowed valueNumber of signals

0-52428719

0-104857520

0-209715121

0-419430322

0-838860723

0-1677721524

0-3355443125

0-6710886326

0-13421772727

0-26843545528

0-53687091129

0-107374182330

0-214748364731

0-429496729532

Arguments
GInputDnum (Signal)

Signal

Data type: signalgi
The name of the signal group to be read.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
GInputDnum '('

[Signal ':='] < variable (VAR) of signalgi > ')'

A function with a return value of data type dnum.

Related information

SeeFor information about

GInput - Read value of group input signal on page1292Read value of group input signal

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1295
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.91 GInputDnum - Read value of group input signal

RobotWare - OS
Continued

SeeFor information about

Technical reference manual - RAPID Overview, sec-
tion RAPID Summary - Input and Output Signals

Input/Output instructions

Technical reference manual - RAPID Overview, sec-
tion Motion and I/O Principles - I/O principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

1296 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.91 GInputDnum - Read value of group input signal
RobotWare - OS
Continued

2.92 GOutput - Reads the value of a group of digital output signals

Usage
GOutput is used to read the current value of a group of digital output signals.

Basic examples
The following example illustrates the function GOutput.

Example 1
IF GOutput(go2) = 5 THEN ...

If the current value of the signal go2 is equal to 5, then ...

Return value
Data type: num
The current value of the signal (a positive integer).
The values of each signal in the group are read and interpreted as an unsigned
binary number. This binary number is then converted to an integer.
The value returned lies within a range that is dependent on the number of signals
in the group.

Permitted valueNo. of signals

0-11

0-32

0-73

0-154

0-315

0-636

0-1277

0-2558

0-5119

0-102310

0-204711

0-409512

0-819113

0-1638314

0-3276715

0-6553516

0-13107117

0-26214318

0-52428719

0-104857520

0-209715121

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1297
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.92 GOutput - Reads the value of a group of digital output signals

RobotWare - OS

Permitted valueNo. of signals

0-419430322

0-838860723

Arguments
GOutput (Signal)

Signal

Data type: signalgo
The name of the signal group to be read.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
GOutput '('

[Signal ':='] < variable (VAR) of signalgo > ')'

A function with a return value of data type num.

Related information

SeeFor information about

SetGO - Changes the value of a group of digital output
signals on page 698

Set an output signal group

GOutputDnum - Read value of group output signal on
page 1299

Read a group of output signals

GInputDnum - Read value of group input signal on
page 1294

Read a group of input signals

Technical referencemanual - RAPIDOverview, section
RAPID Summary - Input and Output Signals

Input/Output instructions

Technical referencemanual - RAPIDOverview, section
Motion and I/O Principles - I/O Principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

1298 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.92 GOutput - Reads the value of a group of digital output signals
RobotWare - OS
Continued

2.93 GOutputDnum - Read value of group output signal

Usage
GOutputDnum is used to read the current value of a group of digital output signals
larger than 23 bits.

Basic examples
The following examples illustrate the function GOutputDnum.

Example 1
IF GOutputDnum(go2) = 55 THEN ...

If the current value of the signal go2 is equal to 55, then ...

Example 2
IF GOutputDnum(go2) = 4294967295 THEN ...

If the current value of the signal go2 is equal to 4294967295, then ...

Return value
Data type: dnum
The current value of the signal (a positive integer).
The values of each signal in the group are read and interpreted as an unsigned
binary number. This binary number is then converted to an integer.
The value returned lies within a range that is dependent on the number of signals
in the group.

Allowed valueNumber of signals

0-11

0-32

0-73

0-154

0-315

0-636

0-1277

0-2558

0-5119

0-102310

0-204711

0-409512

0-819113

0-1638314

0-3276715

0-6553516

0-13107117

0-26214318

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1299
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.93 GOutputDnum - Read value of group output signal

RobotWare - OS

Allowed valueNumber of signals

0-52428719

0-104857520

0-209715121

0-419430322

0-838860723

0-1677721524

0-3355443125

0-6710886326

0-13421772727

0-26843545528

0-53687091129

0-107374182330

0-214748364731

0-429496729532

Arguments
GOutputDnum (Signal)

Signal

Data type: signalgo
The name of the signal group to be read.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
GOutputDnum '('

[Signal ':='] < variable (VAR) of signalgo > ')'

A function with a return value of data type dnum.

Related information

SeeFor information about

SetGO - Changes the value of a group of di-
gital output signals on page 698I

Set an output signal group

Continues on next page
1300 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.93 GOutputDnum - Read value of group output signal
RobotWare - OS
Continued

SeeFor information about

Technical reference manual - RAPID over-
view, section RAPID Summary - Input and
Output Signals

Input/Output instructions

Technical reference manual - RAPID over-
view, section Motion and I/O Principles

Input/Output functionality in general

Technical reference manual - System para-
meters

Configuration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 1301
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.93 GOutputDnum - Read value of group output signal

RobotWare - OS
Continued

2.94 HexToDec - Convert from hexadecimal to decimal

Usage
HexToDec is used to convert a number specified in a readable string in the base
16 to the base10.
The input string should be constructed from the character set [0-9,A-F,a-f].
This routine handle numbers from 0 up to 9223372036854775807dec or
7FFFFFFFFFFFFFFF hex.

Basic examples
The following example illustrates the function HexToDec.

Example 1
VAR string str;

str := HexToDec("5F5E0FF");

The variable str is given the value "99999999".

Return value
Data type: string
The string converted to a decimal representation of the given number in the
inparameter string.

Arguments
HexToDec (Str)

Str

String
Data type: string
The string to convert.

Syntax
HexToDec '('

[Str ':='] <expression (IN) of string> ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section RAPID summary - String func-
tions

String functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID Over-
view, section Basic characteristics - Basic
elements

String values

1302 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.94 HexToDec - Convert from hexadecimal to decimal
RobotWare - OS

2.95 IndInpos - Independent axis in position status

Usage
IndInpos is used to test whether an independent axis has reached the selected
position.

Basic examples
The following example illustrates the function IndInpos.

Example 1
IndAMove Station_A,1\ToAbsNum:=90,20;

WaitUntil IndInpos(Station_A,1) = TRUE;

WaitTime 0.2;

Wait until axis 1 of Station_A is in the 90 degrees position.

Return value
Data type: bool
The table describes the return values from IndInpos:

Axis statusReturn value

In position and has zero speed.TRUE

Not in position and/or has not zero speed.FALSE

Arguments
IndInpos (MecUnit Axis)

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Axis

Data type: num
The number of the current axis for the mechanical unit (1-6).

Limitations
An independent axis executed with the instruction IndCMove always returns the
value FALSE, even when the speed is set to zero.
A wait period of 0.2 seconds should be added after the instruction, to ensure that
the correct status has been achieved. This time period should be longer for external
axes with poor performance.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1303
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.95 IndInpos - Independent axis in position status

Independent Axis

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The axis is not activated.ERR_AXIS_ACT

The axis is not in independent mode.ERR_AXIS_IND

Syntax
IndInpos '('

[MecUnit ':='] < variable (VAR) of mecunit> ','

[Axis ':='] < expression (IN) of num> ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

Technical reference manual - RAPID Overview, section
Motion and I/O Principles - Positioning during program
execution

Independent axes in general

Technical reference manual - RAPID Overview, section
RAPID summary - Motion

Other independent instruction
and functions

IndSpeed - Independent speed status on page 1305Check the speed status for inde-
pendent axes

Technical reference manual - System parameters, Topic
Motion, Type Arm

Activating independent joints

1304 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.95 IndInpos - Independent axis in position status
Independent Axis
Continued

2.96 IndSpeed - Independent speed status

Usage
IndSpeed is used to test whether an independent axis has reached the selected
speed.

Basic examples
The following example illustrates the function IndSpeed.

Example 1
IndCMove Station_A, 2, 3.4;

WaitUntil IndSpeed(Station_A,2 \InSpeed) = TRUE;

WaitTime 0.2;

Wait until axis 2 of Station_A has reached the speed 3.4 degrees/s.

Return value
Data type: bool
The table describes the return values from IndSpeed \IndSpeed:

Axis statusReturn value

Has reached the selected speed.TRUE

Has not reached the selected speed.FALSE

The table describes the return values from IndSpeed \ZeroSpeed:

Axis statusReturn value

Zero speed.TRUE

Not zero speedFALSE

Arguments
IndSpeed (MecUnit Axis [\InSpeed] | [\ZeroSpeed])

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Axis

Data type: num
The number of the current axis for the mechanical unit (1-6).

[\InSpeed]

Data type: switch
IndSpeed returns value TRUE if the axis has reached the selected speed otherwise
FALSE.

[\ZeroSpeed]

Data type: switch

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1305
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.96 IndSpeed - Independent speed status

Independent Axis

IndSpeed returns value TRUE if the axis has zero speed otherwise FALSE.
If both the arguments \InSpeed and \ZeroSpeed are omitted, an error message
will be displayed.

Limitation
The function IndSpeed\InSpeedwill always return the value FALSE in the following
situations:

• The robot is in manual mode with reduced speed.
• The speed is reduced using the VelSet instruction.
• The speed is reduced from the production window.

A wait period of 0.2 seconds should be added after the instruction to ensure that
the correct status is obtained. This time period should be longer for external axes
with poor performance.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The axis is not activated.ERR_AXIS_ACT

The axis is not in independent mode.ERR_AXIS_IND

Syntax
IndSpeed '('

[MecUnit ':='] < variable (VAR) of mecunit> ','

[Axis ':='] < expression (IN) of num>

['\' InSpeed] | ['\' ZeroSpeed] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

Technical reference manual - RAPID Overview, sec-
tion Motion and I/O principles - Positioning during
program execution

Independent axes in general

Technical reference manual - RAPID Overview, sec-
tion RAPID summary - Motion

Other independent instruction and
functions

IndCMove - Independent continuous movement on
page 289

More examples

IndInpos - Independent axis in position status on
page 1303

Check the position status for inde-
pendent axes

Technical reference manual - System parameters,
Topic Motion, Type Arm

Activating independent joints

1306 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.96 IndSpeed - Independent speed status
Independent Axis
Continued

2.97 IOUnitState - Get current state of I/O device

Usage
IOUnitState is used to find out the current state of an I/O device. It is physical
state and logical state define the status for an I/O device.

Basic examples
The following examples illustrate the function IOUnitState.

Example 1
IF (IOUnitState("UNIT1" \Phys)=IOUNIT_PHYS_STATE_RUNNING) THEN

! Possible to access some signal on the I/O unit

ELSE

! Read/Write some signal on the I/O unit result in error

ENDIF

Test is done to see if the I/O device UNIT1 is up and running.

Example 2
IF (IOUnitState("UNIT1" \Logic)=IOUNIT_LOG_STATE_DISABLED) THEN

! Unit is disabled by user from RAPID or FlexPendant

ELSE

! Unit is enabled.

ENDIF

Test is done to see if the I/O device UNIT1 is disabled.

Return value
Data type: iounit_state
The return value has different values depending on if the optional arguments
\Logic or \Phys or no optional argument at all is used.
The I/O device logical states describes the state a user can order the I/O device
into.The state of the I/O device as defined in the table below when using optional
argument \Logic.

CommentSymbolic constantReturn value

I/O device is disabled by user
from RAPID, FlexPendant or
System Parameters.

IOUNIT_LOG_STATE_DISABLED10

I/O device is enabled by user
from RAPID, FlexPendant or
System Parameters. Default
after startup.

IOUNIT_LOG_STATE_ENABLED11

When the I/O device is logically enabled by the user and the fieldbus driver intends
to take an I/O device into physical state IOUNIT_PHYS_STATE_RUNNING, the I/O
device could get into other states for various reasons (see table below).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1307
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.97 IOUnitState - Get current state of I/O device

RobotWare - OS

The state of the I/O device as defined in the table below when using optional
argument \Phys.

CommentSymbolic constantReturn value

I/O device is not running, dis-
abled by user

IOUNIT_PHYS_STATE_DEACTIVATED20

I/O device is runningIOUNIT_PHYS_STATE_RUNNING21

I/O device is not working be-
cause of some runtime error

IOUNIT_PHYS_STATE_ERROR22

I/O device is configured but
not connected to the I/O net-
work or the I/O network is
stopped.

IOUNIT_PHYS_STATE_UNCONNECTED23

I/O device is not configured
but connected to the I/O net-
work. 1)

IOUNIT_PHYS_STATE_UNCONFIGURED24

I/O device is in start up mode.
1)

IOUNIT_PHYS_STATE_STARTUP25

I/O device is created. 1)IOUNIT_PHYS_STATE_INIT26

Note

The state of the I/O device is defined in the table below when not using any of
the optional arguments \Phys or \Logic.

CommentSymbolic constantReturn value

I/O device is up and runningIOUNIT_RUNNING1

I/O device is not working be-
cause of some runtime error

IOUNIT_RUNERROR2

I/O device is disabled by user
from RAPID or FlexPendant

IOUNIT_DISABLE3

Other configuration or startup
errors

IOUNIT_OTHERERR4

1) Not possible to get this state in the RAPID program with current version of
RobotWare - OS.

Arguments
IOUnitState (UnitName [\Phys] | [\Logic])

UnitName

Data type: string
The name of the I/O device to be checked (with same name as configured).

[\Phys]

Physical
Data type: switch
If using this parameter the physical state of the I/O device is read.

Continues on next page
1308 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.97 IOUnitState - Get current state of I/O device
RobotWare - OS
Continued

[\Logic]

Logical
Data type: switch
If using this parameter the logical state of the I/O device is read.

Syntax
IOUnitState '('

[UnitName ':='] < expression (IN) of string >

['\' Phys] | ['\' Logic] ')'

A function with a return value of the data type iounit_state.

Related information

SeeFor information about

iounit_state - State of I/O device on page 1646State of I/O device

IOEnable - Activate an I/O device on page 315Enable an I/O device

IODisable - Deactivate an I/O device on page 312Disabling an I/O device

Technical reference manual - RAPID Overview,
section RAPID Summary - Input and Output Signals

Input/Output instructions

Technical reference manual - RAPID Overview,
section Motion and I/O Principles - I/O Principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 1309
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.97 IOUnitState - Get current state of I/O device

RobotWare - OS
Continued

2.98 IsBrakeCheckActive - Test if brake check is running

Usage
IsBrakeCheckActive is used to test if there is an ongoing brake test, i.e. if any
of the CyclicBrakeCheck or BrakeCheck procedures are active (executing or
stopped) on any execution level.

Basic examples
The following example illustrates the function IsBrakeCheckActive.

Example 1
WHILE IsBrakeCheckActive() = TRUE THEN

WaitTime 1;

ENDWHILE

...

Test to see if a brake test routine is active. If it is active, then wait until it is ready.

Return value
Data type: bool
The function returns TRUE if there is an ongoing brake test.

Syntax
IsBrakeCheckActive '(' ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

Operating manual - IRC5 with FlexPendantBrakeCheck

Application manual - SafeMove1 or Application
manual - Functional safety and SafeMove2

CyclicBrakeCheck

1310 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.98 IsBrakeCheckActive - Test if brake check is running
RobotWare - OS

2.99 IsCyclicBool - Checks if a persistent variable is a Cyclic bool

Usage
IsCyclicBool is used to test if a persistent boolean is a Cyclic bool or not, i.e. if
a logical condition has been connected to the persistent boolean variable with the
instruction SetupCyclicBool.

Basic examples
The following examples illustrate the function IsCyclicBool.

Example 1
PERS bool cyclicflag1;

PROC main()

TPWrite "cyclicflag1 is a cyclic bool:
"\Bool:=IsCyclicBool(cyclicflag1);

SetupCyclicBool cyclicflag1, di1=1 AND do2=1;

TPWrite "cyclicflag1 is a cyclic bool:
"\Bool:=IsCyclicBool(cyclicflag1);

...

The text cyclicflag1 is a cyclic bool: FALSE is first written on the
FlexPendant. After execution of SetupCyclicBool the persistent boolean variable
is a Cyclic bool, and the second text will be cyclicflag1 is a cyclic bool:
TRUE.

Example 2
TASK PERS bool cyclicflag1;

PROC main()

SetupCyclicBool cyclicflag1, di1=1 AND do2=1;

TPWrite "cyclicflag1 is a cyclic bool: "
\Bool:=IsCyclicBool("cyclicflag1");

...

Using a text string as input to specify the cyclic bool name in IsCyclicBool
function. The text written to the FlexPendant will be cyclicflag1 is a cyclic
bool: TRUE.

Example 3
..

TPWrite "cyclicflag1 is a cyclic bool: "
\Bool:=IsCyclicBool("cyclicflag1", \TaskName:="T_ROB1");

..

Using a text string as input to specify the cyclic bool name in IsCyclicBool
function. The text written to the FlexPendant will be cyclicflag1 is a cyclic
bool: TRUE if the cyclicflag1 has been connected to a logical condition with
instruction SetupCyclicBool in T_ROB1 RAPID task, otherwise the text written
to the FlexPendant will be cyclicflag1 is a cyclic bool: FALSE.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1311
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.99 IsCyclicBool - Checks if a persistent variable is a Cyclic bool

RobotWare - OS

Return value
Data type: bool
The function will return TRUE if a logical condition has been connected to the
persistent boolean with instruction SetupCyclicBool, otherwise FALSE.

Arguments
IsCyclicBool (Flag | Name [\TaskRef] | [\TaskName])

Flag

Data type: bool
The persistent boolean variable that should be checked.

Name

Data type: string
The name of the persistent boolean variable that should be checked.

[\TaskRef]

Task Reference
Data type: taskid
The program task identity where the SetupCyclicBool instruction has been
executed. This argument should only be used for a Cyclic bool that is declared as
TASK PERS and when using IsCyclicBool function from a RAPID task that has
not connected the logical condition to the persistent boolean variable with
SetupCyclicBool instruction.
For all program tasks in the system, predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", for example, for the
T_ROB1 task the variable identity will be T_ROB1Id.

[\TaskName]

Data type: string
The program task name where the SetupCyclicBool instruction has been
executed. This argument should only be used for a Cyclic bool that is declared as
TASK PERS and when using IsCyclicBool function from a RAPID task that has
not connected the logical condition to the persistent boolean variable with
SetupCyclicBool instruction.
If none of the arguments \TaskRef or \TaskName are specified then the current
task is used.

Program execution
The names of the Cyclic bools are stored in the system as a characther string. For
a PERS bool m1 the name stored is m1. For a TASK PERS bool m2 the name
will be "T_ROB1/m2" if the setup is done with instruction SetupCyclicBool in
RAPID task T_ROB1.
If the function is used with argument Flag or Name it checks first if the persistent
name exist in the list of Cyclic bools to see if it is a PERS declared variable that
has been connected to a condition with SetupCyclicBool. If it did not find any

Continues on next page
1312 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.99 IsCyclicBool - Checks if a persistent variable is a Cyclic bool
RobotWare - OS
Continued

Cyclic bool with that name, it also test if it is a TASK PERS with adding current
executing task before the name of the persistent name ("T_ROB1/name").

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

Syntax
IsCyclicBool '('

[[Flag ':='] <persistent (PERS) of bool>

| [[Name ':='] <expression (IN) of string> ','

['\' TaskRef ':=' <variable (VAR) of taskid>]

|['\' TaskName ':=' <expression (IN) of string>] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

SetupCyclicBool - Setup a Cyclic bool condition
on page 706

Setup a Cyclic bool condition

RemoveCyclicBool - Remove a Cyclic bool con-
dition on page 593

Remove a Cyclic bool condition

RemoveAllCyclicBool - Remove all Cyclic bool
conditions on page 591

Remove all Cyclic bool conditions

Application manual - Controller software IRC5Cyclically evaluated logical conditions,
Cyclic bool.

Technical referencemanual - System parametersConfiguring Cyclic bool.

Technical reference manual - RAPID Instructions, Functions and Data types 1313
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.99 IsCyclicBool - Checks if a persistent variable is a Cyclic bool

RobotWare - OS
Continued

2.100 IsFile - Check the type of a file

Usage
The IsFile function obtains information about the named file or directory and
checks whether it is the same as the specified type. If no type is specified, only an
existence check is performed.
The path argument specifies the file. Read, write or execute permission for the
named file is not required, but all directories listed in the path name leading to the
file must be searchable.

Basic examples
The following example illustrates the function IsFile.
See also More examples on page 1315.

Example 1
PROC printFT(string filename)

IF IsFile(filename \Directory) THEN

TPWrite filename+" is a directory";

RETURN;

ENDIF

IF IsFile(filename \Fifo) THEN

TPWrite filename+" is a fifo file";

RETURN;

ENDIF

IF IsFile(filename \RegFile) THEN

TPWrite filename+" is a regular file";

RETURN;

ENDIF

IF IsFile(filename \BlockSpec) THEN

TPWrite filename+" is a block special file";

RETURN;

ENDIF

IF IsFile(filename \CharSpec) THEN

TPWrite filename+" is a character special file";

RETURN;

ENDIF

ENDPROC

This example prints out the filename and the type of the specified file on the
FlexPendant.

Return value
Data type: bool
The function will return TRUE if the specified type and actual type match, otherwise
FALSE. When no type is specified, it returns TRUE if the file exists and otherwise
FALSE.

Continues on next page
1314 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.100 IsFile - Check the type of a file
RobotWare - OS

Arguments
IsFile (Path [\Directory] [\Fifo] [\RegFile] [\BlockSpec]

[\CharSpec])

Path

Data type: string
The file specified with a full or relative path.

[\Directory]

Data type: switch
Is the file a directory.

[\Fifo]

Data type: switch
Is the file a fifo file.

[\RegFile]

Data type: switch
Is the file a regular file, that is, a normal binary or ASCII file.

[\BlockSpec]

Data type: switch
Is the file a block special file.

[\CharSpec]

Data type: switch
Is the file a character special file.

Program execution
This function returns a bool that specifies match or not.

More examples
More examples of the function IsFile are illustrated below.

Example 1
This example implements a generic traverse of a directory structure function.

PROC searchdir(string dirname, string actionproc)

VAR dir directory;

VAR string filename;

IF IsFile(dirname \Directory) THEN

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

! .. and . is the parent and resp. this directory

IF filename <> ".." AND filename <> "." THEN

searchdir dirname+"/"+filename, actionproc;

ENDIF

ENDWHILE

CloseDir directory;

ELSE

%actionproc% dirname;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1315
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.100 IsFile - Check the type of a file

RobotWare - OS
Continued

ENDIF

ERROR

RAISE;

ENDPROC

PROC listfile(string filename)

TPWrite filename;

ENDPROC

PROC main()

! Execute the listfile routine for all files found under the

! tree of HOME:

searchdir "HOME:","listfile";

ENDPROC

This program traverses the directory structure under the "HOME:" and for each file
found, it calls the listfile procedure. The searchdir is the generic part that
knows nothing about the start of the search or which routine should be called for
each file. It uses IsFile to check whether it has found a subdirectory or a file and
it uses the late binding mechanism to call the procedure specified in actionproc
for all files found. The actionproc routine should be a procedure with one
parameter of the type string.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The file does not exist and there is a type specified.ERR_FILEACC

Limitations
This function is not possible to use against serial channels or field buses.
If using against FTP or NFS mounted discs, the file existance or type information
is not always updated. To get correct information an explicit order may be needed
against the search path (with instruction Open) before using IsFile.

Syntax
Isfile '('

[Path ':='] < expression (IN) of string>

['\' Directory]

| ['\' Fifo]

| ['\' RegFile]

| ['\' BlockSpec]

| ['\' CharSpec] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

dir - File directory structure on page 1610Directory

Continues on next page
1316 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.100 IsFile - Check the type of a file
RobotWare - OS
Continued

SeeFor information about

OpenDir - Open a directory on page 501Open a directory

CloseDir - Close a directory on page 140Close a directory

ReadDir - Read next entry in a directory on page 1394Read a directory

MakeDir - Create a new directory on page 372Make a directory

RemoveDir - Delete a directory on page 595Remove a directory

RenameFile - Rename a file on page 600Rename a file

RemoveFile - Delete a file on page 597Remove a file

CopyFile - Copy a file on page 155Copy a file

FileSize - Retrieve the size of a file on page 1251Check file size

FSSize - Retrieve the size of a file system on page 1257Check file system size

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1317
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.100 IsFile - Check the type of a file

RobotWare - OS
Continued

2.101 IsLeadThrough - Check lead-through status

Usage
IsLeadThrough is used to get information about the lead-through status for a
TCP robot.

Basic examples
The following examples illustrate the function IsLeadThrough.

Example 1
VAR bool leadthrough:=FALSE;

leadthrough:=IsLeadThrough();

Checks if lead-through is set for the active TCP robot in this task. For example, if
executed in RAPID task T_ROB_L it checks if lead-through is set for the TCP robot
ROB_L.

Example 2
VAR bool leadthrough:=FALSE;

leadthrough:=IsLeadThrough(\MechUnit:=ROB_R);

Checks if lead-through is set for the TCP robot ROB_R.

Example 3
VAR bool leadthrough:=FALSE;

leadthrough:=IsLeadThrough(\MechUnit:=ROB_R \Active);

Checks if lead-through is active for the TCP robot ROB_R.

Example 4
SetLeadThrough \On \NoStopMove;

TPWrite "Set: "+ValToStr(IsLeadThrough(\MechUnit:=ROB_R \Set));

TPWrite "Active: "+ValToStr(IsLeadThrough(\MechUnit:=ROB_R
\Active));

..

StopMove;

TPWrite "Set: "+ValToStr(IsLeadThrough(\MechUnit:=ROB_R \Set));

TPWrite "Active: "+ValToStr(IsLeadThrough(\MechUnit:=ROB_R
\Active));

Checks if lead-through is set and active for the TCP robot ROB_R. The lead-through
is not active until a StopMove instruction has been executed or the program
execution has been stopped.
The print out will be:
Set: TRUE
Active: FALSE
Set: TRUE
Active: TRUE

Return value
Data type: bool

Continues on next page
1318 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.101 IsLeadThrough - Check lead-through status
IRB 14000

Arguments
IsLeadThrough (\MechUnit \Active | \Set)

\MechUnit

Mechanical unit
Data type: mecunit
The name of the TCP robot.
The argument \MechUnit is optional. If it is omitted, the check will be done for
the mechanical unit represented by the predefined RAPID variable ROB_ID, which
is a reference to the TCP robot in the current program task.
If \MechUnit is omitted and IsLeadThrough is used from a non-motion task, the
check will be done for the TCP robot in the connected motion task.

\Active

Data type: switch
TRUE if lead-through has been activated.
FALSE if lead-through has been deactivated with SetLeadThrough \Off.
FALSE can also be returned if a SetLeadThrough \On \NoStopMove has been
executed. It is the StopMove order, or stop of program execution that activates
lead-through.

\Set

Data type: switch
TRUE if lead-through has been set.
FALSE if lead-through has been reset.
If neither of the switches are used, the default behavior is \Set.

Limitations
The mechanical unit has to be a TCP robot.
IsLeadThrough can only be used for the IRB 14000 robot (YuMi).

Syntax
IsLeadThrough '('

['\'MecUnit ':=' < variable (VAR) of mecunit> ',']

['\'Active] | ['\'Set]')'

A function with a return value of the data type bool.

Related information

SeeFor information about

SetLeadThrough - Activate and deactivate lead-
through on page 701

Activate and deactivate lead-through

Technical reference manual - RAPID Instructions, Functions and Data types 1319
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.101 IsLeadThrough - Check lead-through status

IRB 14000
Continued

2.102 IsMechUnitActive - Is mechanical unit active

Usage
IsMechUnitActive (Is Mechanical Unit Active) is used to check whether a
mechanical unit is activated or not.

Basic examples
The following example illustrates the function IsMechUnitActive.

Example 1
IF IsMechUnitActive(SpotWeldGun)

CloseGun SpotWeldGun;

If themechanical unit SpotWeldGun is active, the routine CloseGunwill be invoked
in which the gun is closed.

Return value
Data type: bool
The function returns:

• TRUE, if the mechanical unit is active
• FALSE, if the mechanical unit is deactived

Arguments
IsMechUnitActive (MechUnit)

MechUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit.

Syntax
IsMechUnitActive '('

[MechUnit ':='] < variable (VAR) of mecunit> ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

ActUnit - Activates a mechanical unit on page 26Activating mechanical units

DeactUnit - Deactivates a mechanical unit on page172Deactivating mechanical units

mecunit - Mechanical unit on page 1658Mechanical units

1320 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.102 IsMechUnitActive - Is mechanical unit active
RobotWare - OS

2.103 IsPers - Is persistent

Usage
IsPers is used to test if a data object is a persistent variable or not.

Basic examples
The following example illustrates the function IsPers.

Example 1
PROC procedure1 (INOUT num parameter1)

IF IsVar(parameter1) THEN

! For this call reference to a variable

...

ELSEIF IsPers(parameter1) THEN

! For this call reference to a persistent variable

...

ELSE

! Should not happen

EXIT;

ENDIF

ENDPROC

The procedure procedure1 will take different actions depending on whether the
actual parameter parameter1 is a variable or a persistent variable.

Return value
Data type: bool
TRUE if the tested actual INOUT parameter is a persistent variable. FALSE if the
tested actual INOUT parameter is not a persistent variable.

Arguments
IsPers (DatObj)

DatObj

Data type: string
The robot system serial number, marking the system identity.
Data Object
Data type: any type
The name of the formal INOUT parameter.

Syntax
IsPers '('

[DatObj ':='] < var or pers (INOUT) of any type > ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

IsVar - Is variable on page 1330Test if variable

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1321
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.103 IsPers - Is persistent

RobotWare - OS

SeeFor information about

Technical reference manual - RAPID Overview,
section Basic characteristics - Routines

Types of parameters (access modes)

1322 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.103 IsPers - Is persistent
RobotWare - OS
Continued

2.104 IsStopMoveAct - Is stop move flags active

Usage
IsStopMoveAct is used to get the status of the stop move flags for a current or
connected motion task.

Basic examples
The following examples illustrate the function IsStopMoveAct.

Example 1
stopflag2:= IsStopMoveAct(\FromNonMoveTask);

stopflag2 will be TRUE if the stop move flag from non-motion tasks is set in
current or connected motion task, else it will be FALSE.

Example 2
IF IsStopMoveAct(\FromMoveTask) THEN

StartMove;

ENDIF

If the stop move flag from motion task is set in the current motion task, it will be
reset by the StartMove instruction.

Return value
Data type: bool
The return value will be TRUE if the selected stop move flag is set, else the return
value will be FALSE.

Arguments
IsStopMoveAct ([\FromMoveTask] | [\FromNonMoveTask])

[\FromMoveTask]

Data type: switch
FromMoveTask is used to get the status of the stopmove flag of type privatemotion
task.
This type of stop move flag can only be set by:

• The motion task itself with instruction StopMove
• After leaving the RestoPath level in the program
• At execution in an asynchronous error handler for process- or motion errors

before any StorePath and after any RestoPath

[\FromNonMoveTask]

Data type: switch
FromNonMoveTask is used to get the status of the stop move flag of type any
non-motion tasks. This type of stop move flag can only be set by any non-motion
task in connected or all motion tasks with the instruction StopMove.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1323
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.104 IsStopMoveAct - Is stop move flags active

RobotWare - OS

Syntax
IsStopMoveAct '('

['\' FromMoveTask]

| ['\' FromNonMoveTask] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

StopMove - Stops robot movement on page 810Stop robot movement

StartMove - Restarts robot movement on page 781Restart robot movement

1324 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.104 IsStopMoveAct - Is stop move flags active
RobotWare - OS
Continued

2.105 IsStopStateEvent - Test whether moved program pointer

Usage
IsStopStateEvent returns information about the movement of the Program
Pointer (PP) in current program task.

Basic examples
The following example illustrates the function IsStopStateEvent.

Example 1
IF IsStopStateEvent (\PPMoved) = TRUE THEN

! PP has been moved during the last program stop

ELSE

! PP has not been moved during the last program stop

ENDIF

IF IsStopStateEvent (\PPToMain) THEN

! PP has been moved to main routine during the last program stop

ENDIF

Return value
Data type: bool
Status if and how PP has been moved during the last stop state.
TRUE if PP has been moved during the last stop.
FALSE if PP has not been moved during the last stop.
If PP has been moved to the main routine, both \PPMoved and \PPToMain will
return TRUE.
If PP has been moved to a routine, both \PPMoved and \PPToMain will return
TRUE.
If PP has been moved within a list of a routine, \PPMoved will return TRUE and
\PPToMain will return FALSE.
After calling a service routine (keep execution context in main program sequence)
\PPMove will return FALSE and \PPToMain will return FALSE.

Arguments
IsStopStateEvent ([\PPMoved] | [\PPToMain])

[\PPMoved]

Data type: switch
Test whether PP has been moved.

[\PPToMain]

Data type: switch
Test whether PP has been moved to main or to a routine.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1325
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.105 IsStopStateEvent - Test whether moved program pointer

RobotWare - OS

Limitations
This function in most cases cannot be used during forward or backward execution
because the system is in stop state between every single step.

Syntax
IsStopStateEvent '('

['\' PPMoved] | ['\ä PPToMain] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section - Programming off-line - Making
your own instructions

Making own instructions

Product specification - Controller software
IRC5

Advanced RAPID

1326 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.105 IsStopStateEvent - Test whether moved program pointer
RobotWare - OS
Continued

2.106 IsSyncMoveOn - Test if in synchronized movement mode

Usage
IsSyncMoveOn is used to test if the current program task of type Motion Task
is in synchronized movement mode or not.
It is also possible from some Non Motion Task to test if the connected Motion
Task is in synchronized movement mode or not. The system parameter
Controller/Tasks/UseMechanical Unit Group define the connected Motion Task.
When the Motion Task is executing at StorePath level IsSyncMoveOn will test
if the task is in synchronizedmode on that level, independently of the synchronized
mode on the original level.
The instruction IsSyncMoveOn is usually used in aMultiMove system with option
Coordinated Robots but can be used in any system and in any program task.

Basic examples
The following example illustrates the function IsSyncMoveOn.

Example 1
Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, tcp1;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, tcp1;

syncmove;

...

ENDPROC

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, tcp1 \WOBJ:= rob2_obj;

MoveL * \ID:=20, v100, fine, tcp1 \WOBJ:= rob2_obj;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

Program example in task BCK1
PROC main()

...

IF IsSyncMoveOn() THEN

! Connected Motion Task is in synchronized movement mode

ELSE

! Connected Motion Task is in independent mode

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1327
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.106 IsSyncMoveOn - Test if in synchronized movement mode

RobotWare - OS

ENDIF

...

ENDPROC

At the execution time of IsSyncMoveOn, in the background task BCK1, we test if
the connected motion task at that moment is in synchronized movement mode or
not.

Return value
Data type: bool
TRUE if current or connected program task is in synchronized movement mode at
the moment, otherwise FALSE.

Program execution
Test if current or connected program task is in synchronized movement mode at
the moment or not. If the MotionTask is executing at StorePath level, the
SyncMoveOn will test if the task is in synchronized movement on the StorePath
level, not on the original level.

Syntax
IsSyncMoveOn '(' ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

tasks - RAPID program tasks on page 1739Specify cooperated program tasks

syncident - Identity for synchronization point
on page 1735

Identity for synchronization point

SyncMoveOn - Start coordinated synchronized
movements on page 832

Start coordinated synchronizedmovements

SyncMoveOff - End coordinated synchronized
movements on page 826

End coordinated synchronized movements

SyncMoveUndo - Set independentmovements
on page 842

Set independent movements

StorePath - Stores the path when an interrupt
occurs on page 816

Store path and execute on new level

1328 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.106 IsSyncMoveOn - Test if in synchronized movement mode
RobotWare - OS
Continued

2.107 IsSysId - Test system identity

Usage
IsSysId (System Identity) can be used to test the system identity using the system
serial number.

Basic examples
The following example illustrates the function IsSysId.

Example 1
IF NOT IsSysId("6400-1234") THEN

ErrWrite "System identity fault", "Faulty system identity for
this program";

EXIT;

ENDIF

The program is made for a special robot system with serial number 6400-1234
and cannot be used by another robot system.

Return value
Data type: bool
TRUE = The robot system serial number is the same as specified in the test.
FALSE = The robot system serial number is not the same as specified in the test.

Arguments
IsSysId (SystemId)

SystemId

Data type: string
The robot system serial number, marking the system identity.

Syntax
IsSysId '('

[SystemId ':='] < expression (IN) of string> ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

GetSysInfo - Get information about the system on
page 1282

Read system information

Technical reference manual - RAPID Instructions, Functions and Data types 1329
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.107 IsSysId - Test system identity

RobotWare - OS

2.108 IsVar - Is variable

Usage
IsVar is used to test whether a data object is a variable or not.

Basic examples
The following example illustrates the function IsVar.

Example 1
PROC procedure1 (INOUT num parameter1)

IF IsVAR(parameter1) THEN

! For this call reference to a variable

...

ELSEIF IsPers(parameter1) THEN

! For this call reference to a persistent variable

...

ELSE

! Should not happen

EXIT;

ENDIF

ENDPROC

The procedure procedure1 will take different actions, depending on whether the
actual parameter parameter1 is a variable or a persistent variable.

Return value
Data type: bool
TRUE if the tested actual INOUT parameter is a variable. FALSE if the tested actual
INOUT parameter is not a variable.

Arguments
IsVar (DatObj)

DatObj

Data Object
Data type: any type
The name of the formal INOUT parameter.

Syntax
IsVar '('

[DatObj ':='] < var or pers (INOUT) of any type > ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

IsPers - Is persistent on page 1321Test if persistent

Technical referencemanual - RAPIDOverview,
section Basic characteristics - Routines

Types of parameters (access modes)

1330 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.108 IsVar - Is variable
RobotWare - OS

2.109 Max - Get the largest of two values

Usage
Max returns the largest of two arguments.

Basic examples
The following example illustrates the function Max.

Example 1
reg1 := Max(reg2, reg3)

reg1 is assigned the largest value of reg2 and reg3.

Return value
Data type: num
Returns the largest of the two arguments.

Arguments
Max (A, B)

A

Data type: num
First numeric value.

B

Data type: num
Second numeric value.

Syntax
Max '('

[A ':='] < expression (IN) of num >','

[B ':='] < expression (IN) of num >')'

A function with a return value of the data type num.

Related information

SeeFor information about

Min - Get the smallest of two values on
page 1336

Min function

Technical referencemanual - RAPIDOverviewMathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1331
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.109 Max - Get the largest of two values

RobotWare - OS

2.110 MaxExtLinearSpeed - Maximum additional axis speed

Usage
MaxExtLinearSpeed (Maximum Additional Axis Linear Speed) returns the
maximum linear speed for the additional axes in the current motion task.

Basic examples
The following example illustrates the function MaxExtLinearSpeed.

Example 1
TPWrite "Max. Linear speed in mm/s for my axis="\Num:=

MaxExtLinearSpeed ();

The message Max. Linear speed in mm/s for my axis = 5000 is written
on the FlexPendant (value depends on the configuration).

Return value
Data type: num
Returns the maximum (vmax) linear speed in mm/s for the additional axes in this
task.

Syntax
MaxExtLinearSpeed '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

speeddata - Speed data on page 1718Definition of vmax velocity

Technical reference manual - System parameters,
parameter Ext. Axis Linear Max Speed (m/s)

Configuring max additional axis
linear speed

1332 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.110 MaxExtLinearSpeed - Maximum additional axis speed
RobotWare - OS

2.111 MaxExtReorientSpeed - Maximum additional axis rotational speed

Usage
MaxExtReorientSpeed (Maximum Additional Axis Rotational Speed) returns the
maximum rotational speed for the additional axes in the current motion task.

Basic examples
The following example illustrates the function MaxExtReorientSpeed.

Example 1
TPWrite "Max. Rotational speed in deg/s for my axis="\Num:=

MaxExtReorientSpeed ();

The message Max. Rotational speed in deg/s for my axis = 1000 is
written on the FlexPendant (value depends on the configuration).

Return value
Data type: num
Returns the maximum (vmax) rotational speed in deg/s for the additional axes in
this task.

Syntax
MaxExtReorientSpeed '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

speeddata - Speed data on page 1718Definition of vmax velocity

Technical reference manual - System parameters,
parameter Ext. Axis Rotational Max Speed (deg/s)

Configuring max additional axis
rotational speed

Technical reference manual - RAPID Instructions, Functions and Data types 1333
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.111 MaxExtReorientSpeed - Maximum additional axis rotational speed

RobotWare - OS

2.112 MaxRobReorientSpeed - Maximum reorient speed of robot

Usage
MaxRobReorientSpeed (Maximum Robot Reorient Speed) returns the maximum
TCP reorient speed for the robot.

Basic examples
The following example illustrates the function MaxRobReorientSpeed.

Example 1
TPWrite "TCP Reorient Max Speed in deg/s for my robot="\Num:=

MaxRobReorientSpeed ();

The message TCP Reorient Max Speed in deg/s for my robot = 500
is written on the FlexPendant (value depends on the configuration).

Return value
Data type: num
Returns the maximum (vmax) TCP reorient speed in deg/s for the used robot and
normal practical TCP values.
If extremely large TCP values are used in the tool frame, you can create your own
speeddata with lower TCP reorient speed than returned by
MaxRobReorientSpeed.

Syntax
MaxRobReorientSpeed '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

speeddata - Speed data on page 1718Definition of vmax velocity

Technical reference manual - System parameters,
parameter TCP Reorient Max Speed (deg/s)

Configuringmax TCP reorientation
speed

1334 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.112 MaxRobReorientSpeed - Maximum reorient speed of robot
RobotWare - OS

2.113 MaxRobSpeed - Maximum robot speed

Usage
MaxRobSpeed (Maximum Robot Speed) returns the maximum TCP speed for the
robot.

Basic examples
The following example illustrates the function MaxRobSpeed.

Example 1
TPWrite "Max. TCP speed in mm/s for my robot="\Num:=MaxRobSpeed();

The message Max. TCP speed in mm/s for my robot = 7000 is written on
the FlexPendant (value depends on the configuration).

Return value
Data type: num
Returns the maximum (vmax) TCP speed in mm/s for the used robot and normal
practical TCP values.
If extremely large TCP values are used in the tool frame, you can create your own
speeddatawith bigger TCP speed than returned by MaxRobSpeed and use VelSet
to allow larger speed.

Syntax
MaxRobSpeed '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

speeddata - Speed data on page 1718Definition of vmax velocity

VelSet - Changes the programmed velocity on page999Definition of maximum velocity

Technical reference manual - System parameters,
parameter TCP Linear Max Speed (m/s)

Configuring max TCP speed

Technical reference manual - RAPID Instructions, Functions and Data types 1335
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.113 MaxRobSpeed - Maximum robot speed

RobotWare - OS

2.114 Min - Get the smallest of two values

Usage
Min returns the smallest of two arguments.

Basic examples
The following example illustrates the function Min.

Example 1
reg1 := Min(reg2, reg3)

reg1 is assigned the smallest value of reg2 and reg3.

Return value
Data type: num
Returns the smallest of the two arguments.

Arguments
Min (A, B)

A

Data type: num
First numeric value.

B

Data type: num
Second numeric value.

Syntax
Min '('

[A ':='] < expression (IN) of num >','

[B ':='] < expression (IN) of num >')'

A function with a return value of the data type num.

Related information

SeeFor information about

Max -Get the largest of two values onpage1331Max function

Technical referencemanual - RAPIDOverviewMathematical instructions and functions

1336 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.114 Min - Get the smallest of two values
RobotWare - OS

2.115 MirPos - Mirroring of a position

Usage
MirPos (Mirror Position) is used to mirror the translation and rotation parts of a
position.

Basic examples
The following example illustrates the function MirPos.

Example 1
CONST robtarget p1:= [...];

VAR robtarget p2;

PERS wobjdata mirror:= [...];

...

p2 := MirPos(p1, mirror);

p1 is a robtarget storing a position of the robot and an orientation of the tool. This
position is mirrored in the xy-plane of the frame defined by mirror, relative to the
world coordinate system. The result is new robtarget data, which is stored in p2.

Return value
Data type: robtarget
The new position which is the mirrored position of the input position.

Arguments
MirPos (Point MirPlane [\WObj] [\MirY])

Point

Data type: robtarget
The input robot position. The orientation part of this position defines the current
orientation of the tool coordinate system.

MirPlane

Mirror Plane
Data type: wobjdata
The work object data defining the mirror plane. The mirror plane is the xy-plane of
the object frame defined in MirPlane. The location of the object frame is defined
relative to the user frame (also defined in MirPlane) which in turn is defined
relative to the world frame.

[\WObj]

Work Object
Data type: wobjdata
The work object data defining the object frame and user frame relative to which
the input position Point is defined. If this argument is left out the position is defined
relative to the World coordinate system.
NOTE!

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1337
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.115 MirPos - Mirroring of a position

RobotWare - OS

If the position is created with an active work object, this work object must be referred
to in the argument.

[\MirY]

Mirror Y
Data type: switch
If this switch is left out, which is the default behavior, the tool frame will be mirrored
with regards to the x-axis and the z-axis. If the switch is specified the tool frame
will be mirrored with regards to the y-axis and the z-axis.

Limitations
No recalculation is done of the robot configuration part of the input robtarget data.
If a coordinate frame is used, the coordinated unit has to be situated in the same
task as the robot.

Syntax
MirPos '('

[Point ':='] < expression (IN) of robtarget> ','

[MirPlane ':='] <expression (IN) of wobjdata> ','

['\' WObj ':=' <expression (IN) of wobjdata>]

['\' MirY] ')'

A function with a return value of the data type robtarget.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section RAPID Summary - Mathematics

Mathematical instructions and functions

robtarget - Position data on page 1702Position data

wobjdata - Work object data on page 1770Work object data

1338 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.115 MirPos - Mirroring of a position
RobotWare - OS
Continued

2.116 MOD - Evaluates an integer modulo

Usage
MOD is a conditional expression used to evaluate the modulo, the remainder, of a
division of integers.

Basic examples
The following examples illustrate the function MOD.

Example 1
reg1 := 14 MOD 4;

The return value is 2 because 14 divided by 4 gives the modulo 2.

Example 2
VAR dnum mydnum1 := 11;

VAR dnum mydnum2 := 5;

VAR dnum mydnum3;

...

mydnum3 := mydnum1 MOD mydnum2;

The return value is 1 because 11 divided by 5 gives the modulo 2.

Return value
Data type: num, dnum
Returns the modulo, the remainder, of a division of integers.

Syntax
<expression of num> MOD <expression of num>

A function with a return value of data type num.
<expression of dnum> MOD <expression of dnum>

A function with a return value of data type dnum.

Related information

SeeFor information about

num - Numeric values on page 1666num - Numeric values

dnum - Double numeric values on page 1611dnum - Double numeric values

DIV - Evaluates an integer division on page1234DIV

Technical reference manual - RAPID OverviewExpressions

Technical reference manual - RAPID Instructions, Functions and Data types 1339
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.116 MOD - Evaluates an integer modulo

RobotWare - OS

2.117 ModExist - Check if program module exist

Usage
ModExist (Module Exist) is used to check whether a given module exists or not
in the program task.
Searching is first done for loaded modules and afterward, if none is found, for
installed modules.

Basic examples
The following example illustrates the function ModExist.

Example 1
VAR bool mod_exist;

mod_exist:=ModExist ("MyModule");

If module MyModule exists within the task, the function will return TRUE. If not, the
function will return FALSE.

Return value
Data type: bool
TRUE if the module was found, FALSE if not.

Arguments
ModExist (ModuleName)

ModuleName

Data type: string
Name of the module to search for.

Syntax
ModExist '('

[ModuleName ':='] < expression (IN) of string > ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

ModTimeDnum - Get file modify time for the
loaded module on page 1341

Find modify time for loaded module

1340 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.117 ModExist - Check if program module exist
RobotWare - OS

2.118 ModTimeDnum - Get file modify time for the loaded module

Usage
ModTimeDnum (Modify Time) is used to retrieve the last file modification time for
the loaded module. The module is specified by its name and must be in the task
memory. The time is measured in seconds since 00:00:00 GMT, Jan. 1 1970. The
time is returned as a dnum and optionally also as a stringdig.

Basic examples
The following example illustrates the function ModTimeDnum.
See also More examples on page 1341.

Example 1
MODULE mymod

VAR dnum mytime;

PROC printMyTime()

mytime := ModTimeDnum("mymod");

TPWrite "My time is "+ValToStr(mytime);

ENDPROC

ENDMODULE

Return value
Data type: dnum
The time measured in seconds since 00:00:00 GMT, Jan. 1 1970.

Arguments
ModTimeDnum (Object [\StrDig])

Object

Data type: string
The name of the module.

[\StrDig]

String Digit
Data type: stringdig
To get the mod loading time in a stringdig representation.

Program execution
This function returns a numeric value that specifies the last time a file was modified
before it was loaded as a program module in the system.

More examples
More examples of the function ModTimeDnum are illustrated below.

Example 1
IF FileTimeDnum ("HOME:/mymod.mod" \ModifyTime) > ModTimeDnum

("mymod") THEN

UnLoad "HOME:/mymod.mod";

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1341
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.118 ModTimeDnum - Get file modify time for the loaded module

Load \Dynamic, "HOME:/mymod.mod";

ENDIF

This program reloads amodule if the source file is newer. It uses the ModTimeDnum
to retrieve the latest modify time for the specified module, and compares it to the
FileTimeDnum ("HOME:/mymod.mod" \ModifyTime) at the source. Then, if
the source is newer, the program unloads and loads the module again.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

No module with specified name is in the program task.ERR_MOD_NOT_LOADED

Limitations
This function will always return 0 if used on a module that is encoded or installed
shared.

Syntax
ModTimeDnum '('

[Object ':='] < expression (IN) of string>

['\' StrDig ':=' < variable (VAR) of stringdig>] ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

FileTimeDnum - Retrieve time information about
a file on page 1254

Retrieve time information about a file

stringdig - String with only digits on page 1730String with only digits

StrDigCmp - Compare two strings with only di-
gits on page 1451

Compare two strings with only digits

1342 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.118 ModTimeDnum - Get file modify time for the loaded module
Continued

2.119 MotionPlannerNo - Get connected motion planner number

Usage
MotionPlannerNo returns the connected motion planner number. If executing
MotionPlannerNo in a motion task, it returns its planner number. Else if executing
MotionPlannerNo in a non-motion task it returns the connected motion planner
number according to the setup in the system parameters.

Basic examples
The following example illustrates the function MotionPlannerNo.

Example 1
!Motion task T_ROB1

PERS string buffer{6} := ["", "", "", "", "", ""];

VAR num motion_planner;

PROC main()

...

MoveL point, v1000, fine, tcp1;

motion_planner := MotionPlannerNo();

buffer{motion_planner} := "READY";

...

ENDPROC

!Background task BCK1

PERS string buffer{6};

VAR num motion_planner;

VAR string status;

PROC main()

...

motion_planner := MotionPlannerNo();

status := buffer{motion_planner};

...

ENDPROC

!Motion T_ROB2

PERS string buffer{6};

VAR num motion_planner;

PROC main()

...

MoveL point, v1000, fine, tcp1;

motion_planner := MotionPlannerNo();

buffer{motion_planner} := "READY";

...

ENDPROC

!Background task BCK2

PERS string buffer{6};

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1343
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.119 MotionPlannerNo - Get connected motion planner number

RobotWare - OS

VAR num motion_planner;

VAR string status;

PROC main()

...

motion_planner := MotionPlannerNo();

status := buffer{motion_planner};

...

ENDPROC

Use the function MotionPlannerNo to find out which motion planner number is
connected to the task. The exact same code can by implemented in all motion
tasks and background tasks. Then each background task can check the status for
their connected motion task.

Return value
Data type:num
The number of the connected motion planner. For non-motion tasks, the motion
planner number of the associated mechanical unit will be returned.
The return value range is 1 ... 6.

Syntax
MotionPlannerNo '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - System parameters,
section Controller - Task

Specify cooperated program tasks

1344 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.119 MotionPlannerNo - Get connected motion planner number
RobotWare - OS
Continued

2.120 NonMotionMode - Read the Non-Motion execution mode

Usage
NonMotionMode (Non-Motion Execution Mode) is used to read the current
Non-Motion execution mode of the program task. Non-motion execution mode is
selected or removed from the FlexPendant under the menu ABB\Control
Panel\Supervision.

Basic examples
The following example illustrates the function NonMotionMode.

Example 1
IF NonMotionMode() =TRUE THEN

...

ENDIF

The program section is executed only if the robot is in Non-Motion executionmode.

Return value
Data type: bool
The current Non-motion mode as defined in the table below.

CommentSymbolic constantReturn value

Non-Motion execution is not usedFALSE0

Non-Motion execution is usedTRUE1

Arguments
NonMotionMode ([\Main])

[\Main]

Data type: switch
Return current running mode for connected motion task. Used in a multi-tasking
system to get the current running mode for the actual task, if it is a motion task or
connected motion task, if function NonMotionMode is executed in a nonmotion
task.
If this argument is omitted, the return value always mirrors the current running
mode for the program task that executes the function NonMotionMode.
Note that the execution mode is connected to the system and not any task. This
means that all tasks in a system will give the same return value from
NonMotionMode.

Syntax
NonMotionMode '(' ['\' Main] ')'

A function with a return value of the data type bool.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1345
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.120 NonMotionMode - Read the Non-Motion execution mode

RobotWare - OS

Related information

SeeFor information about

OpMode - Read the operating mode on page 1355Reading operating mode

1346 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.120 NonMotionMode - Read the Non-Motion execution mode
RobotWare - OS
Continued

2.121 NOT - Inverts a logical value

Usage
NOT is a conditional expression used to invert a logical value (true/false).

Basic examples
The following examples illustrate the conditional expression NOT.

Example 1
VAR bool mybool;

mybool := NOT mybool;

If mybool is TRUE, the return value is FALSE.
If mybool is FALSE, the return value is TRUE.

Example 2
VAR bool a;

VAR bool b;

VAR bool c;

...

c := a AND (NOT b);

The return value c is TRUE if a is TRUE and b is FALSE

Return value
Data type: bool
Returns the inverted value.

Syntax
NOT <logical term>

Related information

SeeFor information about

AND - Evaluates a logical value on page 1127AND

OR - Evaluates a logical value on page 1356OR

XOR - Evaluates a logical value on page 1559XOR

Technical reference manual - RAPID OverviewExpressions

Technical reference manual - RAPID Instructions, Functions and Data types 1347
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.121 NOT - Inverts a logical value

RobotWare - OS

2.122 NOrient - Normalize orientation

Usage
NOrient (Normalize Orientation) is used to normalize un-normalized orientation
(quaternion).

Description
An orientation must be normalized, that is, the sum of the squares must equal 1:

xx0500002452

If the orientation is slightly un-normalized, it is possible to normalize it. The
normalization error is the absolute value of the sum of the squares of the orientation
components. The orientation is considered to be slightly un-normalized if the
normalization error is greater then 0.00001 and less then 0.1. If the normalization
error is greater then 0.1 the orient is unusable.

xx0500002453

normerr > 0.1Unusable
normerr > 0.00001 AND normerr <= 0.1Slightly un-normalized
normerr <= 0.00001Normalized

Basic examples
The following example illustrates the function NOrient.

Example 1
We have a slightly un-normalized position (0.707170, 0, 0, 0.707170)

xx0500002451

VAR orient unnormorient := [0.707170, 0, 0, 0.707170];

VAR orient normorient;

...

...

normorient := NOrient(unnormorient);

The normalization of the orientation (0.707170, 0, 0, 0.707170) becomes (0.707107,
0, 0, 0.707107).

Return value
Data type: orient
The normalized orientation.

Continues on next page
1348 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.122 NOrient - Normalize orientation
RobotWare - OS

Arguments
NOrient (Rotation)

Rotation
Data type: orient
The orientation to be normalized.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Wrong orientation value in NOrient function.ERR_ORIENT_VALUE

Syntax
NOrient '('

[Rotation ':='] <expression (IN) of orient> ')'

A function with a return value of the data type orient.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, sectionRAPID summary - Mathematics

Mathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1349
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.122 NOrient - Normalize orientation

RobotWare - OS
Continued

2.123 NumToDnum - Converts num to dnum

Usage
NumToDnum converts a num to a dnum.

Basic examples
The following example illustrates the function NumToDnum.

Example 1
VAR num mynum:=55;

VAR dnum mydnum:=0;

mydnum:=NumToDnum(mynum);

The num value 55 is returned by the function as the dnum value 55.

Return value
Data type: dnum
The return value of type dnum will have the same value as the input value of type
num.

Arguments
NumToDnum (Value)

Value

Data type: num
The numeric value to be converted.

Syntax
NumToDnum '('

[Value ':='] < expression (IN) of num > ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

num - Numeric values on page 1666Num data type

dnum - Double numeric values on page1611Dnum data type

1350 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.123 NumToDnum - Converts num to dnum
RobotWare - OS

2.124 NumToStr - Converts numeric value to string

Usage
NumToStr (Numeric To String) is used to convert a numeric value to a string.

Basic examples
The following examples illustrate the function NumToStr.

Example 1
VAR string str;

str := NumToStr(0.38521,3);

The variable str is given the value "0.385".

Example 2
reg1 := 0.38521;

str := NumToStr(reg1, 2\Exp);

The variable str is given the value "3.85E-01".

Return value
Data type: string
The numeric value converted to a string with the specified number of decimals,
with exponent if so requested. The numeric value is rounded if necessary. The
decimal point is suppressed if no decimals are included.

Arguments
NumToStr (Val Dec [\Exp])

Val

Value
Data type: num
The numeric value to be converted.

Dec

Decimals
Data type: num
Number of decimals. The number of decimals must not be negative or greater than
the available precision for numeric values.

[\Exp]

Exponent
Data type: switch
To use exponent in return value.

Syntax
NumToStr '('

[Val ':='] <expression (IN) of num>

[Dec ':='] <expression (IN) of num>

['\' Exp ')'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1351
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.124 NumToStr - Converts numeric value to string

RobotWare - OS

A function with a return value of the data type string.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverview, section
RAPID summary - String functions

String functions

string - Strings on page 1728Definition of string

Technical referencemanual - RAPIDOverview, section
Basic characteristics - Basic elements

String values

DnumToStr - Converts numeric value to string on
page 1237

Convert a dnum numeric value to
a string

1352 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.124 NumToStr - Converts numeric value to string
RobotWare - OS
Continued

2.125 Offs - Displaces a robot position

Usage
Offs is used to add an offset in the object coordinate system to a robot position.

Basic examples
The following examples illustrate the function Offs.
See also More examples on page 1353.

Example 1
MoveL Offs(p2, 0, 0, 10), v1000, z50, tool1;

The robot is moved to a point 10 mm from the position p2 (in the z-direction).

Example 2
p1 := Offs (p1, 5, 10, 15);

The robot position p1 is displaced 5mm in the x-direction, 10mm in the y-direction
and 15 mm in the z-direction.

Return value
Data type: robtarget
The displaced position data.

Arguments
Offs (Point XOffset YOffset ZOffset)

Point

Data type: robtarget
The position data to be displaced.

XOffset

Data type: num
The displacement in the x-direction, in the object coordinate system.

YOffset

Data type: num
The displacement in the y-direction, in the object coordinate system.

ZOffset

Data type: num
The displacement in the z-direction, in the object coordinate system.

More examples
More examples of the function Offs are illustrated below.

Example 1
PROC pallet (num row, num column, num distance, PERS tooldata tool,

PERS wobjdata wobj)

VAR robtarget palletpos:=[[0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0],
[9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1353
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.125 Offs - Displaces a robot position

RobotWare - OS

palettpos := Offs (palettpos, (row-1)*distance, (column-1)*distance,
0);

MoveL palettpos, v100, fine, tool\WObj:=wobj;

ENDPROC

A routine for picking parts from a pallet is made. Each pallet is defined as a work
object (see figure below). The part to be picked (row and column) and the distance
between the parts are given as input parameters. Incrementing the row and column
index is performed outside the routine.
The figure shows the position and orientation of the pallet is specified by defining
a work object.

xx050002300_

Syntax
Offs '('

[Point ':='] <expression (IN) of robtarget> ','

[XOffset ':='] <expression (IN) of num> ','

[YOffset ':='] <expression (IN) of num> ','

[ZOffset ':='] <expression (IN) of num> ')'

A function with a return value of the data type robtarget.

Related information

SeeFor information about

robtarget - Position data on page 1702Position data

Technical referencemanual - RAPIDOverview,
section RAPID Summary - Mathematics

Mathematical instructions and functions

Technical referencemanual - RAPIDOverview,
section RAPID summary - Motion

Positioning instructions

1354 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.125 Offs - Displaces a robot position
RobotWare - OS
Continued

2.126 OpMode - Read the operating mode

Usage
OpMode(OperatingMode) is used to read the current operatingmode of the system.

Basic examples
The following example illustrates the function OpMode.

Example 1
TEST OpMode()

CASE OP_AUTO:

...

CASE OP_MAN_PROG:

...

CASE OP_MAN_TEST:

...

DEFAULT:

...

ENDTEST

Different program sections are executed depending on the current operatingmode.

Return value
Data type: symnum
The current operating mode as defined in the table below.

CommentSymbolic constantReturn value

Undefined operating modeOP_UNDEF0

Automatic operating modeOP_AUTO1

Manual operating mode max. 250 mm/sOP_MAN_PROG2

Manual operating mode full speed, 100 %OP_MAN_TEST3

Syntax
OpMode '(' ')'

A function with a return value of the data type symnum.

Related information

SeeFor information about

Operating manual - IRC5 with FlexPendantDifferent operating modes

RunMode - Read the running mode on page 1422Reading running mode

Technical reference manual - RAPID Instructions, Functions and Data types 1355
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.126 OpMode - Read the operating mode

RobotWare - OS

2.127 OR - Evaluates a logical value

Usage
OR is a conditional expression used to evaluate a logical value (true/false).

Basic examples
The following examples illustrate the function OR.

Example 1
VAR num a;

VAR num b;

VAR bool c;

...

c := a>5 OR b=3;

The return value of c is TRUE if a is larger than 5 or b equals 3. Otherwise the
return value is FALSE.

Example 2
VAR num mynum;

VAR string mystring;

VAR bool mybool;

VAR bool result;

...

result := mystring="Hello" OR mynum<15 AND mybool;

The return value of result is TRUE if mystring is "Hello". Or if both mynum is
smaller than 15 and mybool is TRUE. Otherwise the return value is FALSE.
The AND statement is evaluated first, thereafter the OR statement. This is illustrated
by the parentheses in the below row.

result := mystring="Hello" OR (mynum<15 AND mybool);

Return value
Data type: bool
The return value is TRUE if one or both of the conditional expressions are correct,
otherwise the return value is FALSE.

Syntax
<expression of bool> OR <expression of bool>

A function with a return value of data type bool.

Related information

SeeFor information about

AND - Evaluates a logical value on page 1127AND

XOR - Evaluates a logical value on page 1559XOR

NOT - Inverts a logical value on page 1347NOT

Technical reference manual - RAPID OverviewExpressions

1356 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.127 OR - Evaluates a logical value
RobotWare - OS

2.128 OrientZYX - Builds an orient from Euler angles

Usage
OrientZYX (Orient from Euler ZYX angles) is used to build an orient type variable
out of Euler angles.

Basic examples
The following example illustrates the function OrientZYX.

Example 1
VAR num anglex;

VAR num angley;

VAR num anglez;

VAR pose object;

...

object.rot := OrientZYX(anglez, angley, anglex)

Return value
Data type: orient
The orientation made from the Euler angles.

Arguments
OrientZYX (ZAngle YAngle XAngle)

Note

The rotations will be performed in the following order:
1 rotation around the z axis
2 rotation around the new y axis
3 rotation around the new x axis

ZAngle

Data type: num
The rotation, in degrees, around the Z axis.

YAngle

Data type: num
The rotation, in degrees, around the Y axis.

XAngle

Data type: num
The rotation, in degrees, around the X axis.

Syntax
OrientZYX '('

[ZAngle ':='] <expression (IN) of num> ','

[YAngle ':='] <expression (IN) of num> ','

[XAngle ':='] <expression (IN) of num> ')'

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1357
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.128 OrientZYX - Builds an orient from Euler angles

RobotWare - OS

A function with a return value of the data type orient.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section Mathematics

Mathematical instructions and functions

1358 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.128 OrientZYX - Builds an orient from Euler angles
RobotWare - OS
Continued

2.129 ORobT - Removes the program displacement from a position

Usage
ORobT (Object Robot Target) is used to transform a robot position from the program
displacement coordinate system to the object coordinate system and/or to remove
an offset for the external axes.

Basic examples
The following example illustrates the function ORobT.
See also More examples on page 1360.

Example 1
VAR robtarget p10;

VAR robtarget p11;

VAR num wobj_diameter;

p10 := CRobT(\Tool:=tool1 \WObj:=wobj_diameter);

p11 := ORobT(p10);

The current positions of the robot and the external axes are stored in p10 and p11.
The values stored in p10 are related to the ProgDisp/ExtOffs coordinate system.
The values stored in p11 are related to the object coordinate system without any
program displacement and any offset on the external axes.

Return value
Data type: robtarget
The transformed position data.

Arguments
ORobT (OrgPoint [\InPDisp] | [\InEOffs])

OrgPoint

Original Point
Data type: robtarget
The original point to be transformed.

[\InPDisp]

In Program Displacement
Data type: switch
Returns the TCP position in the ProgDisp coordinate system, that is, removes
external axes offset only.

[\InEOffs]

In External Offset
Data type: switch
Returns the external axes in the offset coordinate system, that is, removes program
displacement for the robot only.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1359
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.129 ORobT - Removes the program displacement from a position

RobotWare - OS

More examples
More examples of how to use the function ORobT are illustrated below.

Example 1
p10 := ORobT(p10 \InEOffs);

The ORobT function will remove any program displacement that is active, leaving
the TCP position relative to the object coordinate system. The external axes will
remain in the offset coordinate system.

Example 2
p10 := ORobT(p10 \InPDisp);

The ORobT function will remove any offset of the external axes. The TCP position
will remain in the ProgDisp coordinate system.

Syntax
ORobT '('

[OrgPoint ':='] < expression (IN) of robtarget>

['\' InPDisp] | ['\' InEOffs] ')'

A function with a return value of the data type robtarget.

Related information

SeeFor information about

PDispOn -Activates programdisplacement on page532Definition of program displacement
for the robot PDispSet - Activates program displacement using

known frame on page 537

EOffsOn - Activates an offset for additional axes on
page 223

Definition of offset for external axes

EOffsSet - Activates an offset for additional axes using
known values on page 225

Technical reference manual - RAPID Overview, sec-
tion Motion and I/O principles - Coordinate systems

Coordinate systems

1360 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.129 ORobT - Removes the program displacement from a position
RobotWare - OS
Continued

2.130 ParIdPosValid - Valid robot position for parameter identification

Usage
ParIdPosValid (Parameter Identification Position Valid) checks whether the robot
position is valid for the current parameter identification, such as load identification
of tool or payload.
This instruction can only be used in the main task or, if in a MultiMove system, in
motion tasks.

Basic examples
The following example illustrates the function ParIdPosValid.

Example 1
VAR jointtarget joints;

VAR bool valid_joints{12};

! Check if valid robot type

IF ParIdRobValid(TOOL_LOAD_ID) <> ROB_LOAD_VAL THEN

EXIT;

ENDIF

! Read the current joint angles

joints := CJointT();

! Check if valid robot position

IF ParIdPosValid (TOOL_LOAD_ID, joints, valid_joints) = TRUE THEN

! Valid position for load identification

! Continue with LoadId

...

ELSE

! Not valid position for one or several axes for load

! identification

! Move the robot to the output data given in variable joints

! and do ParIdPosValid once again

...

ENDIF

Check whether robot position is valid before doing load identification of tool.

Return value
Data type: bool
TRUE if robot position is valid for current parameter identification.
FALSE if robot position is not valid for current parameter identification.

Arguments
ParIdPosValid (ParIdType Pos AxValid [\ConfAngle])

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1361
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.130 ParIdPosValid - Valid robot position for parameter identification

RobotWare - OS

ParIdType

Data type: paridnum
Type of parameter identification as defined in table below

CommentSymbolic constantValue

Identify tool loadTOOL_LOAD_ID1

Identify payload (Ref. instruction GripLoad)PAY_LOAD_ID2

Identify External Manipulator IRBP K loadIRBP_K3

Identify External Manipulator IRBP L loadIRBP_L4

Identify External Manipulator IRBP C loadIRBP_C4

Identify External Manipulator IRBP C_INDEX loadIRBP_C_INDEX4

Identify External Manipulator IRBP T loadIRBP_T4

Identify External Manipulator IRBP R loadIRBP_R5

Identify External Manipulator IRBP A loadIRBP_A6

Identify External Manipulator IRBP B loadIRBP_B6

Identify External Manipulator IRBP D loadIRBP_D6

Pos

Data type: jointtarget
Variable specifies the actual joint angles for all robot and external axes. The variable
is updated by ParIdPosValid according to the table below.

Output axis joint valueInput axis joint value

Not changedValid

Changed to suitable valueNot valid

AxValid

Data type: bool
Array variable with 12 elements corresponding to 6 robot and 6 external axes. The
variable is updated by ParIdPosValid according to the table below.

Output status in AxValidInput axis joint value in Pos

TRUEValid

FALSENot valid

Continues on next page
1362 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.130 ParIdPosValid - Valid robot position for parameter identification
RobotWare - OS
Continued

[\ConfAngle]

Data type: num
Optional argument for specification of specific configuration angle +/- degrees to
be used for parameter identification.

xx0500002493

Default + 90 degrees if this argument is not specified.
Min. + or - 30 degrees. Optimum + or - 90 degrees.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs.ERR_PID_RAISE_PP

Syntax
ParIdPosValid '('

[ParIdType ':='] <expression (IN) of paridnum> ','

[Pos ':='] <variable (VAR) of jointtarget> ','

[AxValid ':='] <array variable {*} (VAR) of bool>

['\' ConfAngle ':=' <expression (IN) of num>] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

paridnum - Type of parameter identification
on page 1675

Type of parameter identification

ParIdRobValid - Valid robot type for parameter
identification on page 1364

Valid robot type

LoadId - Load identification of tool or payload
on page 366

Load identification of tool or payload

ManLoadIdProc - Load identification of IRBP
manipulators on page 373

Load identification of positioners (IRBP)

Technical reference manual - RAPID Instructions, Functions and Data types 1363
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.130 ParIdPosValid - Valid robot position for parameter identification

RobotWare - OS
Continued

2.131 ParIdRobValid - Valid robot type for parameter identification

Usage
ParIdRobValid (Parameter Identification Robot Valid) checks whether the robot
or manipulator type is valid for the current parameter identification, such as load
identification of tool or payload.
This instruction can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Basic examples
The following example illustrates the function ParIdRobValid.

Example 1
TEST ParIdRobValid (TOOL_LOAD_ID)

CASE ROB_LOAD_VAL:

! Possible to do load identification of tool in actual robot
type

...

CASE ROB_LM1_LOAD_VAL:

! Only possible to do load identification of tool with

! IRB 6400FHD if actual load < 200 kg

...

CASE ROB_NOT_LOAD_VAL:

! Not possible to do load identification of tool in actual
robot type

...

ENDTEST

Return value
Data type: paridvalidnum
Whether the specified parameter identification can be performed with the current
robot or manipulator type, as defined in the table below.

CommentSymbolic constantValue

Valid robot or manipulator type for the actual parameter
identification

ROB_LOAD_VAL10

Not valid type for the actual parameter identificationROB_NOT_LOAD_VAL11

Valid robot type IRB 6400FHD for the actual parameter
identification if actual load < 200kg

ROB_LM1_LOAD_VAL12

Arguments
ParIdRobValid(ParIdType [\MechUnit] [\AxisNo])

ParIdType

Data type: paridnum
Type of parameter identification as defined in table below.

CommentSymbolic constantValue

Identify robot tool loadTOOL_LOAD_ID1

Continues on next page
1364 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.131 ParIdRobValid - Valid robot type for parameter identification
RobotWare - OS

CommentSymbolic constantValue

Identify robot payload (Ref. instruction GripLoad)PAY_LOAD_ID2

Identify External Manipulator IRBP K loadIRBP_K3

Identify External Manipulator IRBP L loadIRBP_L4

Identify External Manipulator IRBP C loadIRBP_C4

Identify External Manipulator IRBP C_INDEX loadIRBP_C_INDEX4

Identify External Manipulator IRBP T loadIRBP_T4

Identify External Manipulator IRBP R loadIRBP_R5

Identify External Manipulator IRBP A loadIRBP_A6

Identify External Manipulator IRBP B loadIRBP_B6

Identify External Manipulator IRBP D loadIRBP_D6

[\MechUnit]

Mechanical Unit
Data type: mecunit
Mechanical Unit used for the load identification. Only to be specified for external
manipulator. If this argument is omitted the TCP-robot in the task is used.

[\AxisNo]

Axis number
Data type: num
Axis number within the mechanical unit which holds the load to be identified. Only
to be specified for external manipulator.
When the argument \MechUnit is used, then \AxisNomust be used. The argument
\AxisNo can not be used without \MechUnit.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs.ERR_PID_RAISE_PP

Syntax
ParIdRobValid '('

[ParIdType ':='] <expression (IN) of paridnum>

['\' MechUnit ':=' <variable (VAR) of mecunit>]

['\' AxisNo ':=' <expression (IN) of num>] ')'

A function with a return value of the data type paridvalidnum.

Related information

SeeFor information about

paridnum - Type of parameter identification
on page 1675

Type of parameter identification

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1365
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.131 ParIdRobValid - Valid robot type for parameter identification

RobotWare - OS
Continued

SeeFor information about

mecunit - Mechanical unit on page 1658Mechanical unit to be identified

paridvalidnum - Result of ParIdRobValid on
page 1677

Result of this function

ParIdPosValid - Valid robot position for para-
meter identification on page 1361

Valid robot position

LoadId - Load identification of tool or payload
on page 366

Load identification of robot tool load or pay-
load

ManLoadIdProc - Load identification of IRBP
manipulators on page 373

Load identification of positioner loads

1366 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.131 ParIdRobValid - Valid robot type for parameter identification
RobotWare - OS
Continued

2.132 PathLevel - Get current path level

Usage
PathLevel is used to get the current path level. This function will show whether
the task is executing on the original level or if the original movement path has been
stored and a new temporary movement is executing. Read more about Path
Recovery in Application manual - Controller software IRC5.

Basic examples
The following example illustrates the function PathLevel.
See also More examples on page 1367.

Example 1
VAR num level;

level:= PathLevel();

Variable level will be 1 if executed in an original movement path or 2 if executed
in a temporary new movement path.

Return value
Data type: num
There are two possible return values.

DescriptionReturn value

Executing in original movement path.1

Executing in StorePath level, a temporary new movement path.2

More examples
One more example of how to use the function PathLevel is illustrated below.

Example 1
...

MoveL p100, v100, z10, tool1;

StopMove;

StorePath;

p:= CRobT(\Tool:=tool1);

!New temporary movement

MoveL p1, v100, fine, tool1;

...

level:= PathLevel();

...

MoveL p, v100, fine, tool1;

RestoPath;

StartMove;

...

Variable level will be 2.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1367
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.132 PathLevel - Get current path level

RobotWare - OS

Limitations
RobotWare option Path Recovery must be installed to be able to use function
PathLevel at path level 2

Syntax
PathLevel '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Application manual - Controller software IRC5Path recovery

StorePath - Stores the path when an interrupt occurs on
page 816

Store and restore path

RestoPath - Restores the path after an interrupt on page610

StartMove - Restarts robot movement on page 781Stop and start move
StopMove - Stops robot movement on page 810

1368 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.132 PathLevel - Get current path level
RobotWare - OS
Continued

2.133 PathRecValidBwd - Is there a valid backward path recorded

Usage
PathRecValidBwd is used to check if the path recorder is active and if a recorded
backward path is available.

Basic examples
The following example illustrates the function PathRecValidBwd.
See also More examples on page 1370.

Example 1
VAR bool bwd_path;

VAR pathrecid fixture_id;

bwd_path := PathRecValidBwd (\ID:=fixture_id);

The variable bwd_path is set to TRUE if it is possible to back-up to the position
with identifier fixture_id. If not, bwd_path is set to FALSE.

Return value
Data type: bool
The return value of the function can be determined from following flow chart:

xx0500002132

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1369
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.133 PathRecValidBwd - Is there a valid backward path recorded

Path Recovery

Arguments
PathRecValidBwd ([\ID])

[\ID]

Identifier
Data type: pathrecid
Variable that specifies the name of the recording start position. Data type
pathrecid is a non-value type, only used as an identifier for naming the recording
position.

Program execution
Before the path recorder is ordered to move backwards with PathRecMoveBwd it
is possible to check whether a valid recorded path is present with
PathRecValidBwd.

More examples
The following examples illustrate the function PathRecValidBwd.

Example 1
PathRecStart id1;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

bwd_path := PathRecValidBwd (\ID := id1);

The path recorder is started and two move instructions are executed.
PathRecValidBwd will return TRUE and the available backup path will be:
From p2 to p1 to the start position.

Example 2
PathRecStart id1;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStop \Clear;

bwd_path:= PathRecValidBwd (\ID := id1);

The path recorder is started and two move instructions are executed. Then the
path recorder is stopped and cleared. PathRecValidBwd will return FALSE.

Example 3
PathRecStart id1;

MoveL p1, vmax, z50, tool1;

PathRecStart id2;

MoveL p2, vmax, z50, tool1;

bwd_path := PathRecValidBwd ();

The path recorder is started and one move instruction is executed. Then, an
additional path identifier is started followed by a move instruction.
PathRecValidBwd will return TRUE and the backup path will be:
From p2 to p1.

Example 4
PathRecStart id1;

MoveL p1, vmax, z50, tool1;

Continues on next page
1370 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.133 PathRecValidBwd - Is there a valid backward path recorded
Path Recovery
Continued

WaitSyncTask sync101, tasklist_r1o1;

MoveL p2, vmax, z50, tool1;

bwd_path1 := PathRecValidBwd ();

bwd_path2 := PathRecValidBwd (\ID := id1);

Executing above program will result in that the boolean variable bwd_path1 will
be assigned TRUE since a valid backwards path to the WaitSyncTask statement
exists. The boolean variable bwd_path2 will be assigned FALSE since it isn’t
possible to back up above a WaitSyncTask statement.

Syntax
PathRecValidBwd '('

['\' ID ':=' < variable (VAR) of pathrecid >] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

pathrecid - Path recorder identifier on page1679Path Recorder Identifiers

PathRecStart - Start the path recorder on
page 523

Start - stop the path recorder

PathRecStop - Stop the path recorder on
page 526

PathRecMoveBwd - Move path recorder
backwards on page 514

Play the path recorder backward

PathRecValidFwd - Is there a valid forward
path recorded on page 1372

Check if a valid forward path exists

PathRecMoveFwd - Move path recorder for-
ward on page 520

Play the path recorder forward

Technical referencemanual - RAPIDOverviewMotion in general

Technical reference manual - RAPID Instructions, Functions and Data types 1371
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.133 PathRecValidBwd - Is there a valid backward path recorded

Path Recovery
Continued

2.134 PathRecValidFwd - Is there a valid forward path recorded

Usage
PathRecValidFwd is used to check if the path recorder can be used to move
forward. The ability to move forward with the path recorder implies that the path
recorder must have been ordered to move backwards earlier.

Basic examples
The following example illustrates the function PathRecValidFwd.
See also More examples on page 1373.

Example 1
VAR bool fwd_path;

VAR pathrecid fixture_id;

fwd_path:= PathRecValidFwd (\ID:=fixture_id);

The variable fwd_path is set to TRUE if it is possible to move forward to the position
with the with identifier fixture_id. If not, fwd_path is set to FALSE.

Return value
Data type: bool
The return value of PathRecValidFwd without specified \ID is:
TRUE if:

• The path recorder hasmoved the robot backwards, using PathRecMoveBwd.
• The robot has not moved away from the path executed by PathRecMoveBwd.

FALSE if:
• The above stated conditions are not met.

The return value of PathRecValidFwdwith specified \ID is:
TRUE if:

• The path recorder hasmoved the robot backwards, using PathRecMoveBwd.
• The robot has not moved away from the path executed by PathRecMoveBwd.
• The specified \ID was passed during the backward motion.

FALSE if:
• The above stated conditions are not met.

Arguments
PathRecValidFwd ([\ID])

[\ID]

Identifier
Data type: pathrecid
Variable that specifies the name of the recording start position. Data type
pathrecid is a non-value type, only used as an identifier for naming the recording
position.

Continues on next page
1372 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.134 PathRecValidFwd - Is there a valid forward path recorded
Path Recovery

Program execution
After the path recorder has been ordered to move backwards using
PathRecMoveBwd it is possible to check if a valid recorded path to move the robot
forward exists. If the identifier \ID is omitted PathRevValidFwd returns if it is
possible to move forward to the position where the backwards movement was
initiated.

More examples
The following example illustrates the function PathRecValidFwd.

Example 1
VAR pathrecid id1;

VAR pathrecid id2;

VAR pathrecid id3;

PathRecStart id1;

MoveL p1, vmax, z50, tool1;

PathRecStart id2;

MoveL p2, vmax, z50, tool1;

PathRecStart id3;

!See figures 1 and 8 in tbe following table.

MoveL p3, vmax, z50, tool1;

ERROR

StorePath;

IF PathRecValidBwd(\ID:=id3) THEN

!See figure 2 in the following table.

PathRecMoveBwd \ID:=id3;

! Do some other operation

ENDIF

IF PathRecValidBwd(\ID:=id2) THEN

!See figure 3 in the following table.

PathRecMoveBwd \ID:=id2;

! Do some other operation

ENDIF

!See figure 4 in the following table.

PathRecMoveBwd;

! Do final service action

IF PathRecValidFwd(\ID:=id2) THEN

!See figure 5 in the following table.

PathRecMoveFwd \ID:=id2;

! Do some other operation

ENDIF

IF PathRecValidFwd(\ID:=id3) THEN

!See figure 6 in the following table.

PathRecMoveFwd \ID:=id3;

! Do some other operation

ENDIF

!See figure 7 in the following table.

PathRecMoveFwd;

RestoPath;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1373
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.134 PathRecValidFwd - Is there a valid forward path recorded

Path Recovery
Continued

StartMove;

RETRY;

xx0500002121

1

xx0500002124

2

xx0500002126

3

xx0500002127

4

xx0500002128

5

xx0500002129

6

xx0500002130

7

xx0500002131

8

The example above will start the path recorder and add identifiers at three different
locations along the executed path. The picture above references the example code
and describes how the robot will move in the case of an error while executing

Continues on next page
1374 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.134 PathRecValidFwd - Is there a valid forward path recorded
Path Recovery
Continued

towards point p3. The PathRecValidBwd and PathRecValidFwd are used
respectively as it is not possible in advance to determine where in the program a
possible error occurs.

Syntax
PathRecValidFwd '('

['\' ID ':=' < variable (VAR) of pathrecid >] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

pathrecid - Path recorder identifier on page 1679Path Recorder Identifiers

PathRecStart - Start the path recorder on page523Start - stop the path recorder
PathRecStop - Stop the path recorder on page526

PathRecValidBwd - Is there a valid backward path
recorded on page 1369

Check if valid backward path exists

PathRecMoveBwd - Move path recorder back-
wards on page 514

Play the path recorder backward

PathRecMoveFwd - Move path recorder forward
on page 520

Play the path recorder forward

Technical reference manual - RAPID OverviewMotion in general

Technical reference manual - RAPID Instructions, Functions and Data types 1375
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.134 PathRecValidFwd - Is there a valid forward path recorded

Path Recovery
Continued

2.135 PFRestart - Check interrupted path after power failure

Usage
PFRestart (Power Failure Restart) is used to check if the path has been interrupted
at power failure. If so it might be necessary to make some specific actions. The
function checks the path on current level, base level or on interrupt level.

Basic examples
The following example illustrates the function PFRestart.

Example 1
IF PFRestart() = TRUE THEN

It is checked, if an interrupted path exists on the current level. If so the function
will return TRUE.

Return value
Data type: bool
TRUE if an interrupted path exists on the specified path level, otherwise FALSE.

Arguments
PFRestart([\Base] | [\Irpt])

[\Base]

Base Level
Data type: switch
Returns TRUE if an interrupted path exists on base level.

[\Irpt]

Interrupt Level
Data type: switch
Returns TRUE if an interrupted path exists on StorePath level.
If no argument is given, the function will return TRUE if an interrupted path exists
on current level.

Syntax
PFRestart '('

['\' Base] | ['\' Irpt] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

Product specification - Controller software IRC5Advanced RAPID

1376 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.135 PFRestart - Check interrupted path after power failure
RobotWare - OS

2.136 PoseInv - Inverts pose data

Usage
PoseInv (Pose Invert) calculates the reverse transformation of a pose.

Basic examples
The following example illustrates the function PoseInv.

Example 1

z0

x0

y0

z1

x1

y1

pose1

pose2

xx0500002443

pose1 represents the coordinates system 1 related to the coordinate system 0.
The transformation giving the coordinate system 0 related to the coordinate system
1 is obtained by the reverse transformation, stored in pose2.

VAR pose pose1;

VAR pose pose2;

...

pose2 := PoseInv(pose1);

Return value
Data type: pose
The value of the reverse pose.

Arguments
PoseInv (Pose)

Pose

Data type: pose
The pose to invert.

Syntax
PoseInv’(’

[Pose ’:=’] <expression (IN) of pose>

’)’

A function with a return value of the data type pose.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1377
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.136 PoseInv - Inverts pose data

RobotWare - OS

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

1378 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.136 PoseInv - Inverts pose data
RobotWare - OS
Continued

2.137 PoseMult - Multiplies pose data

Usage
PoseMult (Pose Multiply) is used to calculate the product of two pose
transformations. A typical use is to calculate a new pose as the result of a
displacement acting on an original pose.

Basic examples
The following example illustrates the function PoseMult.

Example 1

z0

x0

y0

z1

x1

y1

z2

x2

y2

pose1

pose3

pose2

xx0500002444

pose1 represents the coordinate system 1 related to the coordinate system 0.
pose2 represents the coordinate system 2 related to the coordinate system 1. The
transformation giving pose3, the coordinate system 2 related to the coordinate
system 0, is obtained by the product of the two transformations:

VAR pose pose1;

VAR pose pose2;

VAR pose pose3;

...

pose3 := PoseMult(pose1, pose2);

Return value
Data type: pose
The value of the product of the two poses.

Arguments
PoseMult (Pose1 Pose2)

Pose1

Data type: pose
The first pose.

Pose2

Data type: pose

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1379
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.137 PoseMult - Multiplies pose data

RobotWare - OS

The second pose.

Syntax
PoseMult '('

[Pose1 ':='] <expression (IN) of pose> ','

[Pose2 ':='] <expression (IN) of pose> ')'

A function with a return value of the data type pose.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

1380 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.137 PoseMult - Multiplies pose data
RobotWare - OS
Continued

2.138 PoseVect - Applies a transformation to a vector

Usage
PoseVect (Pose Vector) is used to calculate the product of a pose and a vector.
It is typically used to calculate a vector as the result of the effect of a displacement
on an original vector.

Basic examples
The following example illustrates the function PoseVect.

Example 1

z0

x0

y0

z1

x1

y1

pos2 pos1

pose1

xx0500002445

pose1 represents the coordinates system 1 related to the coordinate system 0.
pos1 is a vector related to coordinate system 1. The corresponding vector related
to coordinate system 0 is obtained by the product;

VAR pose pose1;

VAR pos pos1;

VAR pos pos2;

...

...

pos2:= PoseVect(pose1, pos1);

Return value
Data type: pos
The value of the product of the pose and the original pos.

Arguments
PoseVect (Pose Pos)

Pose

Data type: pose
The transformation to be applied.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1381
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.138 PoseVect - Applies a transformation to a vector

RobotWare - OS

Pos

Data type: pos
The pos to be transformed.

Syntax
PoseVect '('

[Pose ':='] <expression (IN) of pose> ','

[Pos ':='] <expression (IN) of pos> ')'

A function with a return value of the data type pos.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

1382 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.138 PoseVect - Applies a transformation to a vector
RobotWare - OS
Continued

2.139 Pow - Calculates the power of a value

Usage
Pow (Power) is used to calculate the exponential value in any base.

Basic examples
The following example illustrates the function Pow.

Example 1
VAR num x;

VAR num y

VAR num reg1;

...

reg1:= Pow(x, y);

reg1 is assigned the value xy .

Return value
Data type: num
The value of the Base raised to the power of the Exponent, that is, BaseExponent .

Arguments
Pow (Base Exponent)

Base

Data type: num
The base argument value.

Exponent

Data type: num
The exponent argument value.

Limitations
The execution of the function xy will give an error if:

• x < 0 and y is not an integer;
• x = 0 and y ≤ 0.

Syntax
Pow '('

[Base ':='] <expression (IN) of num> ','

[Exponent ':='] <expression (IN) of num> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1383
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.139 Pow - Calculates the power of a value

RobotWare - OS

2.140 PowDnum - Calculates the power of a value

Usage
PowDnum (Power Dnum) is used to calculate the exponential value in any base.

Basic examples
The following example illustrates the function PowDnum.

Example 1
VAR dnum x;

VAR num y

VAR dnum value;

...

value:= PowDnum(x, y);

value is assigned the value xy .

Return value
Data type: dnum
The value of the Base raised to the power of the Exponent, that is, BaseExponent .

Arguments
PowDnum (Base Exponent)

Base

Data type: dnum
The base argument value.

Exponent

Data type: num
The exponent argument value.

Limitations
The execution of the function xy will give an error if:

• x < 0 and y is not an integer;
• x = 0 and y ≤ 0.

Syntax
PowDnum '('

[Base ':='] <expression (IN) of dnum> ','

[Exponent ':='] <expression (IN) of num> ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

1384 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.140 PowDnum - Calculates the power of a value
RobotWare - OS

2.141 PPMovedInManMode - Test whether the program pointer is moved in manual
mode

Usage
PPMovedInManMode returns TRUE if the user has moved the program pointer
while the controller is in manual mode - that is, operator key is at Man Reduced
Speed or Man Full Speed. The program pointer moved state is reset when the key
is switched from Auto to Man, or when using the instruction ResetPPMoved.

Basic examples
The following example illustrates the function PPMovedInManMode.

Example 1
IF PPMovedInManMode() THEN

WarnUserOfPPMovement;

DoJob;

ELSE

DoJob;

ENDIF

Return value
Data type: bool
TRUE if the program pointer has been moved by the user while in manual mode.

Program execution
Test if the program pointer for the current program task has beenmoved in manual
mode.

Syntax
PPMovedInManMode '(' ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

IsStopStateEvent - Test whether moved pro-
gram pointer on page 1325

Test whether program pointer has moved

ResetPPMoved - Reset state for the program
pointer moved in manual mode on page 608

Reset state of moved program pointer in
manual mode

Technical reference manual - RAPID Instructions, Functions and Data types 1385
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.141 PPMovedInManMode - Test whether the program pointer is moved in manual mode

RobotWare - OS

2.142 Present - Tests if an optional parameter is used

Usage
Present is used to test if an optional argument has been used when calling a
routine.
An optional parameter may not be used if it was not specified when calling the
routine. This function can be used to test if a parameter has been specified, in
order to prevent errors from occurring.

Basic examples
The following example illustrates the function Present.
See also More examples on page 1386.

Example 1
PROC feeder (\switch on | switch off)

IF Present (on) Set do1;

IF Present (off) Reset do1;

ENDPROC

The output do1, which controls a feeder, is set or reset depending on the argument
used when calling the routine.

Return value
Data type: bool
TRUE = The parameter value or a switch has been defined when calling the routine.
FALSE = The parameter value or a switch has not been defined.

Arguments
Present (OptPar)

OptPar

Optional Parameter
Data type: Any type
The name of the optional parameter to be tested.

More examples
The following example illustrates the function Present.

Example 1
PROC glue (\switch on, num glueflow, robtarget topoint, speeddata

speed, zonedata zone, PERS tooldata tool, \PERS wobjdata wobj)

IF Present (on) PulseDO glue_on;

SetAO gluesignal, glueflow;

IF Present (wobj) THEN

MoveL topoint, speed, zone, tool \WObj:=wobj;

ELSE

MoveL topoint, speed, zone, tool;

ENDIF

ENDPROC

Continues on next page
1386 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.142 Present - Tests if an optional parameter is used
RobotWare - OS

A glue routine is made. If the argument \on is specified when calling the routine,
a pulse is generated on the signal glue_on. The robot then sets an analog output
gluesignal, which controls the glue gun, and moves to the end position. As the
wobj parameter is optional, different MoveL instructions are used depending on
whether this argument is used or not.

Syntax
Present '('

[OptPar ':='] <reference (REF) of any type> ')'

A REF parameter requires, in this case, the optional parameter name.
A function with a return value of the data type bool.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewRoutine parameters

Technical reference manual - RAPID Instructions, Functions and Data types 1387
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.142 Present - Tests if an optional parameter is used

RobotWare - OS
Continued

2.143 ProgMemFree - Get the size of free program memory

Usage
ProgMemFree (Program Memory Free) is used to get the size of free program
memory.

Basic examples
The following example illustrates the function ProgMemFree.

Example 1
FUNC num module_size(string file_path)

VAR num pgmfree_before;

VAR num pgmfree_after;

pgmfree_before:=ProgMemFree();

Load \Dynamic, file_path;

pgmfree_after:=ProgMemFree();

Unload file_path;

RETURN (pgmfree_before-pgmfree_after);

ENDFUNC

ProgMemFree is used in a function that returns the value for how much memory
a module allocates in the program memory.

Return value
Data type: num
The size of free program memory in bytes.

Syntax
ProgMemFree '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Load - Load a program module during execution on
page 362

Load a program module

UnLoad - UnLoad a programmodule during execution
on page 992

Unload a program module

1388 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.143 ProgMemFree - Get the size of free program memory
RobotWare - OS

2.144 PrxGetMaxRecordpos - Get the maximum sensor position

Usage
PrxGetMaxRecordpos is used to return themaximum position inmmof the active
record.
The maximum sensor position can be used for scaling or limiting max_sync
argument in the SyncToSensor instruction.

Basic example
maxpos:=PrxGetMaxRecordpos Ssync1;

Gets the maximum position for the active profile for the mechanical unit Ssync1.

Return value
Data type: num
The maximum position (in mm) of the recorded profile of sensor movement.

Arguments
PrxGetMaxRecordpos MechUnit

MechUnit

Data type: mechunit
The moving mechanical unit object to which the robot movement is synchronized.

Program execution
The recording must be finished and the record must be active.

Syntax
PrxGetMaxRecordpos '('

[MechUnit ':='] < expression (IN) of mechunit> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Application manual - Controller software IRC5Machine Synchronization

Technical reference manual - RAPID Instructions, Functions and Data types 1389
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.144 PrxGetMaxRecordpos - Get the maximum sensor position

Machine Synchronization

2.145 RawBytesLen - Get the length of rawbytes data

Usage
RawBytesLen is used to get the current length of valid bytes in a rawbytes variable.

Basic examples
The following example illustrates the function RawBytesLen.

Example 1
VAR rawbytes from_raw_data;

VAR rawbytes to_raw_data;

VAR num integer := 8

VAR num float := 13.4;

ClearRawBytes from_raw_data;

PackRawBytes integer, from_raw_data, 1 \IntX := INT;

PackRawBytes float, from_raw_data, (RawBytesLen(from_raw_data)+1)
\Float4;

CopyRawBytes from_raw_data, 1, to_raw_data, 3;

In this example the variable from_raw_data of type rawbytes is first cleared, that
is, all bytes set to 0 (same as default at declaration). Then the value of integer is
placed in the first 2 bytes and with help of the function RawBytesLen the value of
float is placed in the next 4 bytes (starting at index 3).
After having filled from_raw_data with data, the contents (6 bytes) is copied to
to_raw_data, starting at position 3.

Return value
Data type: num
The current length of valid bytes in a variable of type rawbytes; range 0 ... 1024.
In general, the current length of valid bytes in a rawbytes variable is updated by
the system to be the last written byte in the rawbytes structure.
For details, see data type rawbytes, instruction ClearRawBytes, CopyRawBytes,
PackDNHeader, PackRawBytes, and ReadRawBytes.

Arguments
RawBytesLen (RawData)

RawData

Data type: rawbytes
RawData is the data container whose current length of valid bytes shall be returned.

Program execution
During program execution the current length of valid bytes is returned.

Syntax
RawBytesLen '('

[RawData ':='] < variable (VAR) of rawbytes> ')'

A function with a return value of the data type num.

Continues on next page
1390 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.145 RawBytesLen - Get the length of rawbytes data
RobotWare - OS

Related information

SeeFor information about

rawbytes - Raw data on page 1689rawbytes data

ClearRawBytes - Clear the contents of raw-
bytes data on page 133

Clear the contents of rawbytes data

CopyRawBytes - Copy the contents of raw-
bytes data on page 157

Copy the contents of rawbytes data

PackDNHeader - PackDeviceNet Header into
rawbytes data on page 503

Pack DeviceNet header into rawbytes data

PackRawBytes - Pack data into rawbytes
data on page 506

Pack data into rawbytes data

ReadRawBytes - Read rawbytes data on
page 586

Read rawbytes data

UnpackRawBytes - Unpack data from raw-
bytes data on page 995

Unpack data from rawbytes data

WriteRawBytes - Write rawbytes data on
page 1082

Write rawbytes data

Application manual - Controller software
IRC5

File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1391
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.145 RawBytesLen - Get the length of rawbytes data

RobotWare - OS
Continued

2.146 ReadBin - Reads a byte from a file or serial channel

Usage
ReadBin (Read Binary) is used to read a byte (8 bits) from a file or serial channel.
This function works on both binary and character-based files or serial channels.

Basic examples
The following example illustrates the function ReadBin.
See also More examples on page 1393.

Example 1
VAR num character;

VAR iodev inchannel;

...

Open "com1:", inchannel\Bin;

character := ReadBin(inchannel);

A byte is read from the binary serial channel inchannel.

Return value
Data type: num
A byte (8 bits) is read from a specified file or serial channel. This byte is converted
to the corresponding positive numeric value and returned as a num data type. If a
file is empty (end of file), EOF_BIN (the number -1) is returned.

Arguments
ReadBin (IODevice [\Time])

IODevice

Data type: iodev
The name (reference) of the file or serial channel to be read.

[\Time]

Data type: num
The max. time for the reading operation (timeout) in seconds. If this argument is
not specified, themax. time is set to 60 seconds. To wait forever, use the predefined
constant WAIT_MAX.
If this time runs out before the reading operation is finished, the error handler will
be called with the error code ERR_DEV_MAXTIME. If there is no error handler, the
execution will be stopped.
The timeout function is in use also during program stop and will be noticed by the
RAPID program at program start.

Program execution
Program execution waits until a byte (8 bits) can be read from the file or serial
channel.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Continues on next page
1392 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.146 ReadBin - Reads a byte from a file or serial channel
RobotWare - OS

More examples
The following example illustrates the function ReadBin.

Example 1
VAR num bindata;

VAR iodev file;

Open "HOME:/myfile.bin", file \Read \Bin;

bindata := ReadBin(file);

WHILE bindata <> EOF_BIN DO

TPWrite ByteToStr(bindata\Char);

bindata := ReadBin(file);

ENDWHILE

Read the contents of a binary file myfile.bin from the beginning to the end and
displays the received binary data converted to chars on the FlexPendant (one char
on each line).

Limitations
The function can only be used for files and serial channels that have been opened
with read access (\Read for character based files, \Bin or \Append \Bin for
binary files).

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs during reading.ERR_FILEACC

Time-out before the read operation is finished.ERR_DEV_MAXTIME

Predefined data
The constant EOF_BIN can be used to stop reading at the end of the file.

CONST num EOF_BIN := -1;

Syntax
ReadBin '('

[IODevice ':='] <variable (VAR) of iodev>

['\' Time ':=' <expression (IN) of num>] ')'

A function with a return value of the type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening, etc. files or serial channels

ByteToStr - Converts a byte to a string data on
page 1169

Convert a byte to a string data

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1393
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.146 ReadBin - Reads a byte from a file or serial channel

RobotWare - OS
Continued

2.147 ReadDir - Read next entry in a directory

Usage
ReadDir is used to retrieve the name of the next file or subdirectory under a
directory that has been opened with the instruction OpenDir.
As long as the function returns TRUE, there can be more files or subdirectories to
retrieve.

Basic examples
The following example illustrates the function ReadDir.
See also More examples on page 1395.

Example 1
PROC lsdir(string dirname)

VAR dir directory;

VAR string filename;

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

TPWrite filename;

ENDWHILE

CloseDir directory;

ENDPROC

This example prints out the names of all files or subdirectories under the specified
directory.

Return value
Data type: bool
The function will return TRUE if it has retrieved a name, otherwise FALSE.

Arguments
ReadDir (Dev FileName)

Dev

Data type: dir
A variable with reference to the directory, fetched by instruction OpenDir.

FileName

Data type: string
The retrieved file or subdirectory name.

Program execution
This function returns a bool that specifies if the retrieving of a name was successful
or not.

Continues on next page
1394 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.147 ReadDir - Read next entry in a directory
RobotWare - OS

More examples
More examples of the function ReadDir are illustrated below

Example 1
This example implements a generic traverse of a directory structure function.

PROC searchdir(string dirname, string actionproc)

VAR dir directory;

VAR string filename;

IF IsFile(dirname \Directory) THEN

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

! .. and . is the parent and resp. this directory

IF filename <> ".." AND filename <> "." THEN

searchdir dirname+"/"+filename, actionproc;

ENDIF

ENDWHILE

CloseDir directory;

ELSE

%actionproc% dirname;

ENDIF

ERROR

RAISE;

ENDPROC

PROC listfile(string filename)

TPWrite filename;

ENDPROC

PROC main()

! Execute the listfile routine for all files found under the

! tree in HOME:

searchdir "HOME:","listfile";

ENDPROC

This program traverses the directory structure under "HOME:", and for each file
found it calls the listfile procedure. The searchdir is the generic part that
knows nothing about the start of the search or which routine should be called for
each file. It uses IsFile to check whether it has found a subdirectory or a file and
it uses the late binding mechanism to call the procedure specified in actionproc
for all files found. The actionproc routine should be a procedure with one
parameter of the type string.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The directory is not opened (see OpenDir).ERR_FILEACC

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1395
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.147 ReadDir - Read next entry in a directory

RobotWare - OS
Continued

Syntax
ReadDir '('

[Dev ':='] < variable (VAR) of dir> ','

[FileName ':='] < var or pers (INOUT) of string> ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

dir - File directory structure on page 1610Directory

MakeDir - Create a new directory on page 372Make a directory

OpenDir - Open a directory on page 501Open a directory

CloseDir - Close a directory on page 140Close a directory

RemoveDir - Delete a directory on page 595Remove a directory

RemoveFile - Delete a file on page 597Remove a file

RenameFile - Rename a file on page 600Rename a file

Application manual - Controller software IRC5File and serial channel handling

1396 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.147 ReadDir - Read next entry in a directory
RobotWare - OS
Continued

2.148 ReadMotor - Reads the current motor angles

Usage
ReadMotor is used to read the current angles of the different motors of the robot
and external axes. The primary use of this function is in the calibration procedure
of the robot.

Basic examples
The following example illustrates the function ReadMotor.
See also More examples on page 1398.

Example 1
VAR num motor_angle2;

motor_angle2 := ReadMotor(2);

The current motor angle of the second axis of the robot is stored in motor_angle2.

Return value
Data type: num
The current motor angle in radians of the stated axis of the robot or external axes.

Arguments
ReadMotor [\MecUnit] Axis

MecUnit

Mechanical Unit
Data type: mecunit
The name of the mechanical unit for which an axis is to be read. If this argument
is omitted, the axis for the connected robot is read.

Axis

Data type: num
The number of the axis to be read (1 - 6).

Program execution
The motor angle returned represents the current position in radians for the motor
without any calibration offset. The value is not related to a fix position of the robot,
only to the resolver internal zero position, that is, normally the resolver zero position
closest to the calibration position (the difference between the resolver zero position
and the calibration position is the calibration offset value). The value represents
the full movement of each axis, although this may be several turns.

Limitations
It is only possible to read the current motor angles for the mechanical units that
are controlled from current program task. For a non-motion task, it is possible to
read the angles for the mechanical units controlled by the connected motion task.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1397
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.148 ReadMotor - Reads the current motor angles

RobotWare - OS

More examples
The following example illustrates the function ReadMotor.

Example 1
VAR num motor_angle;

motor_angle := ReadMotor(\MecUnit:=STN1, 1);

The current motor angle of the first axis of STN1 is stored in motor_angle.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Parameter axis in function is wrong.ERR_AXIS_PAR

Syntax
ReadMotor '('

['\' MecUnit ':=' < variable (VAR) of mecunit> ',']

[Axis ':='] < expression (IN) of num> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

CJointT - Reads the current joint angles on
page 1196

Reading the current joint angle

1398 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.148 ReadMotor - Reads the current motor angles
RobotWare - OS
Continued

2.149 ReadNum - Reads a number from a file or serial channel

Usage
ReadNum (Read Numeric) is used to read a number from a character-based file or
serial channel.

Basic examples
The following example illustrates the function ReadNum.
See also More examples on page 1400.

Example 1
VAR iodev infile;

...

Open "HOME:/file.doc", infile\Read;

reg1 := ReadNum(infile);

reg1 is assigned a number read from the file file.doc.

Return value
Data type: num
The numeric value read from a specified file or serial channel. If the file is empty
(end of file), a number greater than EOF_NUM (9.998E36) is returned.

Arguments
ReadNum (IODevice [\Delim] [\Time])

IODevice

Data type: iodev
The name (reference) of the file or serial channel to be read.

[\Delim]

Delimiters
Data type: string
A string containing the delimiters to use when parsing a line in the file or serial
channel. By default (without \Delim), the file is read line by line and the line-feed
character (\0A) is the only delimiter considered by the parsing. When the \Delim
argument is used, any character in the specified string argument will be considered
to determine the significant part of the line.
When using the argument \Delim, the control system always adds the characters
carriage return (\0D) and line-feed (\0A) to the delimiters specified by the user.
To specify non-alphanumeric characters, use \xx, where xx is the hexadecimal
representation of the ASCII code of the character (example: TAB is specified by
\09).

[\Time]

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1399
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.149 ReadNum - Reads a number from a file or serial channel

RobotWare - OS

The max. time for the reading operation (timeout) in seconds. If this argument is
not specified, themax. time is set to 60 seconds. To wait forever, use the predefined
constant WAIT_MAX.
If this time runs out before the read operation is finished, the error handler will be
called with the error code ERR_DEV_MAXTIME. If there is no error handler, the
execution will be stopped.
The timeout function is also in use during program stop and will be noticed by the
RAPID program at program start.

Program execution
Starting at the current file position, the function reads and discards any heading
delimiters. A heading delimiter without the argument \Delim is a line-feed character.
Heading delimiters with the argument \Delim are any characters specified in the
\Delim argument plus carriage return and line-feed characters. It then reads
everything up to and including the next delimiter character (will be discarded), but
not more than 80 characters. If the significant part exceeds 80 characters, the
remainder of the characters will be read on the next reading.
The string that is read is then converted to a numeric value; for example, "234.4"
is converted to the numeric value 234.4.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

More examples
The following example illustrates the function ReadNum.

Example 1
reg1 := ReadNum(infile\Delim:="\09");

IF reg1 > EOF_NUM THEN

TPWrite "The file is empty";

...

Reads a number in a line where numbers are separated by TAB ("\09") or SPACE
(" ") characters. Before using the number read from the file, a check is performed
to make sure that the file is not empty.

Note

Use < or > (smaller than or greater than) when checking if the file is empty. Do
not use = (equal to).

Limitations
The function can only be used for character based files that have been opened for
reading.

Continues on next page
1400 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.149 ReadNum - Reads a number from a file or serial channel
RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An access error occurs during reading.ERR_FILEACC

There is an attempt to read non-numeric data.ERR_RCVDATA

Time-out before the read operation is finished.ERR_DEV_MAXTIME

Predefined data
The constant EOF_NUM can be used to stop reading, at the end of the file.

CONST num EOF_NUM := 9.998E36;

Syntax
ReadNum '('

[IODevice ':='] <variable (VAR) of iodev>

['\' Delim ':=' <expression (IN) of string>]

['\' Time ':=' <expression (IN) of num>] ')'

A function with a return value of the type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening, etc. files or serial channels

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1401
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.149 ReadNum - Reads a number from a file or serial channel

RobotWare - OS
Continued

2.150 ReadStr - Reads a string from a file or serial channel

Usage
ReadStr (Read String) is used to read a string from a character-based file or serial
channel.

Basic examples
The following example illustrates the function ReadStr.
See also More examples on page 1404.

Example 1
VAR string text;

VAR iodev infile;

...

Open "HOME:/file.doc", infile\Read;

text := ReadStr(infile);

text is assigned a string read from the file file.doc.

Return value
Data type: string
The string read from the specified file or serial channel. If the file is empty (end of
file), the string "EOF" is returned.

Arguments
ReadStr (IODevice [\Delim] [\RemoveCR] [\DiscardHeaders] [\Time]

[\Line])

IODevice

Data type: iodev
The name (reference) of the file or serial channel to be read.

[\Delim]

Delimiters
Data type: string
A string containing the delimiters to use when parsing a line in the file or serial
channel. By default the file is read line by line and the line-feed character (\0A) is
the only delimiter considered by the parsing. When the \Delim argument is used,
any character in the specified string argument plus by default line-feed character
will be considered to determine the significant part of the line.
To specify non-alphanumeric characters, use \xx, where xx is the hexadecimal
representation of the ASCII code of the character (example: TAB is specified by
\09).

[\RemoveCR]

Data type: switch
A switch used to remove the trailing carriage return character when reading PC
files. In PC files, a new line is specified by carriage return and line feed (CRLF).

Continues on next page
1402 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.150 ReadStr - Reads a string from a file or serial channel
RobotWare - OS

When reading a line in such files, the carriage return character is by default read
into the return string. When using this argument, the carriage return character will
be read from the file but not included in the return string.

[\DiscardHeaders]

Data type: switch
This argument specifies whether the heading delimiters (specified in \Delim plus
default line-feed) are skipped or not before transferring data to the return string.
By default, if the first character at the current file position is a delimiter, it is read
but not transferred to the return string, the line parsing is stopped and the return
will be an empty string. If this argument is used, all delimiters included in the line
will be read from the file but discarded, and no return will be done until the return
string will contain the data starting at the first non-delimiter character in the line.

[\Time]

Data type: num
The max. time for the reading operation (timeout) in seconds. If this argument is
not specified, themax. time is set to 60 seconds. To wait forever, use the predefined
constant WAIT_MAX.
If this time runs out before the read operation is finished, the error handler will be
called with the error code ERR_DEV_MAXTIME. If there is no error handler, the
execution will be stopped.
The timeout function is in use also during program stop and will be noticed in the
RAPID program at program start.

[\Line]

Data type: num
Specifies which line in the file that should be read.
If the line does not exist, the string "EOF" is returned.

Program execution
Starting at the current file position, if the \DiscardHeaders argument is used,
the function reads and discards any heading delimiters (line-feed characters and
any character specified in the \Delim argument). In all cases, it then reads
everything up to the next delimiter character, but not more than 80 characters. If
the significant part exceeds 80 characters, the remainder of the characters will be
read on the next reading. The delimiter that caused the parsing to stop is read from
the file but not transferred to the return string. If the last character in the string is
a carriage return character and the \RemoveCR argument is used, this character
will be removed from the string.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1403
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.150 ReadStr - Reads a string from a file or serial channel

RobotWare - OS
Continued

More examples
The following examples illustrate the function ReadStr.

Example 1
text := ReadStr(infile);

IF text = EOF THEN

TPWrite "The file is empty";

...

Before using the string read from the file, a check is performed to make sure that
the file is not empty.

Example 2
Consider a file containing:

<LF><SPACE><TAB>Hello<SPACE><SPACE>World<CR><LF>

text := ReadStr(infile);

text will be an empty string: the first character in the file is the default <LF>
delimiter.

text := ReadStr(infile\DiscardHeaders);

text will contain <SPACE><TAB>Hello<SPACE><SPACE>World<CR>: the first
character in the file, the default <LF> delimiter, is discarded.

text := ReadStr(infile\RemoveCR\DiscardHeaders);

textwill contain<SPACE><TAB>Hello<SPACE><SPACE>World: the first character
in the file, the default <LF> delimiter, is discarded; the final carriage return character
is removed

text := ReadStr(infile\Delim:=" \09"\RemoveCR\DiscardHeaders);

text will contain "Hello": the first characters in the file that match either the default
<LF> delimiter or the character set defined by \Delim (space and tab) are
discarded. Data is then transferred up to the first delimiter that is read from the file
but not transferred into the string. A new invocation of the same statement will
return "World".

Example 3
Consider a file containing:

<CR><LF>Hello<CR><LF>

text := ReadStr(infile);

text will contain the <CR> (\0d) character: <CR> and <LF> characters are read
from the file, but only <CR> is transferred to the string. A new invocation of the
same statement will return "Hello\0d".

text := ReadStr(infile\RemoveCR);

text will contain an empty string: <CR> and <LF> characters are read from the
file; <CR> is transferred but removed from the string. A new invocation of the same
statement will return "Hello".

text := ReadStr(infile\Delim:="\0d");

text will contain an empty string: <CR> is read from the file but not transferred to
the return string. A new invocation of the same instruction will return an empty
string again: <LF> is read from the file but not transferred to the return string.

text := ReadStr(infile\Delim:="\0d"\DiscardHeaders);

Continues on next page
1404 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.150 ReadStr - Reads a string from a file or serial channel
RobotWare - OS
Continued

text will contain "Hello". A new invocation of the same instruction will return
"EOF" (end of file).

Limitations
The function can only be used for files or serial channels that have been opened
for reading in a character-based mode.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs during reading.ERR_FILEACC

Time-out before the read operation is finished.ERR_DEV_MAXTIME

Predefined data
The constant EOF can be used to check if the file was empty when trying to read
from the file or to stop reading at the end of the file.

CONST string EOF := "EOF";

Syntax
ReadStr '('

[IODevice ':='] <variable (VAR) of iodev>

['\' Delim ':='<expression (IN) of string>]

['\' RemoveCR]

['\' DiscardHeaders]

['\' Time ':=' <expression (IN) of num>]

['\' Line ':=' <expression (IN) of num>] ')'

A function with a return value of the type string.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening, etc. files or serial channels

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1405
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.150 ReadStr - Reads a string from a file or serial channel

RobotWare - OS
Continued

2.151 ReadStrBin - Reads a string from a binary serial channel or file

Usage
ReadStrBin (Read String Binary) is used to read a string from a binary serial
channel or file.

Basic examples
The following example illustrates the function ReadStrBin.

Example 1
VAR iodev channel;

VAR string text;

...

Open "com1:", channel \Bin;

text := ReadStrBin (channel, 10);

text := ReadStrBin(infile,20);

IF text = EOF THEN

text is assigned a 10 characters text string read from the serial channel referred
to by channel
Before using the string read from the file, a check is performed to make sure that
the file is not empty.

Return value
Data type: string
The text string read from the specified serial channel or file. If the file is empty (end
of file), the string "EOF" is returned.

Arguments
ReadStrBin (IODevice NoOfChars [\Time])

IODevice

Data type: iodev
The name (reference) of the binary serial channel or file to be read.

NoOfChars

Number of Characters
Data type: num
The number of characters to be read from the binary serial channel or file.

[\Time]

Data type: num
The max. time for the reading operation (timeout) in seconds. If this argument is
not specified, themax. time is set to 60 seconds. To wait forever, use the predefined
constant WAIT_MAX.
If this time runs out before the read operation is finished, the error handler will be
called with the error code ERR_DEV_MAXTIME. If there is no error handler, the
execution will be stopped.

Continues on next page
1406 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.151 ReadStrBin - Reads a string from a binary serial channel or file
RobotWare - OS

The timeout function is in use also during program stop and will be noticed by the
RAPID program at program start.

Program execution
The function reads the specified number of characters from the binary serial channel
or file.
At power fail restart, any open file or serial channel in the system will be closed
and the I/O descriptor in the variable of type iodev will be reset.

Limitations
The function can only be used for serial channels or files that have been opened
for reading in a binary mode.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

An error occurs during reading.ERR_FILEACC

Time-out before the read operation is finished.ERR_DEV_MAXTIME

Predefined data
The constant EOF can be used to check if the file was empty, when trying to read
from the file or to stop reading at the end of the file.

CONST string EOF := "EOF";

Syntax
ReadStrBin '('

[IODevice ':='] <variable (VAR) of iodev> ','

[NoOfChars ':='] <expression (IN) of num>

['\' Time ':=' <expression (IN) of num>] ')'

A function with a return value of the type string.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewOpening, etc. serial channels or files

WriteStrBin - Writes a string to a binary serial
channel on page 1084

Write binary string

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1407
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.151 ReadStrBin - Reads a string from a binary serial channel or file

RobotWare - OS
Continued

2.152 ReadVar - Read variable from a device

Usage
ReadVar is used to read a variable from a device connected to the serial sensor
interface.
The sensor interface communicates with sensors over serial channels using the
RTP1 transport protocol.
This is an example of a sensor channel configuration.
COM_PHY_CHANNEL:

• Name “COM1:”
• Connector “COM1”
• Baudrate 19200

COM_TRP:
• Name “sen1:”
• Type “RTP1”
• PhyChannel “COM1”

Basic examples
The following example illustrates the function ReadVar.

Example 1
CONST num XCoord := 8;

CONST num YCoord := 9;

CONST num ZCoord := 10;

VAR pos SensorPos;

! Connect to the sensor device "sen1:" (defined in sio.cfg)

SenDevice "sen1:";

! Read a cartesian position from the sensor.

SensorPos.x := ReadVar ("sen1:", XCoord);

SensorPos.y := ReadVar ("sen1:", YCoord);

SensorPos.z := ReadVar ("sen1:", ZCoord);

Arguments
ReadVar (device, VarNo, [\TaskName])

device

Data type: string
The I/O device name configured in sio.cfg for the sensor used.

VarNo

Data type: num
The argument VarNo is used to select variable to be read.

Continues on next page
1408 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.152 ReadVar - Read variable from a device
Sensor Interface

[\TaskName]

Data type: string
The argument TaskNamemakes it possible to access devices in other RAPID tasks.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Measurement failureSEN_NO_MEAS

Sensor unable to handle commandSEN_NOREADY

General sensor errorSEN_GENERRO

Sensor busySEN_BUSY

Unknown sensorSEN_UNKNOWN

External sensor errorSEN_EXALARM

Internal sensor errorSEN_CAALARM

Sensor temperature errorSEN_TEMP

Illegal communication valueSEN_VALUE

Sensor check failureSEN_CAMCHECK

Communication errorSEN_TIMEOUT

Syntax
ReadVar '('

[device ':='] <expression(IN) of string> ','

[VarNo ':='] <expression (IN) of num> ','

['\' TaskName ':=' <expression (IN) of string>] ')'

A function with a return value of the data type num.

Related information

SeeFor information about

SenDevice - connect to a sensor device on
page 680

Connect to a sensor device

WriteVar - Write variable on page 1086Write a sensor variable

WriteBlock - Write block of data to device on
page 1076

Write a sensor data block

ReadBlock - read a block of data from device
on page 577

Read a sensor data block

Technical reference manual - RAPID OverviewConfiguration of sensor communication

Technical reference manual - RAPID Instructions, Functions and Data types 1409
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.152 ReadVar - Read variable from a device

Sensor Interface
Continued

2.153 RelTool - Make a displacement relative to the tool

Usage
RelTool (Relative Tool) is used to add a displacement and/or a rotation, expressed
in the active tool coordinate system, to a robot position.

Basic examples
The following examples illustrate the function RelTool.

Example 1
MoveL RelTool (p1, 0, 0, 100), v100, fine, tool1;

The robot is moved to a position that is 100 mm from p1 in the z direction of the
tool.

Example 2
MoveL RelTool (p1, 0, 0, 0 \Rz:= 25), v100, fine, tool1;

The tool is rotated 25° around its z-axis.

Return value
Data type: robtarget
The new position with the addition of a displacement and/or a rotation, if any,
relative to the active tool.

Arguments
RelTool (Point Dx Dy Dz [\Rx] [\Ry] [\Rz])

Note

The rotations will be performed in the following order if two or three rotations
are specified at the same time:
1 rotation around the x axis
2 rotation around the new y axis
3 rotation around the new z axis

Point

Data type: robtarget
The input robot position. The orientation part of this position defines the current
orientation of the tool coordinate system.

Dx

Data type: num
The displacement in mm in the x direction of the tool coordinate system.

Dy

Data type: num
The displacement in mm in the y direction of the tool coordinate system.

Continues on next page
1410 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.153 RelTool - Make a displacement relative to the tool
RobotWare - OS

Dz

Data type: num
The displacement in mm in the z direction of the tool coordinate system.

[\Rx]

Data type: num
The rotation in degrees around the x axis of the tool coordinate system.

[\Ry]

Data type: num
The rotation in degrees around the y axis of the tool coordinate system.

[\Rz]

Data type: num
The rotation in degrees around the z axis of the tool coordinate system.

Syntax
RelTool '('

[Point ':='] < expression (IN) of robtarget> ','

[Dx ':='] <expression (IN) of num> ','

[Dy ':='] <expression (IN) of num> ','

[Dz ':='] <expression (IN) of num>

['\' Rx ':=' <expression (IN) of num>]

['\' Ry ':=' <expression (IN) of num>]

['\' Rz ':=' <expression (IN) of num>] ')'

A function with a return value of the data type robtarget.

Related information

SeeFor information about

robtarget - Position data on page 1702Position data

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

Technical reference manual - RAPID Over-
view

Positioning instructions

Technical reference manual - RAPID Instructions, Functions and Data types 1411
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.153 RelTool - Make a displacement relative to the tool

RobotWare - OS
Continued

2.154 RemainingRetries - Remaining retries left to do

Usage
RemainingRetries is used to find out how many RETRY that is left to do from
the error handler in the program. The maximum number of retries is defined in the
configuration.

Basic examples
The following example illustrates the function RemainingRetries.

Example 1
...

ERROR

IF RemainingRetries() > 0 THEN

RETRY;

ELSE

TRYNEXT;

ENDIF

...

This program will retry the instruction, in spite of the error, until the maximum
number of retries is done and then try the next instruction.

Return value
Data type: num
The return value shows how many of the maximum number of retries that is left to
do.

Syntax
RemainingRetries '(' ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewError handlers

RETRY - Resume execution after an error on page 612Resume execution after an error

Technical reference manual - System parameters, sec-
tion General RAPID

Configure maximum number of
retries

ResetRetryCount - Reset the number of retries on
page 609

Reset the number of retries coun-
ted

1412 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.154 RemainingRetries - Remaining retries left to do
RobotWare - OS

2.155 RMQGetSlotName - Get the name of an RMQ client

Usage
RMQGetSlotName (RAPIDMesasage Queue Get Slot Name) is used to get the slot
name of an RMQ or an SDK client from a given slot identity - that is, from a given
rmqslot.

Basic examples
The following example illustrates the function RMQGetSlotName.

Example 1
VAR rmqslot slot;

VAR string client_name;

RMQFindSlot slot, "RMQ_T_ROB1";

...

client_name := RMQGetSlotName(slot);

TPWrite "Name of the client: " + client_name;

The example illustrates how to get the name of a client using the identity of the
client.

Return value
Data type: string
The name of the client is returned. This can be an RMQ name, or the name of a
Robot Application Builder client using the RMQ functionality.

Arguments
RMQGetSlotName (Slot)

Slot

Data type: rmqslot
The identity slot number of the client to find the name.

Program execution
The instruction RMQGetSlotName is used to find the name of the client with the
specified identity number specified in argument Slot. The client can be another
RMQ, or an SDK client.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The destination slot has not been connected or the destin-
ation slot is no longer available. If not connected, a call to
RMQFindSlot must be done. If not available, the reason
is that a remote client has been disconnected from the
controller.

ERR_RMQ_INVALID

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1413
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.155 RMQGetSlotName - Get the name of an RMQ client

FlexPendant Interface, PC Interface, or Multitasking

Syntax
RMQGetSlotName '('

[Slot ':='] < variable (VAR) of rmqslot > ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

RMQFindSlot - Find a slot identity from the
slot name on page 618

Find the identity number of a RAPIDMessage
Queue task or SDK client

RMQSendMessage - Send an RMQ data
message on page 632

Send data to the queue of a RAPID task or
SDK client

RMQGetMessage - Get an RMQmessage on
page 620

Get the first message from a RAPIDMessage
Queue.

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636

Send data to the queue of a RAPID task or
an SDK client, and wait for an answer from
the client

RMQGetMsgHeader - Get header information
from an RMQ message on page 626

Extract the header data from an rmqmessage

RMQGetMsgData - Get the data part from an
RMQ message on page 623

Extract the data from an rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322

Order and enable interrupts for a specific
data type

rmqslot - Identity number of an RMQ client
on page 1700

RMQ Slot

1414 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.155 RMQGetSlotName - Get the name of an RMQ client
FlexPendant Interface, PC Interface, or Multitasking
Continued

2.156 RobName - Get the TCP robot name

Usage
RobName (Robot Name) is used to get the name of the TCP robot in some program
task. If the task doesn’t control any TCP robot, this function returns an empty string.

Basic examples
The following example illustrates the function RobName.
See also More examples on page 1415.

Example 1
VAR string my_robot;

...

my_robot := RobName();

IF my_robot="" THEN

TPWrite "This task does not control any TCP robot";

ELSE

TPWrite "This task controls TCP robot with name "+ my_robot;

ENDIF

Write to FlexPendant the name of the TCP robot which is controlled from this
program task. If no TCP robot is controlled, write that the task controls no robot.

Return value
Data type: string
The mechanical unit name for the TCP robot that is controlled from this program
task. Return empty string if no TCP robot is controlled.

More examples
More examples of how to use the instruction RobName are illustrated below.

Example 1
VAR string my_robot;

...

IF TaskRunRob() THEN

my_robot := RobName();

TPWrite "This task controls robot with name "+ my_robot;

ENDIF

If this program task controls any TCP robot, write to FlexPendant the name of that
TCP robot.

Syntax
RobName '(' ')'

A function with a return value of the data type string.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1415
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.156 RobName - Get the TCP robot name

RobotWare - OS

Related information

SeeFor information about

TaskRunRob - Check if task controls some robot
on page 1473

Check if task run some TCP robot

TaskRunMec - Check if task controls anymechan-
ical unit on page 1472

Check if task run some mechanical unit

GetNextMechUnit - Get name and data for mech-
anical units on page 1272

Get the name of mechanical units in the
system

Technical referencemanual - RAPID Instructions,
Functions and Data types

String functions

string - Strings on page 1728Definition of string

1416 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.156 RobName - Get the TCP robot name
RobotWare - OS
Continued

2.157 RobOS - Check if execution is on RC or VC

Usage
RobOS (Robot Operating System) can be used to check if the execution is performed
on Robot Controller RC or Virtual Controller VC.

Basic examples
The following example illustrates the function RobOS.

Example 1
IF RobOS() THEN

! Execution statements in RC

ELSE

! Execution statements in VC

ENDIF

Return value
Data type: bool
TRUE if execution runs on Robot Controller RC, FALSE otherwise.

Syntax
RobOS '(' ')'

A function with a return value of the data type bool.

Technical reference manual - RAPID Instructions, Functions and Data types 1417
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.157 RobOS - Check if execution is on RC or VC

RobotWare - OS

2.158 Round - Round a numeric value

Usage
Round is used to round a numeric value to a specified number of decimals or to
an integer value.

Basic examples
The following examples illustrate the function Round.

Example 1
VAR num val;

val := Round(0.3852138\Dec:=3);

The variable val is given the value 0.385.

Example 2
val := Round(0.3852138\Dec:=1);

The variable val is given the value 0.4.

Example 3
val := Round(0.3852138);

The variable val is given the value 0.

Example 4
val := Round(0.3852138\Dec:=6);

The variable val is given the value 0.385214.

Return value
Data type: num
The numeric value rounded to the specified number of decimals.

Arguments
Round (Val [\Dec])

Val

Value
Data type: num
The numeric value to be rounded.

[\Dec]

Decimals
Data type: num
Number of decimals.
If the specified number of decimals is 0 or if the argument is omitted, the value is
rounded to an integer.
The number of decimalsmust not be negative or greater than the available precision
for numeric values.
Max number of decimals that can be used is 6.

Continues on next page
1418 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.158 Round - Round a numeric value
RobotWare - OS

Syntax
Round '('

[Val ':='] <expression (IN) of num>

[\Dec ':=' <expression (IN) of num>] ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

Trunc - Truncates a numeric value on page1495Truncating a value

Technical reference manual - RAPID Instructions, Functions and Data types 1419
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.158 Round - Round a numeric value

RobotWare - OS
Continued

2.159 RoundDnum - Round a numeric value

Usage
RoundDnum is used to round a numeric value to a specified number of decimals
or to an integer value.

Basic examples
The following examples illustrate the function RoundDnum.

Example 1
VAR dnum val;

val := RoundDnum(0.3852138754655357\Dec:=3);

The variable val is given the value 0.385.

Example 2
val := RoundDnum(0.3852138754655357\Dec:=1);

The variable val is given the value 0.4.

Example 3
val := RoundDnum(0.3852138754655357);

The variable val is given the value 0.

Example 4
val := RoundDnum(0.3852138754655357\Dec:=15);

The variable val is given the value 0.385213875465536.

Example 5
val := RoundDnum(1000.3852138754655357\Dec:=15);

The variable val is given the value 1000.38521387547.

Return value
Data type: dnum
The numeric value rounded to the specified number of decimals.

Arguments
RoundDnum (Val [\Dec])

Val

Value
Data type: dnum
The numeric value to be rounded.

[\Dec]

Decimals
Data type: num
Number of decimals.
If the specified number of decimals is 0 or if the argument is omitted, the value is
rounded to an integer.

Continues on next page
1420 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.159 RoundDnum - Round a numeric value
RobotWare - OS

The number of decimalsmust not be negative or greater than the available precision
for numeric values.
Max number of decimals that can be used is 15.

Syntax
RoundDnum '('

[Val ':='] <expression (IN) of dnum>

[\Dec ':=' <expression (IN) of num>] ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

Round - Round a numeric value on page1418Rounding a value

Trunc - Truncates a numeric value on
page 1495

Truncating a value

TruncDnum - Truncates a numeric value on
page 1497

Truncating a value

Technical reference manual - RAPID Instructions, Functions and Data types 1421
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.159 RoundDnum - Round a numeric value

RobotWare - OS
Continued

2.160 RunMode - Read the running mode

Usage
RunMode (RunningMode) is used to read the current runningmode of the program
task.

Basic examples
The following example illustrates the function RunMode.

Example 1
IF RunMode() = RUN_CONT_CYCLE THEN

...

ENDIF

The program section is executed only for continuous or cycle running.

Return value
Data type: symnum
The current running mode is defined as described in the table below.

CommentSymbolic constantReturn value

Undefined running modeRUN_UNDEF0

Continuous or cycle running modeRUN_CONT_CYCLE1

Instruction forward running modeRUN_INSTR_FWD2

Instruction backward running modeRUN_INSTR_BWD3

Simulated running mode. Not yet released.RUN_SIM4

Move instructions in forward running mode and
logical instructions in continuous running mode

RUN_STEP_MOVE5

Arguments
RunMode ([\Main])

[\Main]

Data type: switch
Return current mode for the task if it is a motion task. If used in a non-motion task,
it will return the current mode of the motion task that the non-motion task is
connected to.
If this argument is omitted, the return value always mirrors the current running
mode for the program task which executes the function RunMode.

Syntax
RunMode '('

['\' Main] ')'

A function with a return value of the data type symnum.

Continues on next page
1422 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.160 RunMode - Read the running mode
RobotWare - OS

Related information

SeeFor information about

OpMode - Read the operatingmode on page1355Reading operating mode

Technical reference manual - RAPID Instructions, Functions and Data types 1423
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.160 RunMode - Read the running mode

RobotWare - OS
Continued

2.161 SafetyControllerGetChecksum - Get the checksum for the user configuration
file

Usage
SafetyControllerGetChecksum is used to get the safety controller checksum
for the user configuration file.

Basic examples
The following example illustrates the function SafetyControllerGetChecksum.

Example 1
VAR string mystring;

...

mystring:=SafetyControllerGetChecksum();

Get the checksum for the user configuration file and store it in the variable
mystring.

Return value
Data type: string
The checksum for the user configuration.

Syntax
SafetyControllerGetChecksum '(' ')'

A function with a return value of the data type string.

Related information

SeeFor information about

SafetyControllerGetOpModePinCode - Get the
operating mode pin code on page 1425

SafetyControllerGetOpModePinCode

SafetyControllerGetUserChecksum - Get the
checksum for protected parameters on page1427

SafetyControllerGetUserChecksum

SafetyControllerGetSWVersion - Get the safety
controller firmware version on page 1426

SafetyControllerGetSWVersion

SafetyControllerSyncRequest - Initiation of
hardware synchronization procedure on page641

SafetyControllerSyncRequest

Application manual - Functional safety and
SafeMove2

SafeMove safety configuration

1424 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.161 SafetyControllerGetChecksum - Get the checksum for the user configuration file
SafeMove Basic, SafeMove Pro, PROFIsafe

2.162 SafetyControllerGetOpModePinCode - Get the operating mode pin code

Usage
SafetyControllerGetOpModePinCode is used to get the operating mode pin
code for the keyless mode selector.

Basic examples
The following example illustrates the function
SafetyControllerGetOpModePinCode.

Example 1
VAR string mystring;

...

mystring:=SafetyControllerGetOpModePinCode();

Get the operating mode pin code for the for the keyless mode selector and store
it in the variable mystring.

Return value
Data type: string
The pin code for the for the keyless mode selector.

Syntax
SafetyControllerGetOpModePinCode '(' ')'

A function with a return value of the data type string.

Related information

SeeFor information about

SafetyControllerGetChecksum - Get the check-
sum for the user configuration file on page 1424

SafetyControllerGetChecksum

SafetyControllerGetUserChecksum - Get the
checksum for protected parameters on page1427

SafetyControllerGetUserChecksum

SafetyControllerGetSWVersion - Get the safety
controller firmware version on page 1426

SafetyControllerGetSWVersion

SafetyControllerSyncRequest - Initiation of
hardware synchronization procedure on page641

SafetyControllerSyncRequest

Application manual - Functional safety and
SafeMove2

SafeMove safety configuration

Technical reference manual - RAPID Instructions, Functions and Data types 1425
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.162 SafetyControllerGetOpModePinCode - Get the operating mode pin code

SafeMove Basic, SafeMove Pro, PROFIsafe

2.163 SafetyControllerGetSWVersion - Get the safety controller firmware version

Usage
SafetyControllerGetSWVersion is used to get the safety controller firmware
version.

Basic examples
The following example illustrates the function SafetyControllerGetSWVersion.

Example 1
VAR string mystring;

...

mystring:=SafetyControllerGetSWVersion();

Get the safety controller firmware version and store it in the variable mystring.

Return value
Data type: string
The safety controller firmware version. A string with "VC" is returned if this function
is used on the Virtual Controller.

Syntax
SafetyControllerGetSWVersion '(' ')'

A function with a return value of the data type string.

Related information

SeeFor information about

SafetyControllerGetOpModePinCode - Get the
operating mode pin code on page 1425

SafetyControllerGetOpModePinCode

SafetyControllerGetUserChecksum - Get the
checksum for protected parameters on page1427

SafetyControllerGetUserChecksum

SafetyControllerGetSWVersion - Get the safety
controller firmware version on page 1426

SafetyControllerGetSWVersion

SafetyControllerSyncRequest - Initiation of
hardware synchronization procedure on page641

SafetyControllerSyncRequest

Application manual - Functional safety and
SafeMove2

SafeMove safety configuration

1426 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.163 SafetyControllerGetSWVersion - Get the safety controller firmware version
SafeMove Basic, SafeMove Pro, PROFIsafe

2.164 SafetyControllerGetUserChecksum - Get the checksum for protected
parameters

Usage
SafetyControllerGetUserChecksum is used to get the safety controller
checksum for the area with protected parameters in the user configuration file.

Basic examples
The following example illustrates the function
SafetyControllerGetUserChecksum.

Example 1
VAR string mystring;

...

mystring:=SafetyControllerGetUserChecksum();

Get the checksum for the area with protected parameters in the user configuration
file and store it in the variable mystring.

Return value
Data type: string
The checksum for the area with protected parameters.

Syntax
SafetyControllerGetUserChecksum '(' ')'

A function with a return value of the data type string.

Related information

SeeFor information about

SafetyControllerGetOpModePinCode - Get the
operating mode pin code on page 1425

SafetyControllerGetOpModePinCode

SafetyControllerGetChecksum - Get the check-
sum for the user configuration file on page 1424

SafetyControllerGetChecksum

SafetyControllerGetSWVersion - Get the safety
controller firmware version on page 1426

SafetyControllerGetSWVersion

SafetyControllerSyncRequest - Initiation of
hardware synchronization procedure on page641

SafetyControllerSyncRequest

Application manual - Functional safety and
SafeMove2

SafeMove safety configuration

Technical reference manual - RAPID Instructions, Functions and Data types 1427
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.164 SafetyControllerGetUserChecksum - Get the checksum for protected parameters

SafeMove Basic, SafeMove Pro, PROFIsafe

2.165 Sin - Calculates the sine value

Usage
Sin(Sine)is used to calculate the sine value from an angle value.

Basic examples
The following example illustrates the function Sin.

Example 1
VAR num angle;

VAR num value;

...

...

value := Sin(angle);

value will get the sine value of angle.

Return value
Data type: num
The sine value, range [-1, 1] .

Arguments
Sin (Angle)

Angle

Data type: num
The angle value, expressed in degrees.

Syntax
Sin '('

[Angle ':='] <expression (IN) of num> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

1428 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.165 Sin - Calculates the sine value
RobotWare - OS

2.166 SinDnum - Calculates the sine value

Usage
SinDnum (Sine dnum) is used to calculate the sine value from an angle value on
data types dnum.

Basic examples
The following example illustrates the function SinDnum.

Example 1
VAR dnum angle;

VAR dnum value;

...

...

value := SinDnum(angle);

value will get the sine value of angle.

Return value
Data type: dnum
The sine value, range [-1, 1] .

Arguments
SinDnum (Angle)

Angle

Data type: dnum
The angle value, expressed in degrees.

Syntax
SinDnum '('

[Angle ':='] <expression (IN) of dnum> ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1429
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.166 SinDnum - Calculates the sine value

RobotWare - OS

2.167 SocketGetStatus - Get current socket state

Usage
SocketGetStatus returns the current state of a socket.

Basic examples
The following example illustrates the function SocketGetStatus.
See also More examples on page 1430.

Example 1
VAR socketdev socket1;

VAR socketstatus state;

...

SocketCreate socket1;

state := SocketGetStatus(socket1);

The socket status SOCKET_CREATED will be stored in the variable state.

Return value
Data type: socketstatus
The current state of the socket.
Only the predefined symbolic constants of type socketstatus can be used to
check the state.

Arguments
SocketGetStatus(Socket)

Socket

Data type: socketdev
The socket variable which state is of interest.

Program execution
The function returns one of the following predefined states of socketstatus:
SOCKET_CREATED, SOCKET_CONNECTED, SOCKET_BOUND, SOCKET_LISTENING
or SOCKET_CLOSED.

More examples
The following example illustrates the function SocketGetStatus.

Example 1
VAR socketstatus status;

VAR socketdev my_socket;

...

SocketCreate my_socket;

SocketConnect my_socket, "192.168.0.1", 1025;

! A lot of RAPID code

status := SocketGetStatus(my_socket);

!Check which instruction that was executed last, not the state of

!the socket

Continues on next page
1430 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.167 SocketGetStatus - Get current socket state
Socket Messaging

IF status = SOCKET_CREATED THEN

TPWrite "Instruction SocketCreate has been executed";

ELSEIF status = SOCKET_CLOSED THEN

TPWrite "Instruction SocketClose has been executed";

ELSEIF status = SOCKET_BOUND THEN

TPWrite "Instruction SocketBind has been executed";

ELSEIF status = SOCKET_LISTENING THEN

TPWrite "Instruction SocketListen or SocketAccept has been
executed";

ELSEIF status = SOCKET_CONNECTED THEN

TPWrite "Instruction SocketConnect, SocketReceive or SocketSend
has been executed";

ELSE

TPWrite "Unknown socket status";

ENDIF

A client socket is created and connected to a remote computer. Before the socket
is used in a SocketSend instruction the state of the socket is checked so that it
is still connected.

Limitations
The state of a socket can only be changed by executing RAPID socket instruction.
For example, if the socket is connected and later the connection is broken, this
will not be reported by the SocketGetStatus function. Instead there will be an
error returned when the socket is used in a SocketSend or SocketReceive
instruction.

Syntax
SocketGetStatus '('

[Socket ':='] < variable (VAR) of socketdev > ')'

A function with a return value of the data type socketstatus.

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

SocketCreate - Create a new socket on page735Create a new socket

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketSend - Send data to remote computer
on page 749

Send data to remote computer

SocketReceive - Receive data from remote
computer on page 739

Receive data from remote computer

SocketClose - Close a socket on page 730Close the socket

SocketBind - Bind a socket to my IP-address
and port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1431
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.167 SocketGetStatus - Get current socket state

Socket Messaging
Continued

SeeFor information about

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

1432 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.167 SocketGetStatus - Get current socket state
Socket Messaging
Continued

2.168 SocketPeek - Test for the presence of data on a socket

Usage
SocketPeek is used to test for the presence of data on a socket. It returns the
number of bytes that can be received on the specified socket.

Basic examples
The following example illustrates the function SocketPeek.

Example 1
VAR socketdev socket1;

VAR socketdev client_socket;

VAR num peek_value;

...

SocketCreate socket1;

SocketBind socket1, "192.168.0.1", 1025;

SocketListen socket1;

SocketAccept socket1, client_socket;

..

peek_value := SocketPeek(client_socket);

IF peek_value >= 64 THEN

SocketReceive client_socket \Str := str_data \ReadNoOfBytes:=64;

..

ELSE

! Not enough data to receive. Do something else.

ENDIF

First a server socket is created and bound to port 1025 on the controller network
address 192.168.0.1. Then SocketPeek is used to check if there are 64 bytes of
data available to receive on the socket.

Return value
Data type: num
The number of bytes available on a specific socket.

Arguments
SocketPeek(Socket)

Socket

Data type: socketdev
The socket variable which should be peeked.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The socket is closed. Broken connection.ERR_SOCK_CLOSED

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1433
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.168 SocketPeek - Test for the presence of data on a socket

Socket Messaging

Limitations
All sockets are closed after power fail restart. This problem can be handled by
error recovery.
The maximum size of data that can be received in one call is limited to 1024 bytes.
Therefore the max value that can be returned from SocketPeek is 1024.

Syntax
SocketPeek '('

[Socket ':='] < variable (VAR) of socketdev > ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

SocketCreate - Create a new socket on page735Create a new socket

SocketConnect - Connect to a remote computer
on page 732

Connect to remote computer (only client)

SocketSend - Send data to remote computer on
page 749

Send data to remote computer

SocketSendTo - Send data to remote computer
on page 753

Send data to remote computer

SocketClose - Close a socket on page 730Close the socket

SocketBind - Bind a socket to my IP-address and
port on page 728

Bind a socket (only server)

SocketListen - Listen for incoming connections
on page 737

Listening connections (only server)

SocketAccept - Accept an incoming connection
on page 725

Accept connections (only server)

SocketGetStatus - Get current socket state on
page 1430

Get current socket state

SocketSend - Send data to remote computer on
page 749

Example client socket application

SocketReceive - Receive data from remote
computer on page 739

Receive data from remote computer

SocketReceiveFrom - Receive data from remote
computer on page 744

Receive data from remote computer

1434 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.168 SocketPeek - Test for the presence of data on a socket
Socket Messaging
Continued

2.169 Sqrt - Calculates the square root value

Usage
Sqrt (Square root) is used to calculate the square root value.

Basic examples
The following example illustrates the function Sqrt.

Example 1
VAR num x_value;

VAR num y_value;

...

...

y_value := Sqrt(x_value);

y-value will get the square root value of x_value, that is, √(x_value).

Return value
Data type: num
The square root value (√).

Arguments
Sqrt (Value)

Value

Data type: num
The argument value for square root, that is, √value.
Value needs to be ≥ 0.

Limitations
The execution of the function Sqrt(x) will give an error if x < 0.

Syntax
Sqrt '('

[Value ':='] <expression (IN) of num> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

SqrtDnum - Calculates the square root value
on page 1436

Calculate the square root value of a dnum
numeric value

Technical referencemanual - RAPID OverviewMathematical instructions and functions

Technical reference manual - RAPID Instructions, Functions and Data types 1435
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.169 Sqrt - Calculates the square root value

RobotWare - OS

2.170 SqrtDnum - Calculates the square root value

Usage
SqrtDnum (Square root dnum) is used to calculate the square root value.

Basic examples
The following example illustrates the function SqrtDnum.

Example 1
VAR dnum x_value;

VAR dnum y_value;

...

...

y_value := SqrtDnum(x_value);

y_value will get the square root value of x_value, that is, √(x_value).

Return value
Data type: dnum
The square root value (√).

Arguments
SqrtDnum (Value)

Value

Data type: dnum
The argument value for square root, that is, √value.
Value needs to be ≥ 0.

Limitations
The execution of the function Sqrt(x) will give an error if x < 0.

Syntax
SqrtDnum '('

[Value ':='] < expression (IN) of dnum > ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Sqrt - Calculates the square root value on
page 1435

Calculate the square root value of a num nu-
meric value

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

1436 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.170 SqrtDnum - Calculates the square root value
RobotWare - OS

2.171 STCalcForce - Calculate the tip force for a Servo Tool

Usage
STCalcForce is used to calculate the tip force for a Servo Tool. This function is
used, for example, to find the max allowed tip force for a servo tool.

Basic examples
The following example illustrates the function STCalcForce.

Example 1
VAR num tip_force;

tip_force := STCalcForce(gun1, 7);

Calculate the tip force when the desired motor torque is 7 Nm.

Return value
Data type: num
The calculated tip force [N].

Arguments
STCalcForce ToolName MotorTorque

ToolName

Data type: string
The name of the mechanical unit.

MotorTorque

Data type: num
The desired motor torque [Nm].

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The specified servo tool name is not a configured servo tool.ERR_NO_SGUN

Syntax
STCalcForce '('

[ToolName ':='] < expression (IN) of string > ','

[MotorTorque ':='] < expression (IN) of num > ';'

A function with a return value of the data type num.

Related information

SeeFor information about

STOpen - Open a Servo Tool on page 808Open a servo tool

STClose - Close a Servo Tool on page 791Close a servo tool

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1437
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.171 STCalcForce - Calculate the tip force for a Servo Tool

Servo tool control

SeeFor information about

STCalcTorque - Calculate the motor torque for a servo
tool on page 1439

Calculate the motor torque

1438 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.171 STCalcForce - Calculate the tip force for a Servo Tool
Servo tool control
Continued

2.172 STCalcTorque - Calculate the motor torque for a servo tool

Usage
STCalcTorque is used to calculate themotor torque for a Servo Tool. This function
is used, for example, when a force calibration is performed.

Basic examples
The following example illustrates the function STCalcTorque.

Example 1
VAR num curr_motortorque;

curr_motortorque := STCalcTorque(gun1, 1000);

Calculate the motor torque when the desired tip force is 1000 N.

Return value
Data type: num
The calculated motor torque [Nm].

Arguments
STCalcTorque ToolName TipForce

ToolName

Data type: string
The name of the mechanical unit.

TipForce

Data type: num
The desired tip force [N].

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The specified servo tool name is not a configured servo tool.ERR_NO_SGUN

Syntax
STCalcTorque '('

[ToolName ':='] < expression (IN) of string > ','

[TipForce ':='] < expression (IN) of num > ';'

A function with a return value of the data type num.

Related information

SeeFor information about

STOpen - Open a Servo Tool on page 808Open a servo tool

STClose - Close a Servo Tool on page 791Close a servo tool

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1439
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.172 STCalcTorque - Calculate the motor torque for a servo tool

Servo tool control

SeeFor information about

STCalcForce - Calculate the tip force for a Servo Tool on
page 1437

Calculate the tip force

1440 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.172 STCalcTorque - Calculate the motor torque for a servo tool
Servo tool control
Continued

2.173 STIsCalib - Tests if a servo tool is calibrated

Usage
STIsCalib is used to test if a servo tool is calibrated - that is, check if the gun
tips are calibrated or synchronized.

Basic examples
The following examples illustrate the function STIsCalib.

Example 1
IF STIsCalib(gun1\sguninit) THEN

...

ELSE

!Start the gun calibration

STCalib gun1\TipChg;

ENDIF

Example 2
IF STIsCalib(gun1\sgunsynch) THEN

...

ELSE

!Start the gun calibration to synchronize the gun position with
the revolution counter

STCalib gun1\ToolChg;

ENDIF

Return value
Data type: bool
TRUE if the tested tool is calibrated - that is, the distance between the tool tips is
calibrated, or if the tested tool is synchronized - that is, the position of the tool tips
is synchronized with the revolution counter of the tool.
FALSE if the tested tool is not calibrated or synchronized.

Arguments
STIsCalib ToolName [\sguninit] | [\sgunsynch]

ToolName

Data type: string
The name of the mechanical unit.

[\sguninit]

Data type: switch
This argument is used to check if the gun position is initialized and calibrated.

[\sgunsynch]
Data type: switch
This argument is used to check if the gun position is synchronized with the
revolution counter.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1441
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.173 STIsCalib - Tests if a servo tool is calibrated

Servo Tool Control

Syntax
STIsCalib '('

[ToolName ':='] < expression (IN) of string >

['\' sguninit] | ['\'sgunsynch] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

STCalib - Calibrate a Servo Tool on page787Calibrating a servo tool

1442 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.173 STIsCalib - Tests if a servo tool is calibrated
Servo Tool Control
Continued

2.174 STIsClosed - Tests if a servo tool is closed

Usage
STIsClosed is used to test if a servo tool is closed.

Basic examples
The following examples illustrate the function STIsClosed.

Example 1
IF STIsClosed(gun1) THEN

!Start the weld process

Set weld_start;

ELSE

...

ENDIF

Check if the gun is closed or not.

Example 2
STClose "sgun", 1000, 3 \Conc;

WHILE NOT(STIsClosed("sgun"\RetThickness:=thickness)) DO

WaitTime 0.1;

ENDWHILE

IF thickness > max_thickness THEN...

Start to close the gun named sgun. Continue immediately with the next instruction
in which the program waits for the gun to be closed. Read the achieved thickness
value when the instruction STIsClosed has returned TRUE.

Example 3
Examples of non valid combinations:

STClose "sgun", 1000, 3 \RetThickness:=thickness \Conc;

WHILE NOT(STIsClosed("sgun"\RetThickness:=thickness_2)) DO;

...

Close the gun. The parameter thickness will not hold any valid value since the
\Conc switch is used. Wait until the gun is closed. When the gun is closed and
STIsClosed returns TRUE, the parameter thickness_2 will hold a valid value since
the \Conc switch was used for the STClose.

STClose "sgun", 1000, 3 \RetThickness:=thickness;

WHILE NOT(STIsClosed("sgun"\RetThickness:=thickness_2)) DO;

...

Close the gun. The parameter thickness will hold a valid value when the gun has
been closed since the \Conc switch is not used. The parameter thickness_2 will
not hold any valid value since the \Conc switch was not used in the STClose
instruction.

Return value
Data type: bool
TRUE if the tested tool is closed, that is, the desired tip force is achieved.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1443
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.174 STIsClosed - Tests if a servo tool is closed

Servo Tool Control

FALSE if the tested tool is not closed.

Arguments
STIsClosed ToolName [\RetThickness]

ToolName

Data type: string
The name of the mechanical unit.

[\RetThickness]

Data type: num
The achieved thickness [mm].
NOTE! Only valid if \Conc has been used in a preceding STClose instruction.

Syntax
STIsClosed '('

[ToolName ':='] < expression (IN) of string > ')'

['\' RetThickness ':=' < variable or persistent (INOUT) of num
>] ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

STOpen - Open a Servo Tool on page 808Open a servo tool

STClose - Close a Servo Tool on page 791Close a servo tool

STIsOpen - Tests if a servo tool is open on page 1446Test if a servo tool is open

1444 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.174 STIsClosed - Tests if a servo tool is closed
Servo Tool Control
Continued

2.175 STIsIndGun - Tests if a servo tool is in independent mode

Usage
STIsIndGun is used to test if a servo tool is in independent mode.

Basic examples
The following example illustrates the function STIsIndGun.

Example 1
IF STIsIndGun(gun1) THEN

! Start the gun calibration

STCalib gun1\TipChg;

ELSE

...

ENDIF

Return value
Data type: bool
TRUE if the tested tool is in independent mode - that is, the gun can be moved
independently of the robot movements.
FALSE if the tested tool is not in independent mode.

Arguments
STIsIndGun ToolName

ToolName

Data type: string
The name of the mechanical unit.

Syntax
STIsIndGun '('

[ToolName ':='] < expression (IN) of string > ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

STCalib - Calibrate a Servo Tool on page787Calibrating a servo tool

STIndGun - Sets the gun in independent
mode on page 796

Setting the gun in independent mode

STIndGunReset - Resets the gun from inde-
pendent mode on page 798

Resetting the gun from independent mode

Technical reference manual - RAPID Instructions, Functions and Data types 1445
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.175 STIsIndGun - Tests if a servo tool is in independent mode

Servo Tool Control

2.176 STIsOpen - Tests if a servo tool is open

Usage
STIsOpen is used to test if a servo tool is open.

Basic examples
The following examples illustrate the function STIsOpen.

Example 1
IF STIsOpen(gun1) THEN

!Start the motion

MoveL ...

ELSE

...

ENDIF

Check if the gun is open or not.

Example 2
STCalib "sgun" \TipWear \Conc;

WHILE NOT(STIsOpen("sgun") \RetTipWear:=tipwear \RetPosAdj:=posadj)
DO;

WaitTime 0.1;

ENDWHILE

IF tipwear > 20...
IF posadj > 25...
Perform a tip wear calibration. Wait until the gun sgun is open. Read the tip wear
and positional adjustment values.

Example 3
Examples of non valid combinations:

STCalib "sgun" \TipWear \RetTipWear:=tipwear_1 \Conc;

WHILE NOT(STIsOpen("sgun") \RetTipWear:=tipwear_2) DO;

WaitTime 0.1;

ENDWHILE

Start a tip wear calibration. The parameter tipwear_1will not hold any valid value
since the \Conc switch is used. When the calibration is ready and the STIsOpen
returns TRUE, the parameter tipwear_2 will hold a valid value.

STCalib "sgun" \TipWear \RetTipWear:=tipwear_1;

WHILE NOT(STIsOpen("sgun") \RetTipWear:=tipwear_2) DO;

WaitTime 0.1;

ENDWHILE

Perform a tip wear calibration. The parameter tipwear_1 will hold a valid value
since the \Conc switch is not used. When STIsOpen returns TRUE, the parameter

Continues on next page
1446 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.176 STIsOpen - Tests if a servo tool is open
Servo Tool Control

tipwear_2 will not hold any valid value since the \Conc switch was not used in
STCalib.

Return value
Data type: bool
TRUE if the tested tool is open, that is, the tool arm is in the programmed open
position.
FALSE if the tested tool is not open.

Arguments
STIsOpen ToolName [\RetTipWear] [\RetPosAdj]

ToolName

Data type: string
The name of the mechanical unit.

[\RetTipWear]

Data type: num
The achieved tip wear [mm].
NOTE! Only valid if \Conc has been used in a preceding STCalib instruction and
if STIsOpen returns TRUE.

[\RetPosAdj]

Data type: num
The positional adjustment since the last calibration [mm].
NOTE! Only valid if \Conc has been used in a preceding STCalib instruction and
if STIsOpen returns TRUE.

Syntax
STIsOpen '('

[ToolName ':='] < expression (IN) of string > ')'

['\' RetTipWear ':=' < variable or persistent(INOUT) of num >
] ';'

['\' RetPosAdj ':=' < variable or persistent(INOUT) of num >]

A function with a return value of the data type bool.

Related information

SeeFor information about

STOpen - Open a Servo Tool on page 808Open a servo tool

STClose - Close a Servo Tool on page 791Close a servo tool

STIsClosed - Tests if a servo tool is closed on page1443Test if a servo tool is closed

Technical reference manual - RAPID Instructions, Functions and Data types 1447
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.176 STIsOpen - Tests if a servo tool is open

Servo Tool Control
Continued

2.177 StrDigCalc - Arithmetic operations with datatype stringdig

Usage
StrDigCalc is used to perform arithmetic operations (+, -, *, /, %) on two positive
digit strings in the same way as numeric arithmetic operations on positive integer
values.
This function can handle positive integers above 8 388 608 with exact
representation.

Basic examples
The following example illustrates the function StrDigCalc.
See also More examples on page 1449.

Example 1
res := StrDigCalc(str1, OpAdd, str2);

res is assigned the result of the addition operation on the values represented by
the digital strings str1 and str2.

Return value
Data type: stringdig
stringdig is used to represent big positive integers in a string with only digits.
This data type is introduced because the data type num cannot handle positive
integers above 8 388 608 with exact representation.

Arguments
StrDigCalc (StrDig1 Operation StrDig2)

StrDig1

String Digit 1
Data type: stringdig
String representing a positive integer value.

Operation

Arithmetic operator
Data type: opcalc
Defines the arithmetic operation to perform on the two digit strings. Following
arithmetic operatons of data type opcalc can be used; OpAdd, OpSub, OpMult,
OpDiv and OpMod.

StrDig2

String Digit 2
Data type: stringdig
String representing a positive integer value.

Continues on next page
1448 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.177 StrDigCalc - Arithmetic operations with datatype stringdig
RobotWare - OS

Program execution
This function will:

• Check only digits 0...9 in StrDig1 and StrDig2
• Convert the two digital strings to long integers
• Perform an arithmetic operation on the two long integers
• Convert the result from long integer to stringdig

More examples
The following examples illustrate the function StrDigCalc.

Example 1
res := StrDigCalc(str1, OpSub, str2);

res is assigned the result of the substration operation on the values represented
by the digital strings str1 and str2.

Example 2
res := StrDigCalc(str1, OpMult, str2);

res is assigned the result of themultiplication operartion on the values represented
by the digital strings str1 and str2.

Example 3
res := StrDigCalc(str1, OpDiv, str2);

res is assigned the result of the division operation on the values represented by
the digital strings str1 and str2.

Example 4
res := StrDigCalc(str1, OpMod, str2);

res is assigned the result of the modulus operation on the values represented by
the digital strings str1 and str2.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Input values not only digits or modulus by zeroERR_INT_NOTVAL

Input value above 4294967295ERR_INT_MAXVAL

Result out of range 0...4294967295ERR_CALC_OVERFLOW

Negative substraction, that is, StrDig2 > StrDig1ERR_CALC_NEG

Division by zeroERR_CALC_DIVZERO

Limitations
StrDigCalc only accepts strings that contain digits (characters 0...9). All other
characters in stringdig will result in error.
This function can only handle positive integers up to 4 294 967 295.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1449
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.177 StrDigCalc - Arithmetic operations with datatype stringdig

RobotWare - OS
Continued

Syntax
StrDigCalc '('

[StrDig1 ':='] < expression (IN) of stringdig > ','

[Operation ':='] < expression (IN) of opcalc > ','

[StrDig2 ':='] < expression (IN) of stringdig > ')'

A function with a return value of the data type stringdig.

Related information

SeeFor information about

stringdig - String with only digits on page1730Strings with only digits.

opcalc - Arithmetic Operator on page 1668Arithmetic operators.

1450 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.177 StrDigCalc - Arithmetic operations with datatype stringdig
RobotWare - OS
Continued

2.178 StrDigCmp - Compare two strings with only digits

Usage
StrDigCmp is used to compare two positive digit strings in the same way as
numeric compare of positive integers.
This function can handle positive integers above 8 388 608 with exact
representation.

Basic examples
The following examples illustrate the function StrDigCmp.

Example 1
VAR stringdig digits1 := "1234";

VAR stringdig digits2 := "1256";

VAR bool is_equal;

is_equal := StrDigCmp(digits1, EQ, digits2);

The variable is_equal will be set to FALSE, because the numeric value 1234 is
not equal to 1256.

Return value
Data type: bool
TRUE if the given condition is met, FALSE if not.

Arguments
StrDigCmp (StrDig1 Relation StrDig2)

StrDig1

String Digit 1
Data type: stringdig
The first string with only digits to be numerical compared.

Relation

Data type: opnum
Defines how to compare the two digit strings. Following predefined constants of
data type opnum can be used LT, LTEQ, EQ, NOTEQ, GTEQ or GT.

StrDig2

String Digit 2
Data type: stringdig
The second string with only digits to be numerical compared.

Program execution
This function will:

• Check that only digits 0...9 are used in StrDig1 and StrDig2
• Convert the two digital strings to long integers
• Numerically compare the two long integers

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1451
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.178 StrDigCmp - Compare two strings with only digits

RobotWare - OS

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Input values not only digitsERR_INT_NOTVAL

Value above 4294967295ERR_INT_MAXVAL

Limitations
StrDigCmp only accepts strings that contain digits (characters 0...9). All other
characters in stringdig will result in error.
This function can only handle positive integers up to 4 294 967 295.

Syntax
StrDigCmp '('

[StrDig1 ':='] < expression (IN) of stringdig > ','

[Relation ':='] < expression (IN) of opnum > ','

[StrDig2 ':='] < expression (IN) of stringdig > ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

stringdig - String with only digits on page1730String with only digits

opnum - Comparison operator on page 1669Comparison operators

FileTimeDnum - Retrieve time information
about a file on page 1254

File time information

ModTimeDnum - Get file modify time for the
loaded module on page 1341

File modify time of the loaded module

1452 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.178 StrDigCmp - Compare two strings with only digits
RobotWare - OS
Continued

2.179 StrFind - Searches for a character in a string

Usage
StrFind (String Find) is used to search in a string, starting at a specified position,
for a character that belongs to a specified set of characters.

Basic examples
The following example illustrates the function StrFind.

Example 1
VAR num found;

found := StrFind("Robotics",1,"aeiou");

The variable found is given the value 2.
found := StrFind("Robotics",1,"aeiou"\NotInSet);

The variable found is given the value 1
found := StrFind("IRB 6400",1,STR_DIGIT);

The variable found is given the value 5.
found := StrFind("IRB 6400",1,STR_WHITE);

The variable found is given the value 4.

Return value
Data type: num
The character position of the first character at or past the specified position that
belongs to the specified set. If no such character is found, string length +1 is
returned.

Arguments
StrFind (Str ChPos Set [\NotInSet])

Str

String
Data type: string
The string to search in.

ChPos

Character Position
Data type: num
Start character position. A runtime error is generated if the position is outside the
string.

Set

Data type: string
Set of characters to test against. See also Predefined data on page 1454.

[\NotInSet]

Data type: switch
Search for a character not in the set of characters presented in Set.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1453
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.179 StrFind - Searches for a character in a string

RobotWare - OS

Syntax
StrFind '('

[Str ':='] <expression (IN) of string> ','

[ChPos ':='] <expression (IN) of num> ','

[Set ':='] <expression (IN) of string>

['\' NotInSet] ')'

A function with a return value of the data type num.

Predefined data
A number of predefined string constants are available in the system and can be
used together with string functions.

Character setName

<digit> ::=STR_DIGIT

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<upper case letter> ::=STR_UPPER

A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í
| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3)

<lower case letter> ::=STR_LOWER

a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | à | á | â | ã
| ä | å | æ | ç | è | é | ê | ë | ì | í
| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø
| ù | ú | û | ü | 2) | 3) | ß | ÿ-

<blank character> ::=STR_WHITE

Related information

SeeFor information about

Technical referencemanual - RAPIDOverviewString functions

string - Strings on page 1728Definition of string

Technical referencemanual - RAPIDOverviewString values

1454 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.179 StrFind - Searches for a character in a string
RobotWare - OS
Continued

2.180 StrLen - Gets the string length

Usage
StrLen (String Length) is used to find the current length of a string.

Basic examples
The following example illustrates the function StrLen.

Example 1
VAR num len;

len := StrLen("Robotics");

The variable len is given the value 8.

Return value
Data type: num
The number of characters in the string (>=0).

Arguments
StrLen (Str)

Str

String
Data type: string
The string in which the number of characters is to be counted.

Syntax
StrLen '('

[Str ':='] <expression (IN) of string> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID Instruc-
tions, Functions and Data types

String functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID Instruc-
tions, Functions and Data types

String values

Technical reference manual - RAPID Instructions, Functions and Data types 1455
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.180 StrLen - Gets the string length

RobotWare - OS

2.181 StrMap - Maps a string

Usage
StrMap (StringMapping) is used to create a copy of a string in which all characters
are translated according to a specified mapping.

Basic examples
The following examples illustrate the function StrMap.

Example 1
VAR string str;

str := StrMap("Robotics","aeiou","AEIOU");

The variable str is given the value RObOtIcs.

Example 2
str := StrMap("Robotics",STR_LOWER, STR_UPPER);

The variable str is given the value ROBOTICS.

Return value
Data type: string
The string created by translating the characters in the specified string, as specified
by the "from" and "to" strings. Each character from the specified string that is found
in the "from" string is replaced by the character at the corresponding position in
the "to" string. Characters for which no mapping is defined are copied unchanged
to the resulting string.

Arguments
StrMap (Str FromMap ToMap)

Str

String
Data type: string
The string to translate.

FromMap

Data type: string
Index part of mapping. See also Predefined data on page 1457.

ToMap

Data type: string
Value part of mapping. See also Predefined data on page 1457.

Syntax
StrMap '('

[Str ':='] <expression (IN) of string> ','

[FromMap ':='] <expression (IN) of string> ','

[ToMap ':='] <expression (IN) of string> ')'

A function with a return value of the data type string.

Continues on next page
1456 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.181 StrMap - Maps a string
RobotWare - OS

Predefined data
A number of predefined string constants are available in the system and can be
used together with string functions.

Character setName

<digit> ::=STR_DIGIT

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<upper case letter> ::=STR_UPPER

A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í
| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3)

<lower case letter> ::=STR_LOWER

a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | à | á | â | ã
| ä | å | æ | ç | è | é | ê | ë | ì | í
| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø
| ù | ú | û | ü | 2) | 3) | ß | ÿ-

<blank character> ::=STR_WHITE

Related information

SeeFor information about

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

Technical reference manual - RAPID Instructions, Functions and Data types 1457
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.181 StrMap - Maps a string

RobotWare - OS
Continued

2.182 StrMatch - Search for pattern in string

Usage
StrMatch (String Match) is used to search in a string, starting at a specified
position, for a specified pattern.

Basic examples
The following example illustrates the function StrMatch.

Example 1
VAR num found;

found := StrMatch("Robotics",1,"bo");

The variable found is given the value 3.

Return value
Data type: num
The character position of the first substring, at or past the specified position, that
is equal to the specified pattern string. If no such substring is found, string length
+1 is returned.

Arguments
StrMatch (Str ChPos Pattern)

Str

String
Data type: string
The string to search in.

ChPos

Character Position
Data type: num
Start character position. A runtime error is generated if the position is outside the
string.

Pattern

Data type: string
Pattern string to search for.

Syntax
StrMatch '('

[Str ':='] <expression (IN) of string> ','

[ChPos ':='] <expression (IN) of num> ','

[Pattern ':='] <expression (IN) of string> ')'

A function with a return value of the data type num.

Continues on next page
1458 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.182 StrMatch - Search for pattern in string
RobotWare - OS

Related information

SeeFor information about

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

Technical reference manual - RAPID Instructions, Functions and Data types 1459
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.182 StrMatch - Search for pattern in string

RobotWare - OS
Continued

2.183 StrMemb - Checks if a character belongs to a set

Usage
StrMemb (StringMember) is used to check whether a specified character in a string
belongs to a specified set of characters.

Basic examples
The following example illustrates the function StrMemb.

Example 1
VAR bool memb;

memb := StrMemb("Robotics",2,"aeiou");

The variable memb is given the value TRUE, as o is a member of the set "aeiou".
memb := StrMemb("Robotics",3,"aeiou");

The variable memb is given the value FALSE, as b is not a member of the set
"aeiou".

memb := StrMemb("S-721 68 VÄSTERÅS",3,STR_DIGIT);

The variable memb is given the value TRUE, as 7 is a member of the set STR_DIGIT.

Return value
Data type: bool
TRUE if the character at the specified position in the specified string belongs to the
specified set of characters.

Arguments
StrMemb (Str ChPos Set)

Str

String
Data type: string
The string to check in.

ChPos

Character Position
Data type: num
The character position to check. A runtime error is generated if the position is
outside the string.

Set

Data type: string
Set of characters to test against.

Syntax
StrMemb '('

[Str ':='] <expression (IN) of string> ','

[ChPos ':='] <expression (IN) of num> ','

[Set ':='] <expression (IN) of string> ')'

Continues on next page
1460 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.183 StrMemb - Checks if a character belongs to a set
RobotWare - OS

A function with a return value of the data type bool.

Predefined data
A number of predefined string constants are available in the system and can be
used together with string functions.

Character setName

<digit> ::=STR_DIGIT

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<upper case letter> ::=STR_UPPER

A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3)

<lower case letter> ::=STR_LOWER

a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | à | á | â | ã
| ä | å | æ | ç | è | é | ê | ë | ì | í
| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø
| ù | ú | û | ü | 2) | 3) | ß | ÿ-

<blank character> ::=STR_WHITE

Related information

SeeFor information about

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

Technical reference manual - RAPID Instructions, Functions and Data types 1461
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.183 StrMemb - Checks if a character belongs to a set

RobotWare - OS
Continued

2.184 StrOrder - Checks if strings are ordered

Usage
StrOrder (StringOrder) compares two strings (character by character) and returns
a boolean indicating whether the two strings are in order according to a specified
character ordering sequence.

Basic examples
The following examples illustrate the function StrOrder.

Example 1
VAR bool le;

le := StrOrder("FIRST","SECOND",STR_UPPER);

The variable le is given the value TRUE, because "F" comes before "S" in the
character ordering sequence STR_UPPER.

Example 2
VAR bool le;

le := StrOrder("FIRST","FIRSTB",STR_UPPER);

The variable le is given the value TRUE, because "FIRSTB" has an additional
character in the character ordering sequence (no character compared to "B").

Example 3
VAR bool le;

le := StrOrder("FIRSTB","FIRST",STR_UPPER);

The variable le is given the value FALSE, because "FIRSTB" has an additional
character in the character ordering sequence ("B" compared to no character).

Return value
Data type: bool
TRUE if the first string comes before the second string (Str1 <= Str2) when
characters are ordered as specified.
Characters that are not included in the defined ordering are all assumed to follow
the present ones.

Arguments
StrOrder (Str1 Str2 Order)

Str1

String 1
Data type: string
First string value.

Str2

String 2

Continues on next page
1462 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.184 StrOrder - Checks if strings are ordered
RobotWare - OS

Data type: string
Second string value.

Order

Data type: string
Sequence of characters that define the ordering. See also Predefined data on
page 1463.

Syntax
StrOrder '('

[Str1 ':='] <expression (IN) of string> ','

[Str2 ':='] <expression (IN) of string> ','

[Order ':='] <expression (IN) of string> ')'

A function with a return value of the data type bool.

Predefined data
A number of predefined string constants are available in the system and can be
used together with string functions.

Character setName

<digit> ::=STR_DIGIT

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<upper case letter> ::=STR_UPPER

A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í
| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3)

<lower case letter> ::=STR_LOWER

a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | à | á | â | ã
| ä | å | æ | ç | è | é | ê | ë | ì | í
| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø
| ù | ú | û | ü | 2) | 3) | ß | ÿ-

<blank character> ::=STR_WHITE

Related information

SeeFor information about

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

Technical reference manual - RAPID Instructions, Functions and Data types 1463
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.184 StrOrder - Checks if strings are ordered

RobotWare - OS
Continued

2.185 StrPart - Finds a part of a string

Usage
StrPart (String Part) is used to find a part of a string, as a new string.

Basic examples
The following example illustrates the function StrPart.

Example 1
VAR string part;

part := StrPart("Robotics",1,5);

The variable part is given the value "Robot".

Return value
Data type: string
The substring of the specified string which has the specified length and starts at
the specified character position.

Arguments
StrPart (Str ChPos Len)

Str

String
Data type: string
The string in which a part is to be found.

ChPos

Character Position
Start character position. A runtime error is generated if the position is outside the
string.

Len

Length
Data type: num
Length of string part. A runtime error is generated if the length is negative or greater
than the length of the string, or if the substring is (partially) outside the string.

Syntax
StrPart '('

[Str ':='] <expression (IN) of string> ','

[ChPos ':='] <expression (IN) of num> ','

[Len ':='] <expression (IN) of num> ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewString functions

Continues on next page
1464 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.185 StrPart - Finds a part of a string
RobotWare - OS

SeeFor information about

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

Technical reference manual - RAPID Instructions, Functions and Data types 1465
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.185 StrPart - Finds a part of a string

RobotWare - OS
Continued

2.186 StrToByte - Converts a string to a byte data

Usage
StrToByte (String To Byte) is used to convert a string with a defined byte data
format into a byte data.

Basic examples
The following example illustrates the function StrToByte.

Example 1
VAR string con_data_buffer{5} := ["10", "AE", "176", "00001010",

"A"];

VAR byte data_buffer{5};

data_buffer{1} := StrToByte(con_data_buffer{1});

The content of the array component data_buffer{1} will be 10 decimal after the
StrToByte ... function.

data_buffer{2} := StrToByte(con_data_buffer{2}\Hex);

The content of the array component data_buffer{2} will be 174 decimal after
the StrToByte ... function.

data_buffer{3} := StrToByte(con_data_buffer{3}\Okt);

The content of the array component data_buffer{3} will be 126 decimal after
the StrToByte ... function.

data_buffer{4} := StrToByte(con_data_buffer{4}\Bin);

The content of the array component data_buffer{4} will be 10 decimal after the
StrToByte ... function.

data_buffer{5} := StrToByte(con_data_buffer{5}\Char);

The content of the array component data_buffer{5} will be 65 decimal after the
StrToByte ... function.

Return value
Data type: byte
The result of the conversion operation in decimal representation.

Arguments
StrToByte (ConStr [\Hex] | [\Okt] | [\Bin] | [\Char])

ConStr

Convert String
Data type: string
The string data to be converted.
If the optional switch argument is omitted, the string to be converted has decimal
(Dec) format.

[\Hex]

Hexadecimal
Data type: switch

Continues on next page
1466 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.186 StrToByte - Converts a string to a byte data
RobotWare - OS

The string to be converted has hexadecimal format.

[\Okt]

Octal
Data type: switch
The string to be converted has octal format.

[\Bin]

Binary
Data type: switch
The string to be converted has binary format.

[\Char]

Character
Data type: switch
The string to be converted has ASCII character format.

Limitations
Depending on the format of the string to be converted, the following string data is
valid:

RangeString lengthFormat

"0" - "255"3Dec: ’0’ - ’9’

"0" - "FF"2Hex: ’0’ - ’9’, ’a’ -’f’, ’A’ - ’F’

"0" - "377"3Okt: ’0’ - ’7’

"0" - "11111111"8Bin: ’0’ - ’1’

One ASCII char1Char: Any ASCII character

RAPID character codes (for example, “\07” for BEL control character) can be used
as arguments in ConStr.

Syntax
StrToByte '('

[ConStr ':='] <expression (IN) of string>

['\' Hex] | ['\' Okt] | ['\' Bin] | ['\' Char]

')'

A function with a return value of the data type byte.

Related information

SeeFor information about

ByteToStr - Converts a byte to a string data
on page 1169

Convert a byte to a string data

Technical referencemanual - RAPIDOverviewOther bit (byte) functions

Technical referencemanual - RAPIDOverviewOther string functions

Technical reference manual - RAPID Instructions, Functions and Data types 1467
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.186 StrToByte - Converts a string to a byte data

RobotWare - OS
Continued

2.187 StrToVal - Converts a string to a value

Usage
StrToVal (String To Value) is used to convert a string to a value of any data type.

Basic examples
The following example illustrates the function StrToVal.
See also More examples on page 1468.

Example 1
VAR bool ok;

VAR num nval;

ok := StrToVal("3.85",nval);

The variable ok is given the value TRUE and nval is given the value 3.85.

Return value
Data type: bool
TRUE if the requested conversion succeeded, FALSE otherwise.

Arguments
StrToVal (Str Val)

Str

String
Data type: string
A string value containing literal data with format corresponding to the data type
used in argument Val. Valid format as for RAPID literal aggregates.

Val

Value
Data type: ANYTYPE
Name of the variable or persistent of any data type for storage of the result from
the conversion.
All type of value data with structure atomic, record, record component, array or
array element can be used. The data is unchanged if the requested conversion
failed because the format don’t correspond to the data used in argument Str.

More examples
More examples of the function StrToVal are illustrated below.

Example 1
VAR string str15 := "[600, 500, 225.3]";

VAR bool ok;

VAR pos pos15;

ok := StrToVal(str15,pos15);

Continues on next page
1468 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.187 StrToVal - Converts a string to a value
RobotWare - OS

The variable ok is given the value TRUE and the variable pos15 is given the value
that are specified in the string str15.

Syntax
StrToVal '('

[Str ':='] <expression (IN) of string> ','

[Val ':='] <var or pers (INOUT) of ANYTYPE>

')'

A function with a return value of the data type bool.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

Technical reference manual - RAPID Instructions, Functions and Data types 1469
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.187 StrToVal - Converts a string to a value

RobotWare - OS
Continued

2.188 Tan - Calculates the tangent value

Usage
Tan (Tangent) is used to calculate the tangent value from an angle value.

Basic examples
The following example illustrates the function Tan.

Example 1
VAR num angle;

VAR num value;

...

...

value := Tan(angle);

value will get the tangent value of angle.

Return value
Data type: num
The tangent value.

Arguments
Tan (Angle)

Angle

Data type: num
The angle value, expressed in degrees.

Syntax
Tan '('

[Angle ':='] <expression (IN) of num>

')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

ATan2 - Calculates the arc tangent2 value on
page 1138

Arc tangent with return value in the range
[-180,180]

1470 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.188 Tan - Calculates the tangent value
RobotWare - OS

2.189 TanDnum - Calculates the tangent value

Usage
TanDnum (Tangent) is used to calculate the tangent value from an angle value on
data types dnum.

Basic examples
The following example illustrates the function TanDnum.

Example 1
VAR dnum angle;

VAR dnum value;

...

...

value := TanDnum(angle);

value will get the tangent value of angle.

Return value
Data type: dnum
The tangent value.

Arguments
TanDnum (Angle)

Angle

Data type: dnum
The angle value, expressed in degrees.

Syntax
TanDnum '('

[Angle ':='] <expression (IN) of dnum>

')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

ATan2Dnum - Calculates the arc tangent2 value
on page 1139

Arc tangent with return value in the range
[-180,180]

Technical reference manual - RAPID Instructions, Functions and Data types 1471
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.189 TanDnum - Calculates the tangent value

RobotWare - OS

2.190 TaskRunMec - Check if task controls any mechanical unit

Usage
TaskRunMec is used to check if the program task controls any mechanical units
(robot with TCP or manipulator without TCP).

Basic examples
The following example illustrates the function TaskRunMec.

Example 1
VAR bool flag;

...

flag := TaskRunMec();

If current task controls any mechanical unit flag will be TRUE, otherwise FALSE.

Return value
Data type: bool
If current task controls any mechanical unit the return value will be TRUE, otherwise
FALSE.

Program execution
Check if current program task controls any mechanical unit.

Syntax
TaskRunMec '(' ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

TaskRunRob - Check if task controls some robot on
page 1473

Check if task control some robot

ActUnit - Activates a mechanical unit on page 26Activating and deactivating mechan-
ical units DeactUnit - Deactivates amechanical unit on page172

Technical reference manual - System parametersConfiguration of mechanical units

1472 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.190 TaskRunMec - Check if task controls any mechanical unit
RobotWare - OS

2.191 TaskRunRob - Check if task controls some robot

Usage
TaskRunRob is used to check if the program task controls some robot (mechanical
unit with TCP).

Basic examples
The following example illustrates the function TaskRunRob.

Example 1
VAR bool flag;

...

flag := TaskRunRob();

If current task controls some robot, flag will be set to TRUE, otherwise FALSE.

Return value
Data type: bool
If current task controls some robot, the return value will be TRUE, otherwise FALSE.

Program execution
Check if current program task controls some robot.

Syntax
TaskRunRob '(' ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

TaskRunMec - Check if task controls any mechan-
ical unit on page 1472

Check if task controls any mechanical
unit

ActUnit - Activates a mechanical unit on page 26Activating and deactivatingmechanical
units DeactUnit - Deactivates a mechanical unit on

page 172

Technical reference manual - System parametersConfiguration of mechanical units

Technical reference manual - RAPID Instructions, Functions and Data types 1473
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.191 TaskRunRob - Check if task controls some robot

RobotWare - OS

2.192 TasksInSync - Returns the number of synchronized tasks

Usage
TasksInSync is used to retrieve the number of synchronized tasks.

Basic examples
The following example illustrates the function TaskInSync.

Example 1
VAR tasks tasksInSyncList{6};

...

PROC main ()

VAR num noOfSynchTasks;

...

noOfSynchTasks:= TasksInSync (tasksInSyncList);

TPWrite "No of synchronized tasks = "\Num:=noOfSynchTasks;

ENDPROC

The variable noOfSynchTasks is assigned the number of synchronized tasks and
the tasksInSyncList will contain the names of the synchronized tasks. In this
example the task list is a variable but it can also be a persistent.

Return value
Data type: num
The number of synchronized tasks.

Arguments
TaskInSync (TaskList)

TaskList

Data type: tasks
Inout argument that in a task list (array) will present the name (string) of the
program tasks that are synchronized. The task list can be either of type VAR or
PERS.

Program execution
The function returns the number of synchronized tasks in the system. The names
of the synchronized tasks are presented in the inout argument TaskList. In cases
where there are no synchronized tasks, the list will only contain empty strings.

Limitations
Currently only one synch group is supported, so TasksInSync returns the number
of tasks that are synchronized in that group.

Syntax
TasksInSync

[TaskList ':='] < var or pers array {*} (INOUT) of tasks> ','

A function with a return value of the data type num.

Continues on next page
1474 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.192 TasksInSync - Returns the number of synchronized tasks
RobotWare - OS

Related information

SeeFor information about

tasks - RAPID program tasks on page 1739Specify cooperated program tasks

SyncMoveOn - Start coordinated synchron-
ized movements on page 832

Start coordinated synchronized movements

Technical reference manual - RAPID Instructions, Functions and Data types 1475
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.192 TasksInSync - Returns the number of synchronized tasks

RobotWare - OS
Continued

2.193 TaskIsActive - Check if a normal task is active

Usage
TaskIsActive is used to check if a normal program task is active in the Task
Selection Panel on the FlexPendant.

Basic examples
The following example illustrates the function TaskIsActive.

Example 1
IF TaskIsActive("T_ROB1") = TSP_STATUS_ACT THEN

TPWrite "T_ROB1 is active in the Task Selection Panel";

ENDIF

Check if program task T_ROB1 is active in the Task Selection Panel on the
FlexPendant.

Return value
Data type: tsp_status
The current task selection panel status.

Predefined data
The following predefined symbolic constants of type tsp_status can be used to
check the return value:

CONST tsp_status TSP_STATUS_NOT_NORMAL_TASK := 0;

CONST tsp_status TSP_STATUS_DEACT := 1;

CONST tsp_status TSP_STATUS_DEACT_SERV_ROUT := 2;

CONST tsp_status TSP_STATUS_ACT := 3;

Arguments
TaskIsActive (TaskRef | TaskName)

TaskRef

Data type: taskid
The program task identity of the task that should be checked.
The predefined variables of the data type taskid is available for all program tasks
in the system.
The variable identity is "taskname"+"Id", for example the variable identity for the
T_ROB1 task is T_ROB1Id.

TaskName

Data type: string
The program task name of the task that should be checked.

Continues on next page
1476 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.193 TaskIsActive - Check if a normal task is active
RobotWare - OS

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

Syntax
TaskIsActive '('

[TaskRef ':='] <variable (VAR) of taskid>

|[TaskName ':='] <expression (IN) of string> ')'

A function with a return value of the data type tsp_status.

Related information

SeeFor information about

tsp_status - Task selection panel status on
page 1764

Task selection panel status

GetTSPStatus - Get current task selection panel
status on page 1289

Get current task selection panel status

TaskIsExecuting - Check if task is executing on
page 1478

Check if task is executing

Technical reference manual - RAPID Instructions, Functions and Data types 1477
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.193 TaskIsActive - Check if a normal task is active

RobotWare - OS
Continued

2.194 TaskIsExecuting - Check if task is executing

Usage
TaskIsExecuting is used to check if a program task is executing.

Basic examples
The following example illustrates the function TaskIsExecuting.

Example 1
TPWrite "T_ROB1 is executing: " \Bool:=TaskIsExecuting("T_ROB1");

TPWrite "T_ROB2 is executing: " \Bool:=TaskIsExecuting("T_ROB2");

Checks if program task T_ROB1 and T_ROB2 is executing and writes the value on
the FlexPendant.

Return value
Data type: bool
If the program task is executing, the return value is TRUE, otherwise FALSE.

Arguments
TaskIsExecuting (TaskRef | TaskName)

TaskRef

Data type: taskid
The program task identity of the task that should be checked.
The predefined variables of the data type taskid is available for all program tasks
in the system.
The variable identity is "taskname"+"Id", for example the variable identity for the
T_ROB1 task is T_ROB1Id.

TaskName

Data type: string
The program task name of the task that should be checked.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

The program task name in argument \TaskName cannot
be found in the system.

ERR_TASKNAME

Syntax
TaskIsExecuting '('

[TaskRef ':='] <variable (VAR) of taskid>

|[TaskName ':='] <expression (IN) of string> ')'

A function with a return value of the data type bool.

Continues on next page
1478 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.194 TaskIsExecuting - Check if task is executing
RobotWare - OS

Related information

SeeFor information about

TaskIsActive - Check if a normal task is active
on page 1476

Check if a normal task is active

Technical reference manual - RAPID Instructions, Functions and Data types 1479
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.194 TaskIsExecuting - Check if task is executing

RobotWare - OS
Continued

2.195 TestAndSet - Test variable and set if unset

Usage
TestAndSet can be used together with a normal data object of the type bool, as
a binary semaphore, to retrieve exclusive right to specific RAPID code areas or
system resources. The function could be used both between different program
tasks and different execution levels (TRAP or Event Routines) within the same
program task.
Example of resources that can need protection from access at the same time:

• Use of some RAPID routines with function problems when executed in
parallel.

• Use of the FlexPendant - Operator Log

Basic examples
The following example illustrates the function TestAndSet.
See also More examples on page 1481.

Example 1
MAIN program task:

PERS bool tproutine_inuse := FALSE;

...

WaitUntil TestAndSet(tproutine_inuse);

TPWrite "First line from MAIN";

TPWrite "Second line from MAIN";

TPWrite "Third line from MAIN";

tproutine_inuse := FALSE;

BACK1 program task:
PERS bool tproutine_inuse := FALSE;

...

WaitUntil TestAndSet(tproutine_inuse);

TPWrite "First line from BACK1";

TPWrite" Second line from BACK1";

TPWrite "Third line from BACK1";

tproutine_inuse := FALSE;

To avoid mixing up the lines, in the Operator Log, one from MAIN and one from
BACK1, the use of the TestAndSet function guarantees that all three lines from
each task are not separated.
If program task MAIN takes the semaphore TestAndSet(tproutine_inuse)
first, then program task BACK1 must wait until the program task MAIN has left the
semaphore.

Return value
Data type: bool
TRUE if the semaphore has been taken by me (executor of TestAndSet function),
otherwise FALSE.

Continues on next page
1480 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.195 TestAndSet - Test variable and set if unset
RobotWare - OS

Arguments
TestAndSet Object

Object

Data type: bool
User defined data object to be used as semaphore. The data object could be a
variable VAR or a persistent variable PERS. If TestAndSet are used between
different program tasks, the object must be a persistent variable PERS or an installed
variable VAR (intertask objects).

Program execution
This function will in one indivisible step check the user defined variable and, if it
is unset, will set it and return TRUE, otherwise it will return FALSE.

IF Object = FALSE THEN

Object := TRUE;

RETURN TRUE;

ELSE

RETURN FALSE;

ENDIF

More examples
The following example illustrates the function TestAndSet.

Example 1
LOCAL VAR bool doit_inuse := FALSE;

...

PROC doit(...)

WaitUntil TestAndSet (doit_inuse);

...

doit_inuse := FALSE;

ENDPROC

If a module is installed built-in and shared, it is possible to use a local module
variable for protection of access from different program tasks at the same time.

Note

In this case with installed built-in modules and when using persistent variable
as semaphore object: If program execution is stopped in the routine doit and
the program pointer is moved to main, the variable doit_inusewill not be reset.
To avoid this, reset the variable doit_inuse to FALSE in the START event routine.

Syntax
TestAndSet '('

[Object ':='] < variable or persistent (INOUT) of bool> ')'

A function with a return value of the data type bool.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1481
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.195 TestAndSet - Test variable and set if unset

RobotWare - OS
Continued

Related information

SeeFor information about

WaitTestAndSet - Wait until variable becomes
FALSE, then set on page 1048

Wait until variable unset - then set (type wait
with interrupt control)

1482 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.195 TestAndSet - Test variable and set if unset
RobotWare - OS
Continued

2.196 TestDI - Tests if a digital input is set

Usage
TestDI is used to test whether a digital input is set.

Basic examples
The following example illustrates the function TestDI.

Example 1
IF TestDI (di2) THEN . . .

If the current value of the signal di2 is equal to 1, then . . .
IF NOT TestDI (di2) THEN . . .

If the current value of the signal di2 is equal to 0, then . . .
WaitUntil TestDI(di1) AND TestDI(di2);

Program execution continues only after both the di1 input and the di2 input have
been set.

Return value
Data type: bool
TRUE = The current value of the signal is equal to 1.
FALSE = The current value of the signal is equal to 0.

Arguments
TestDI (Signal)

Signal

Data type: signaldi
The name of the signal to be tested.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

Syntax
TestDI '('

[Signal ':='] < variable (VAR) of signaldi > ')'

A function with a return value of the data type bool.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1483
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.196 TestDI - Tests if a digital input is set

RobotWare - OS

Related information

SeeFor information about

signalxx - Digital and analog signals on page1714Reading the value of a digital input signal

DOutput - Reads the value of a digital output
signal on page 1241

Reading the value of a digital output signal

Technical reference manual - RAPID OverviewInput/Output instructions

1484 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.196 TestDI - Tests if a digital input is set
RobotWare - OS
Continued

2.197 TestSignRead - Read test signal value

Usage
TestSignRead is used to read the actual test signal value.
This function returns themomentary value or themean value of the latest samples,
depending on channel specification in instruction TestSignDefine.

Basic examples
The following example illustrates the function TestSignRead.
See also More examples on page 1486.

Example 1
CONST num speed_channel:=1;

VAR num speed_value;

...

TestSignDefine speed_channel, speed, orbit, 1, 0;

...

! During some movements with orbit’s axis 1

speed_value := TestSignRead(speed_channel);

...

TestSignReset;

speed_value is assigned the mean value of the latest 8 samples generated each
0.5 ms of the test signal speed on channel speed_channel defined as channel
1. The channel speed_channelmeasures the speed of axis 1 on themechanical
unit orbit.

Return value
Data type: num
The numeric value in SI units on themotor side for the specified channel according
to the definition in instruction TestSignDefine.

Arguments
TestSignRead (Channel)

Channel

Data type: num
The channel number 1-12 for the test signal to be read. The same number must
be used in the definition instruction TestSignDefine.

Program execution
Returns the momentary value or the mean value of the latest samples, depending
on the channel specification in the instruction TestSignDefine.
For predefined test signals with valid SI units for external manipulator axes, see
data type testsignal.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1485
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.197 TestSignRead - Read test signal value

RobotWare - OS

More examples
The following example illustrates the function TestSignRead.

Example 1
CONST num torque_channel:=2;

VAR num torque_value;

VAR intnum timer_int;

CONST jointtarget psync := [...];

...

PROC main()

CONNECT timer_int WITH TorqueTrap;

ITimer \Single, 0.05, timer_int;

TestSignDefine torque_channel, torque_ref, IRBP_K, 2, 0.001;

...

MoveAbsJ psync \NoEOffs, v5, fine, tool0;

...

IDelete timer_int;

TestSignReset;

TRAP TorqueTrap

IF (TestSignRead(torque_channel) > 6) THEN

TPWrite "Torque pos = " + ValToStr(CJointT());

Stop;

ELSE

IDelete timer_int;

CONNECT timer_int WITH TorqueTrap;

ITimer \Single, 0.05, timer_int;

ENDIF

ENDTRAP

When the torque reference for manipulator IRBP_K axis 2 is for the first time greater
than 6 Nm on the motor side during the slow movement to position psync, the
joint position is displayed on the FlexPendant.

Syntax
TestSignRead '('

[Channel ':='] <expression (IN) of num> ')'

A function with a return value of the type num.

Related information

SeeFor information about

testsignal - Test signal on page 1741Test signal

TestSignDefine - Define test signal on page 850Define test signal

TestSignReset - Reset all test signal definitions on page852Reset test signals

1486 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.197 TestSignRead - Read test signal value
RobotWare - OS
Continued

2.198 TextGet - Get text from system text tables

Usage
TextGet is used to get a text string from the system text tables.

Basic examples
The following example illustrates the function TextGet.

Example 1
VAR string text1;

...

text1 := TextGet(14, 5);

The variable text1 is assigned the text stored in text resource 14 and index 5.

Return value
Data type: string
Specified text from the system text tables.

Arguments
TextGet (Table Index)

Table

Data type: num
The text table number (positive integer).

Index

Data type: num
The index number (positive integer) within the text table.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

Table or index is not valid, and no text string can be fetched
from the system text tables.

ERR_TXTNOEXIST

Syntax
TextGet '('

[Table ':='] < expression (IN) of num > ','

[Index ':='] < expression (IN) of num> ')'

A function with a return value of the data type string.

Related information

SeeFor information about

TextTabGet - Get text table number on page 1491Get text table number

TextTabInstall - Installing a text table on page 853Install text table

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1487
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.198 TextGet - Get text from system text tables

RobotWare - OS

SeeFor information about

Technical reference manual manual - RAPID kernelFormat text files

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

Product specification - Controller software IRC5Advanced RAPID

1488 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.198 TextGet - Get text from system text tables
RobotWare - OS
Continued

2.199 TextTabFreeToUse - Test whether text table is free

Usage
TextTabFreeToUse should be used to test whether the text table name (text
resource string) is free to use (not already installed in the system), that is, whether
it is possible to install the text table in the system or not.

Basic examples
The following example illustrates the function TextTabFreeToUse.

Example 1
! System Module with Event Routine to be executed at event

! POWER ON, RESET or START

PROC install_text()

IF TextTabFreeToUse("text_table_name") THEN

TextTabInstall "HOME:/text_file.eng";

ENDIF

ENDPROC

The first time the event routine install_text is executed, the function
TextTabFreeToUse returns TRUE and the text file text_file.eng is installed
in the system. After that the installed text strings can be fetched from the system
to RAPID by the functions TextTabGet and TextGet.
Next time the event routine install_text is executed, the function
TextTabFreeToUse returns FALSE and the installation is not repeated.

Return value
Data type: bool
This function returns:

• TRUE, if the text table is not already installed in the system
• FALSE, if the text table is already installed in the system

Arguments
TextTabFreeToUse (TableName)

TableName

Data type: string
The text table name (a string withmax. 20 characters). Refer to <text_resource>::
in RAPID Reference Manual - RAPID Kernel, section Text files. The string
text_resource is the text table name.

Limitations
Limitations for installation of text tables (text resources) in the system:

• It is not possible to install the same text table more than once in the system
• It is not possible to uninstall (free) a single text table from the system. The

only way to uninstall text tables from the system is to restart the controller

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1489
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.199 TextTabFreeToUse - Test whether text table is free

RobotWare - OS

using the restart mode Reset system. All text tables (both system and user
defined) will then be uninstalled.

Syntax
TextTabFreeToUse '('

[TableName ':='] < expression (IN) of string > ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

TextTabInstall - Installing a text table on page 853Install text table

Technical reference manual manual - RAPID kernelFormat of text files

TextTabGet - Get text table number on page 1491Get text table number

TextGet -Get text fromsystem text tables onpage1487Get text from system text tables

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Product specification - Controller software IRC5Advanced RAPID

1490 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.199 TextTabFreeToUse - Test whether text table is free
RobotWare - OS
Continued

2.200 TextTabGet - Get text table number

Usage
TextTabGet is used to get the text table number of a user defined text table during
run time.

Basic examples
The following examples illustrate the function TextTabGet.
Both examples use a new text table named deburr_part1 for user defined texts.
The new text table has the file name deburr.eng.

deburr.eng - USERS deburr_part1 english text description file

#

DESCRIPTION:

Users text file for RAPID development

#

deburr_part1::

0:

RAPID S4: Users text table deburring part1

1:

Part 1 is not in pos

2:

Identity of worked part: XYZ

3:

Part error in line 1

#

End of file

Example 1
VAR num text_res_no;

...

text_res_no := TextTabGet("deburr_part1");

The variable text_res_no is assigned the text table number for the defined text
table deburr_part1.

Example 2
ErrWrite TextGet(text_res_no, 1), TextGet(text_res_no, 2);

A message is stored in the robot log. The message is also shown on the
FlexPendant display. Themessageswill be taken from the text table deburr_part1
:
Part 1 is not in pos
Identity of worked part: XYZ

Return value
Data type: num
The text table number of the defined text table.

Arguments
TextTabGet (TableName)

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1491
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.200 TextTabGet - Get text table number

RobotWare - OS

TableName

Data type: string
The text table name.

Syntax
TextTabGet '('

[TableName '='] < expression (IN) of string > ';)'

A function with a return value of the data type num.

Related information

SeeFor information about

TextGet - Get text from system text tables on page1487Get text from system text tables

TextTabInstall - Installing a text table on page 853Install text table

Technical reference manual manual - RAPID kernelFormat text files

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

Product specification - Controller software IRC5Advanced RAPID

1492 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.200 TextTabGet - Get text table number
RobotWare - OS
Continued

2.201 TriggDataValid - Check if the content in a triggdata variable is valid

Usage
TriggDataValid function is used to check if a triggdata variable is valid. A
valid triggdata variable is a variable that earlier has been used in the program
in one of the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed,
TriggCheckIO or TriggRampAO to specify trigger conditions and trigger activity.

Basic examples
The following example illustrates the function TriggDataValid.

Example 1
VAR triggdata trigg_array{25};

...

PROC MyTriggProcL(robtarget myrobt, \VAR triggdata T1 \VAR triggdata
T2 \VAR triggdata T3)

VAR num triggcnt:=2;

! Reset entire trigg_array array before using it

FOR i FROM 1 TO 25 DO

TriggDataReset trigg_array{i};

ENDFOR

TriggEquip trigg_array{1}, 10 \Start, 0 \DOp:=do1, SetValue:=1;

TriggEquip trigg_array{2}, 40 \Start, 0 \DOp:=do2, SetValue:=1;

! Check if optional argument is present,

! and if any trigger condition has been setup in T1

IF Present(T1) AND TriggDataValid(T1) THEN

! Copy actual trigger condition to trigg_array

TriggDataCopy trigg_array{triggcnt}, T1;

Incr triggcnt;

ENDIF

IF Present(T2) AND TriggDataValid(T2) THEN

Incr triggcnt;

TriggDataCopy trigg_array{triggcnt}, T2;

ENDIF

IF Present(T3) AND TriggDataValid(T3) THEN

Incr triggcnt;

TriggDataCopy trigg_array{triggcnt}, T3;

ENDIF

TriggL p1, v500, trigg_array, z30, tool2;

...

The procedure MyTriggProcL above uses the TriggDataValid instruction to
check if any valid data is used in the optional arguments T1, T2 and T3.

Return value
Data type: bool

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1493
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.201 TriggDataValid - Check if the content in a triggdata variable is valid

RobotWare - OS

This function returns:
• TRUE, if the variable is valid, i.e. one of the instructions TriggIO,

TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or TriggRampAO
has been used to specify trigger conditions and trigger activity.

• FALSE, if the variable has not been used when setting up any trigger condition
and trigger activity.

Arguments
TriggDataValid TriggData

TriggData

Data type: triggdata
The triggdata variable to check if valid.

Syntax
TriggDataValid

[TriggData ':='] < variable (VAR) of triggdata > ';'

A function with a return value of the data type bool.

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Linear movement with triggers

TriggJ - Axis-wise robot movements with events on
page 909

Joint movement with triggers

TriggC - Circular robot movement with events on
page 873

Circular movement with triggers

TriggIO - Define a fixed position or time I/O event
near a stop point on page 903

Definition of triggers

TriggEquip - Define a fixed position and time I/O event
on the path on page 892
TriggInt - Defines a position related interrupt on
page 898
TriggCheckIO - Defines I/O check at a fixed position
on page 882
TriggRampAO - Define a fixed position rampAOevent
on the path on page 940
TriggSpeed - Defines TCP speed proportional analog
output with fixed position-time scale event on page947

triggdata - Positioning events, trigg on page 1752Handling triggdata
TriggDataReset - Reset the content in a triggdata
variable on page 890
TriggDataCopy - Copy the content in a triggdata
variable on page 888

1494 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.201 TriggDataValid - Check if the content in a triggdata variable is valid
RobotWare - OS
Continued

2.202 Trunc - Truncates a numeric value

Usage
Trunc (Truncate) is used to truncate a numeric value to a specified number of
decimals or to an integer value.

Basic examples
The following examples illustrate the function Trunc.

Example 1
VAR num val;

val := Trunc(0.3852138\Dec:=3);

The variable val is given the value 0.385.

Example 2
reg1 := 0.3852138;

val := Trunc(reg1\Dec:=1);

The variable val is given the value 0.3.

Example 3
val := Trunc(0.3852138);

The variable val is given the value 0.

Example 4
val := Trunc(0.3852138\Dec:=6);

The variable val is given the value 0.385213.

Return value
Data type: num
The numeric value truncated to the specified number of decimals.

Arguments
Trunc (Val [\Dec])

Val

Value
Data type: num
The numeric value to be truncated.

[\Dec]

Decimals
Data type: num
Number of decimals.
If the specified number of decimals is 0 or if the argument is omitted, the value is
truncated to an integer.
The number of decimalsmust not be negative or greater than the available precision
for numeric values.
Max number of decimals that can be used is 6.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1495
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.202 Trunc - Truncates a numeric value

RobotWare - OS

Syntax
Trunc '('

[Val ':='] <expression (IN) of num>

[\Dec ':=' <expression (IN) of num>] ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewMathematical instructions and functions

Round - Round a numeric value on page 1418Rounding a value

1496 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.202 Trunc - Truncates a numeric value
RobotWare - OS
Continued

2.203 TruncDnum - Truncates a numeric value

Usage
TruncDnum (Truncate dnum) is used to truncate a numeric value to a specified
number of decimals or to an integer value.

Basic examples
The following examples illustrate the function TruncDnum.

Example 1
VAR dnum val;

val := TruncDnum(0.3852138754655357\Dec:=3);

The variable val is given the value 0.385.

Example 2
val := TruncDnum(0.3852138754655357\Dec:=1);

The variable val is given the value 0.3.

Example 3
val := TruncDnum(0.3852138754655357);

The variable val is given the value 0.

Example 4
val := TruncDnum(0.3852138754655357\Dec:=15);

The variable val is given the value 0.385213875465535.

Example 5
val := TruncDnum(1000.3852138754655357\Dec:=15);

The variable val is given the value 1000.38521387547.

Return value
Data type: dnum
The numeric value truncated to the specified number of decimals.

Arguments
TruncDnum (Val [\Dec])

Val

Value
Data type: dnum
The numeric value to be truncated.

[\Dec]

Decimals
Data type: num
Number of decimals.
If the specified number of decimals is 0 or if the argument is omitted, the value is
truncated to an integer.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1497
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.203 TruncDnum - Truncates a numeric value

RobotWare - OS

The number of decimalsmust not be negative or greater than the available precision
for numeric values.
Max number of decimals that can be used is 15.

Syntax
TruncDnum '('

[Val ':='] <expression (IN) of dnum>

[\Dec ':=' <expression (IN) of num>] ')'

A function with a return value of the data type dnum.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

Trunc - Truncates a numeric value on
page 1495

Truncating a value

Round - Round a numeric value on page1418Rounding a value

RoundDnum - Round a numeric value on
page 1420

Rounding a value

1498 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.203 TruncDnum - Truncates a numeric value
RobotWare - OS
Continued

2.204 Type - Get the data type name for a variable

Usage
Type is used to get the data type name for the specified variable in argument Data.

Basic examples
The following examples illustrate the function Type.

Example 1
VAR string rettype;

VAR intnum intnumtype;

...

PROC main()

rettype := Type(intnumtype);

TPWrite "Data type name: " + rettype;

The print out will be: "Data type name: intnum"

Example 2
VAR string rettype;

VAR intnum intnumtype;

...

PROC main()

rettype := Type(intnumtype \BaseName);

TPWrite "Data type name: " + rettype;

The print out will be: "Data type name: num"

Example 3
VAR string rettype;

VAR num numtype;

...

PROC main()

rettype := Type(numtype);

TPWrite "Data type name: " + rettype;

The print out will be: "Data type name: num"

Return value
Data type: string
A string with the data type name for the specified variable in argument Data.

Arguments
Type (Data [\BaseName])

Data

Data object name
Data type: anytype
The name of the variable to get the data type name for.

[\BaseName]

Base data type Name

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1499
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.204 Type - Get the data type name for a variable

RobotWare - OS

Data type: switch
If used, then the function returns the underlying data type name, when the specified
Data is an ALIAS declared data type.

Syntax
Type '('

[Data ':='] < reference (REF) of anytype >

['\' BaseName] ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Technical reference manual manual - RAPID
kernel

Definition of Alias types

ALIAS - Assigning an alias data type on
page 1563

1500 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.204 Type - Get the data type name for a variable
RobotWare - OS
Continued

2.205 UIAlphaEntry - User Alpha Entry

Usage
UIAlphaEntry (User Interaction Alpha Entry) is used to let the operator enter a
string from the available user device, such as the FlexPendant. A message is
written to the operator, who answers with a text string. The string is then transferred
back to the program.

Basic examples
The following example illustrates the function UIAlphaEntry.
See More examples on page 1505.

Example 1
VAR string answer;

...

answer := UIAlphaEntry(

\Header:= "UIAlphaEntry Header",

\Message:= "Which procedure do You want to run?"

\Icon:=iconInfo

\InitString:= "default_proc");

%answer%;

xx0500002437

Above alpha message box with icon, header, message, and init string are written
on the FlexPendant display. The user edit init string or write a new string with the
supported Alpha Pad. Program execution waits until OK is pressed and then the

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1501
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.205 UIAlphaEntry - User Alpha Entry

RobotWare-OS

written string is returned in the variable answer. The program then calls the
specified procedure with late binding.

Return value
Data type: string
This functions returns the input string.
If function breaks via \BreakFlag:

• If parameter \InitString is specified, this string is returned
• If parameter \InitString is not specified, empty string "" is returned.

If function breaks via ERROR handler, no return value will be returned at all.

Arguments
UIAlphaEntry ([\Header] [\Message]|[\MsgArray]

[\Wrap][\Icon][\InitString] [\MaxTime] [\DIBreak] [\DIPassive]
[\DOBreak] [\DOPassive] [\PersBoolBreak] [\PersBoolPassive]
[\BreakFlag] [\UIActiveSignal])

[\Header]

Data type: string
Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string
One text line to be written on the display. Max 55 characters.

[\MsgArray]

Message Array
Data type: string
Several text lines from an array to be written on the display.
Only one of parameter \Message or \MsgArray can be used at the same time.
Max. layout space is 9 lines with 55 characters.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with single space between each individual strings and spread out on
as few lines as possible.
Default, each string in the argument \MsgArray will be on separate line on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1504.
Default no icon.

Continues on next page
1502 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.205 UIAlphaEntry - User Alpha Entry
RobotWare-OS
Continued

[\InitString]

Data type: string
An initial string to be display in the text entry box as default.

[\MaxTime]

Data type: num
The maximum amount of time in seconds that program execution waits. If the OK
button is not pressed within this time, the program continues to execute in the
error handler unless the BreakFlag is used (see below). The constant
ERR_TP_MAXTIME can be used to test whether or not the maximum time has
elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital input signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1), the program continues
to execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital output signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1), the program continues
to execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak
is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1503
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.205 UIAlphaEntry - User Alpha Entry

RobotWare-OS
Continued

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler
will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the message box is activated on the FlexPendant. When the user selection
has been done and the execution continue, the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the function is
ready, or when PP is moved.

Program execution
The alphamessage box with alpha pad, icon, header, message lines, and init string
are displayed according to the programmed arguments. Program execution waits
until the user edits or creates a new string and presses OK, or the message box
is interrupted by time-out or signal action. The input string and interrupt reason
are transferred back to the program.
New message box on TRAP level takes focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

Continues on next page
1504 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.205 UIAlphaEntry - User Alpha Entry
RobotWare-OS
Continued

CONST icondata iconError := 3;

More examples
The following example illustrates the function UIAlphaEntry.

Example 1
VAR errnum err_var;

VAR string answer;

VAR string logfile;

...

answer := UIAlphaEntry (\Header:= "Log file name:"

\Message:= "Enter the name of the log file to create?"

\Icon:=iconInfo

\InitString:= "signal.log"

\MaxTime:=60

\DIBreak:=di5\BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer

logfile:="signal.log";

CASE 0:

! Operator answer

logfile := answer;

DEFAULT:

! No such case defined

ENDTEST

The message box is displayed and the operator can enter a string and press OK.
The message box can also be interrupted with time out or break by digital input
signal. In the program it is possible to find out the reason and take the appropriate
action.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no client, for example, a FlexPendant, to take care
of the instruction.

ERR_TP_NO_CLIENT

If parameter \BreakFlag is not used, these situations can then be dealt with by
the error handler:
If there is a time-out (parameter \MaxTime) before an input from the operator, the
system variable ERRNO is set to ERR_TP_MAXTIME and the execution continues in
the error handler.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1505
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.205 UIAlphaEntry - User Alpha Entry

RobotWare-OS
Continued

If digital input is set (parameter \DIBreak) before an input from the operator, the
system variable ERRNO is set to ERR_TP_DIBREAK and the execution continues
in the error handler.
If a digital output is set (parameter \DOBreak) before an input from the operator,
the system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues
in the error handler.
If a persistent boolean is set (parameter \PersBoolBreak) before an input from
the operator, the system variable ERRNO is set to ERR_TP_PERSBOOLBREAK and
the execution continues in the error handler.

Limitations
Avoid using too small a value for the time-out parameter \MaxTime when
UIAlphaEntry is frequently executed, for example in a loop. It can result in an
unpredictable behavior of the system performance, like slow response of the
FlexPendant.

Syntax
UIAlphaEntry '('

['\' Header ':=' <expression (IN) of string>]

['\' Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':='<array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' InitString ':='<expression (IN) of string>]

['\' MaxTime ':=' <expression (IN) of num>]

['\' DIBreak ':=' <variable (VAR) of signaldi>]

['\' DIPassive]

['\' DOBreak ':='<variable (VAR) of signaldo>]

['\' DOPassive]

['\' PersBoolBreak ':=' <persistent (PERS) of bool>]

['\' PersBoolPassive]

['\' BreakFlag ':=' <var or pers (INOUT) of errnum>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ')'

A function with return value of the data type string.

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

UIMsgBox - User Message Dialog Box type
basic on page 974

User interaction message box type basic

UIMessageBox - User Message Box type ad-
vanced on page 1531

User interactionmessage box type advanced

UINumEntry - UserNumberEntry on page1539User interaction number entry

UINumTune - UserNumber Tune on page1546User interaction number tune

UIListView - User List View on page 1523User interaction list view

UIClientExist - Exist User Client on page1508System connected to FlexPendant etc.

Continues on next page
1506 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.205 UIAlphaEntry - User Alpha Entry
RobotWare-OS
Continued

SeeFor information about

Technical reference manual - RAPID Over-
view

Procedure call with late binding

TPErase - Erases text printed on the FlexPend-
ant on page 855

Clean up the operator window

Technical reference manual - RAPID Instructions, Functions and Data types 1507
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.205 UIAlphaEntry - User Alpha Entry

RobotWare-OS
Continued

2.206 UIClientExist - Exist User Client

Usage
UIClientExist (User Interaction Client Exist) is used to check if some User
Device such as the FlexPendant is connected to the controller.

Basic examples
The following example illustrates the function UIClientExist.

Example 1
IF UIClientExist() THEN

! Possible to get answer from the operator

! The TPReadFK and UIMsgBox ... can be used

ELSE

! Not possible to communicate with any operator

ENDIF

The test is done if it is possible to get some answer from the operator of the system.

Return value
Data type: bool
Returns TRUE if a FlexPendant is connected to the system, otherwise FALSE.

Limitations
UIClientExist returns TRUE up to 16 seconds. After that, the FlexPendant is
removed. After that time, UIClientExist returns FALSE (i.e when network
connection lost from FlexPendent is detected). Same limitation when the
FlexPendant is connected again.

Syntax
UIClientExist '(' ')'

A function with return value of the type bool.

Related information

SeeFor information about

UIMsgBox - User Message Dialog Box type
basic on page 974

User interaction message box type basic

UIMessageBox - User Message Box type
advanced on page 1531

User interactionmessage box type advanced

UINumEntry -UserNumberEntryonpage1539User interaction number entry

UINumTune -UserNumberTuneonpage1546User interaction number tune

UIAlphaEntry - User AlphaEntry on page1501User interaction alpha entry

UIListView - User List View on page 1523User interaction list view

TPErase - Erases text printed on the Flex-
Pendant on page 855

Clean up the operator window

1508 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.206 UIClientExist - Exist User Client
RobotWare - OS

2.207 UIDnumEntry - User Number Entry

Usage
UIDnumEntry (User Interaction Number Entry) is used to let the operator enter a
numeric value from the available user device, such as the FlexPendant. A message
is written to the operator, who answers with a numeric value. The numeric value
is then checked, approved and transferred back to the program.

Basic examples
The following example illustrates the function UIDnumEntry.
See also More examples on page 1513.

Example 1
VAR dnum answer;

...

answer := UIDnumEntry(

\Header:="UIDnumEntry Header"

\Message:="How many units should be produced?"

\Icon:=iconInfo

\InitValue:=50000000

\MinValue:=10000000

\MaxValue:=100000000

\AsInteger);

xx0900001064

Above, the numeric message box with icon, header, message, init-, max-, and
minvalue written on the FlexPendant display. The message box checks that the

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1509
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.207 UIDnumEntry - User Number Entry

RobotWare - OS

operator selects an integer within the value range. Program execution waits until
OK is pressed and then the selected numerical value is returned.

Return value
Data type: dnum
This function returns the input numeric value.
If function breaks via \BreakFlag:

• If parameter \InitValue is specified, this value is returned
• If parameter \InitValue is not specified, value 0 is returned.

If function breaks via ERROR handler there is no return value at all.

Arguments
UIDnumEntry ([\Header] [\Message] | [\MsgArray]

[\Wrap][\Icon][\InitValue] [\MinValue] [\MaxValue]
[\AsInteger][\MaxTime] [\DIBreak] [\DIPassive] [\DOBreak]
[\DOPassive] [\PersBoolBreak] [\PersBoolPassive] [\BreakFlag]
[\UIActiveSignal])

[\Header]

Data type: string
Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string
One text line to be written on the display. Max. 40 characters.

[\MsgArray]

Message Array
Data type: string
Several text lines from an array to be written on the display.
Only one of parameter \Message or \MsgArray can be used at the same time.
Max. layout space is 9 lines with 40 characters each.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string, and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on a separate line on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1513.
Default no icon.

Continues on next page
1510 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.207 UIDnumEntry - User Number Entry
RobotWare - OS
Continued

[\InitValue]

Data type: dnum
Initial value that is displayed in the entry box.

[\MinValue]

Data type: dnum
The minimum value for the return value.

[\MaxValue]

Data type: dnum
The maximum value for the return value.

[\AsInteger]

Data type: switch
Eliminates the decimal point from the number pad to ensure that the return value
is an integer.

[\MaxTime]

Data type: num
The maximum amount of time in seconds that program execution waits. If the OK
button is not pressed within this time, the program continues to execute in the
error handler unless the BreakFlag is used (see below). The constant
ERR_TP_MAXTIME can be used to test whether or not the maximum time has
elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital input signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1) then the program continues
to execute in the error handler unless the BreakFlag is used (see below). The
constant ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital output signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1) then the program continues

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1511
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.207 UIDnumEntry - User Number Entry

RobotWare - OS
Continued

to execute in the error handler unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak
is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler
will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the message box is activated on the FlexPendant. When the user selection
has been done and the execution continue, the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the function is
ready, or when PP is moved.

Continues on next page
1512 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.207 UIDnumEntry - User Number Entry
RobotWare - OS
Continued

Program execution
The numeric message box with numeric pad, icon, header, message lines, init-,
max-, andminvalue is displayed according to the programmed arguments. Program
execution waits until the user has entered an approved numeric value and pressed
OK or themessage box is interrupted by timeout or signal action. The input numeric
value and interrupt reason are transferred back to the program.
New message box on TRAP level takes focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

More examples
The following example illustrates the function UIDnumEntry.

Example 1
VAR errnum err_var;

VAR dnum answer;

VAR dnum distance;

...

answer := UIDnumEntry (\Header:= "BWD move on path"

\Message:="Enter the path overlap?" \Icon:=iconInfo

\InitValue:=5 \MinValue:=0 \MaxValue:=10

\MaxTime:=60 \DIBreak:=di5 \BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer distance := 5;

CASE 0

! Operator answer

distance := answer;

DEFAULT:

! No such case defined

ENDTEST

The message box is displayed and the operator can enter a numeric value and
press OK. The message box can also be interrupted with a time out or break by
digital input signal. In the program, it is possible to find out the reason and take
the appropriate action.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1513
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.207 UIDnumEntry - User Number Entry

RobotWare - OS
Continued

Cause of errorName

There is no client, for example, a FlexPendant, to take care
of the instruction.

ERR_TP_NO_CLIENT

The initial value (parameter \InitValue) is not specified
within the range of the minimum and maximum value
(parameters \MinValue and \MaxValue).

ERR_UI_INITVALUE

Theminimum value (parameter \MinValue) is greater then
the maximum value (parameter \MaxValue).

ERR_UI_MAXMIN

The initial value (parameter \InitValue) is not an integer
as specified in the parameter \AsInteger.

ERR_UI_NOTINT

If parameter \BreakFlag is not used, these situations can then be dealt with by
the error handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator
then the system variable ERRNO is set to ERR_TP_MAXTIME and the execution
continues in the error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator
then the system variable ERRNO is set to ERR_TP_DIBREAK and the execution
continues in the error handler.

• If a digital output is set (parameter \DOBreak) before an input from the
operator then the system variable ERRNO is set to ERR_TP_DOBREAK and the
execution continues in the error handler.

• If a persistent boolean is set (parameter \PersBoolBreak) before an input
from the operator then the system variable ERRNO is set to
ERR_TP_PERSBOOLBREAK and the execution continues in the error handler.

This situation can only be dealt with by the error handler:

Limitations
Avoid using too small a value for the timeout parameter \MaxTime when
UIDnumEntry is frequently executed, for example, in a loop. It can result in
unpredictable behavior from the system performance, like the slow response of
the FlexPendant.

Syntax
UIDnumEntry '('

['\' Header ':=' <expression (IN) of string>]

[Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' InitValue ':=' <expression (IN) of dnum>]

['\' MinValue ':=' <expression (IN) of dnum>]

['\' MaxValue ':=' <expression (IN) of dnum>]

['\' AsInteger]

['\' MaxTime ':=' <expression (IN) of num>]

['\' DIBreak ':=' <variable (VAR) of signaldi>]

['\' DIPassive]

['\' DOBreak ':=' <variable (VAR) of signaldo>]

Continues on next page
1514 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.207 UIDnumEntry - User Number Entry
RobotWare - OS
Continued

['\' DOPassive]

['\' PersBoolBreak ':=' <persistent (PERS) of bool>]

['\' PersBoolPassive]

['\' BreakFlag ':=' <var or pers (INOUT) of errnum>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ')'

A function with return value of the data type dnum.

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

UIMsgBox - User Message Dialog Box type
basic on page 974

User interaction message box type basic

UIMessageBox - User Message Box type
advanced on page 1531

User interactionmessage box type advanced

UINumEntry -UserNumberEntryonpage1539User interaction number entry

UIDnumTune - User Number Tune on
page 1516

User interaction number tune

UINumTune -UserNumberTuneonpage1546User interaction number tune

UIAlphaEntry - User AlphaEntry on page1501User interaction alpha entry

UIListView - User List View on page 1523User interaction list view

UIClientExist - Exist User Client on page1508System connected to FlexPendant etc.

TPErase - Erases text printed on the Flex-
Pendant on page 855

Clean up the operator window

Technical reference manual - RAPID Instructions, Functions and Data types 1515
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.207 UIDnumEntry - User Number Entry

RobotWare - OS
Continued

2.208 UIDnumTune - User Number Tune

Usage
UIDnumTune (User Interaction Number Tune) is used to let the operator tune a
numeric value from the available user device, such as the FlexPendant. A message
is written to the operator, who tunes a numeric value. The tuned numeric value is
then checked, approved and transferred back to the program.

Basic examples
The following example illustrates the function UIDnumTune.
See also More examples on page 1520.

Example 1
VAR dnum flow;

...

flow := UIDnumTune(

\Header:="UIDnumTune Header"

\Message:="Tune the flow?"

\Icon:=iconInfo,

10000000,

1000000

\MinValue:=1000000

\MaxValue:=20000000);

xx0900001063

Above, the numeric tunemessage box with icon, header, message, init-, increment,
max-, and minvalue written on the FlexPendant display. The message box checks
that the operator tunes the flow value with step 1000000 from init value 10000000

Continues on next page
1516 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.208 UIDnumTune - User Number Tune
RobotWare - OS

and is within the value range 1000000-20000000. Program execution waits until
OK is pressed and then the selected numerical value is returned and stored in the
variable flow.

Return value
Data type: dnum
This function returns the tuned numeric value.
If function breaks via \BreakFlag, the specified InitValue is returned.
If function breaks via ERROR handler, no return value is returned at all.

Arguments
UIDnumTune ([\Header] [\Message] | [\MsgArray] [\Wrap]

[\Icon]InitValue Increment [\MinValue] [\MaxValue]
[\MaxTime][\DIBreak] [\DIPassive] [\DOBreak] [\DOPassive]
[\PersBoolBreak] [\PersBoolPassive] [\BreakFlag]
[\UIActiveSignal])

[\Header]

Data type: string
Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string
One text line to be written on the display. Max. 40 characters.

[\MsgArray]

Message Array
Data type: string
Several text lines from an array to be written on the display.
Only one of parameter \Message or \MsgArray can be used at the same time.
Max. layout space is 11 lines with 40 characters each.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on a separate line on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1520.
Default no icon.

InitValue

Initial Value
Continues on next page

Technical reference manual - RAPID Instructions, Functions and Data types 1517
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.208 UIDnumTune - User Number Tune

RobotWare - OS
Continued

Data type: dnum
Initial value that is displayed in the entry box.

Increment

Data type: dnum
This parameter specifies how much the value should change when the plus or
minus button is pressed.

[\MinValue]

Data type: dnum
The minimum value for the return value.

[\MaxValue]

Data type: dnum
The maximum value for the return value.

[\MaxTime]

Data type: num
The maximum amount of time in seconds that program execution waits. If the OK
button is not pressed within this time, the program continues to execute in the
error handler unless the BreakFlag is used (see below). The constant
ERR_TP_MAXTIME can be used to test whether or not the maximum time has
elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital input signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1) then the program continues
to execute in the error handler unless the BreakFlag is used (see below). The
constant ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital output signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1) then the program continues

Continues on next page
1518 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.208 UIDnumTune - User Number Tune
RobotWare - OS
Continued

to execute in the error handler unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak
is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler
will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the message box is activated on the FlexPendant. When the user selection
has been done and the execution continue, the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the function is
ready, or when PP is moved.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1519
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.208 UIDnumTune - User Number Tune

RobotWare - OS
Continued

Program execution
The numeric tunemessage box with tune +/- buttons, icon, header, message lines,
init-, increment, max, and minvalue is displayed according to the programmed
arguments. Program execution waits until the user has tuned the numeric value
and pressed OK or the message box is interrupted by timeout or signal action. The
input numeric value and interrupt reason are transferred back to the program.
New message box on TRAP level takes focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

More examples
The following example illustrates the function UIDnumTune.

Example 1
VAR errnum err_var;

VAR dnum tune_answer;

VAR dnum distance;

...

tune_answer := UIDnumTune (\Header:=" BWD move on path"

\Message:="Enter the path overlap?" \Icon:=iconInfo,

5, 1 \MinValue:=0 \MaxValue:=10

\MaxTime:=60 \DIBreak:=di5 \BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer

distance := 5;

CASE 0:

! Operator answer

distance := tune_answer;

DEFAULT:

! No such case defined

ENDTEST

The tune message box is displayed and the operator can tune the numeric value
and press OK. The message box can also be interrupted with timeout or break by
digital input signal. In the program, it is possible to find out the reason and take
the appropriate action.

Continues on next page
1520 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.208 UIDnumTune - User Number Tune
RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no client, for example, a FlexPendant, to take care
of the instruction.

ERR_TP_NO_CLIENT

The initial value (parameter \InitValue) is not specified
within the range of the minimum and maximum value
(parameters \MinValue and \MaxValue).

ERR_UI_INITVALUE

Theminimum value (parameter \MinValue) is greater then
the maximum value (parameter \MaxValue).

ERR_UI_MAXMIN

If parameter \BreakFlag is not used then these situations can be dealt with by
the error handler:

• If there is a timeout (parameter \MaxTime) before an input from the operator,
the system variable ERRNO is set to ERR_TP_MAXTIME and the execution
continues in the error handler.

• If a digital input is set (parameter \DIBreak) before an input from the
operator, the system variable ERRNO is set to ERR_TP_DIBREAK and the
execution continues in the error handler.

• If a digital output is set (parameter \DOBreak) before an input from the
operator, the system variable ERRNO is set to ERR_TP_DOBREAK and the
execution continues in the error handler.

• If a persistent boolean is set (parameter \PersBoolBreak) before an input
from the operator then the system variable ERRNO is set to
ERR_TP_PERSBOOLBREAK and the execution continues in the error handler.

Limitations
Avoid using too small a value for the timeout parameter \MaxTime when
UIDnumTune is frequently executed, for example, in a loop. It can result in
unpredictable behavior from the system performance, like a slow response of the
FlexPendant.

Syntax
UIDnumTune '('

['\' Header ':=' <expression (IN) of string>]

['\' Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>] ',']

[InitValue ':='] <expression (IN) of dnum> ','

[Increment ':='] <expression (IN) of dnum>

['\' MinValue ':=' <expression (IN) of dnum>]

['\' MaxValue ':=' <expression(IN) of dnum>]

['\' MaxTime ':=' <expression (IN) of num>]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1521
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.208 UIDnumTune - User Number Tune

RobotWare - OS
Continued

['\' DIBreak ':=' <variable (VAR) of signaldi>]

['\' DIPassive]

['\' DOBreak ':=' <variable (VAR) of signaldo>]

['\' DOPassive]

['\' PersBoolBreak ':=' <persistent (PERS) of bool>]

['\' PersBoolPassive]

['\' BreakFlag ':=' <var or pers (INOUT) of errnum>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ')'

A function with return value of the data type dnum.

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

UIMsgBox - User Message Dialog Box type
basic on page 974

User interaction message box type basic

UIMessageBox - User Message Box type
advanced on page 1531

User interactionmessage box type advanced

UIDnumEntry - User Number Entry on
page 1509

User interaction number entry

UINumEntry -UserNumberEntryonpage1539User interaction number entry

UINumTune -UserNumberTuneonpage1546User interaction number tune

UIAlphaEntry - User AlphaEntry on page1501User interaction alpha entry

UIListView - User List View on page 1523User interaction list view

UIClientExist - Exist User Client on page1508System connected to FlexPendant etc.

TPErase - Erases text printed on the Flex-
Pendant on page 855

Clean up the operator window

1522 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.208 UIDnumTune - User Number Tune
RobotWare - OS
Continued

2.209 UIListView - User List View

Usage
UIListView (User Interaction List View) is used to define menu lists with text and
optional icons on the available User Device such as the FlexPendant. The menu
has two different styles, one with validations buttons and one that reacts instantly
to the user selection.

Basic examples
The following example illustrates the function UIListView.
See also More examples on page 1528.

Example 1
CONST listitem list{3} := [["","Item 1"], ["","Item 2"],

["","Item3"]];

VAR num list_item;

VAR btnres button_answer;

...

list_item := UIListView (

\Result:=button_answer

\Header:="UIListView Header",

list

\Buttons:=btnOKCancel

\Icon:=iconInfo

\DefaultIndex:=1);

IF button_answer = resOK THEN

IF list_item = 1 THEN

! Do item1

ELSEIF list_item = 2 THEN

! Do item 2

ELSE

! Do item3

ENDIF

ELSE

! User has select Cancel

ENDIF

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1523
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.209 UIListView - User List View

RobotWare - OS

xx0500002416

Above menu list with icon, header, menu Item 1 ... Item 3, and buttons are
written on the FlexPendant display. Program execution waits until OK or Cancel
is pressed. Both the selection in the list and the pressed button are transfered to
the program.

Return value
Data type: num
This function returns the user selection in the list menu corresponding to the index
in the array specified in the parameter ListItems.
If the function breaks via \BreakFlag:

• If parameter \DefaultIndex is specified, this index is returned
• If parameter \DefaultIndex is not specified, 0 is returned

If function breaks via ERROR handler, no return value is returned at all.

Arguments
UIListView ([\Result] [\Header] ListItems [\Buttons] | [\BtnArray]

[\Icon] [\DefaultIndex] [\MaxTime] [\DIBreak] [\DIPassive]
[\DOBreak] [\DOPassive] [\PersBoolBreak] [\PersBoolPassive]
[\BreakFlag] [\UIActiveSignal])

[\Result]

Data type: btnres
The numeric value of the button that is selected from the list menu box.
If argument \Buttons is used, the predefined symbolic constants of type btnres
is returned. If argument \BtnArray is used, the corresponding array index is
returned.
Argument \Result set to resUnkwn equal to 0 if one of following condition:

• none of parameters \Buttons or \BtnArray are used
• argument \Buttons:=btnNone is used

Continues on next page
1524 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.209 UIListView - User List View
RobotWare - OS
Continued

• if the function breaks via \BreakFlag or ERROR handler
See Predefined data on page 1528.

[\Header]

Data type: string
Header text to be written at the top of the list menu box. Max. 40 characters.

ListItems

Data type: listitem
An array with one or several list menu items to be displayed consisting of:
Component image of type string:
The name of the icon image that should be used. To launch own images, the images
has to be placed in the HOME: directory in the active system or directly in the active
system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a Backup and Restore is done.
A Restart is required and then the FlexPendant loads the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.
The image that will be shown can have the width and height of 28 pixels. If the
image is bigger, then it will be resized to show only 28 * 28 pixels.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.
Use empty string ”” or stEmpty if no icon to display.
Component text of type string:

• The text for the menu line to display.
• Max. 75 characters for each list menu item.

[\Buttons]

Data type: buttondata
Defines the push buttons to be displayed. Only one of the predefined buttons
combination of type buttondata can be used. See Predefined data on page 1528.

[\BtnArray]

Button Array
Data type: string
Own definition of push buttons stored in an array of strings. This function returns
the array index when corresponding string is selected.
Only one of parameter \Buttons or \BtnArray can be used at the same time.
If none of the parameters \Buttons or \BtnArray or argument
\Buttons:=btnNone are used then the menu list reacts instantly to the user
selection.
Max. 5 buttons with 42 characters each.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1525
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.209 UIListView - User List View

RobotWare - OS
Continued

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used.
Default no icon. See Predefined data on page 1528.

[\DefaultIndex]

Data type: num
The default user selection in the list menu corresponding to the index in the array
specified in the parameter ListItems.

[\MaxTime]

Data type: num
Themaximum amount of time in seconds that program execution waits. If no button
is pressed or no selection is done within this time then the program continues to
execute in the error handler unless the BreakFlag is used (see below). The
constant ERR_TP_MAXTIME can be used to test whether or not the maximum time
has elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital input signal that may interrupt the operator dialog. If no button is pressed
or no selection is done before the signal is set to 1 (or is already 1) then the program
continues to execute in the error handler, unless the BreakFlag is used (see
below). The constant ERR_TP_DIBREAK can be used to test whether or not this
has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]()

Digital Output Break
Data type: signaldo
The digital output signal that may interrupt the operator dialog. If no button is
pressed or no selection is done before the signal is set to 1 (or is already 1) then
the program continues to execute in the error handler, unless the BreakFlag is
used (see below). The constant ERR_TP_DOBREAK can be used to test whether or
not this has occurred.

Continues on next page
1526 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.209 UIListView - User List View
RobotWare - OS
Continued

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak
is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler
will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the message box is activated on the FlexPendant. When the user selection
has been done and the execution continue, the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the function is
ready, or when PP is moved.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1527
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.209 UIListView - User List View

RobotWare - OS
Continued

Program execution
Themenu list with icon, header, list items, and default item are displayed according
to the programmed arguments. Program execution waits until the operator has
done the selection or the menu list is interrupted by time-out or signal action. The
selected list item and interrupt reason are transferred back to the program.
New menu list on TRAP level takes focus from menu list on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

!Buttons:

CONST buttondata btnNone := -1;

CONST buttondata btnOK := 0;

CONST buttondata btnAbrtRtryIgn := 1;

CONST buttondata btnOKCancel := 2;

CONST buttondata btnRetryCancel := 3;

CONST buttondata btnYesNo := 4;

CONST buttondata btnYesNoCancel := 5;

!Results:

CONST btnres resUnkwn := 0;

CONST btnres resOK := 1;

CONST btnres resAbort := 2;

CONST btnres resRetry := 3;

CONST btnres resIgnore := 4;

CONST btnres resCancel := 5;

CONST btnres resYes := 6;

CONST btnres resNo := 7;

More examples
The following example illustrates the function UIListView.

Example 1
CONST listitem list{2} := [["","Calibrate tool1"], ["","Calibrate

tool2"]];

VAR num list_item;

VAR errnum err_var;

...

list_item := UIListView

(\Header:="Select tool ?",

list \Icon:=iconInfo

\MaxTime:=60

\DIBreak:=di5

\BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer

Continues on next page
1528 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.209 UIListView - User List View
RobotWare - OS
Continued

CASE 0:

! Operator answer

IF list_item =1 THEN

! Calibrate tool1

ELSEIF list_item=2 THEN

! Calibrate tool2

ENDIF

DEFAULT:

! Not such case defined

ENDTEST

The message box is displayed and the operator can select an item in the list. The
message box can also be interrupted with time out or break by digital input signal.
In the program it’s possible to find out the reason and take the appropriate action.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no client, for example, a FlexPendant, to take care
of the instruction.

ERR_TP_NO_CLIENT

If parameter \BreakFlag is not used, these situations can then be dealt with by
the error handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator,
the system variable ERRNO is set to ERR_TP_MAXTIME and the execution
continues in the error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator,
the system variable ERRNO is set to ERR_TP_DIBREAK and the execution
continues in the error handler.

• If a digital output is set (parameter \DOBreak) before an input from the
operator, the system variable ERRNO is set to ERR_TP_DOBREAK and the
execution continues in the error handler.

• If a persistent boolean is set (parameter \PersBoolBreak) before an input
from the operator then the system variable ERRNO is set to
ERR_TP_PERSBOOLBREAK and the execution continues in the error handler.

Limitations
Avoid using too small a value for the time-out parameter \MaxTime when
UIListView is frequently executed, for example in a loop. It can result in
unpredictable behavior from the system performance, like slow response of the
FlexPendant.

Syntax
UIListView '('

[['\' Result ':=' <var or pers (INOUT) of btnres>]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1529
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.209 UIListView - User List View

RobotWare - OS
Continued

['\' Header ':=' <expression (IN) of string>] ',']

[ListItems '='] <array {*} (IN) of listitem>

['\' Buttons ':=' <expression (IN) of buttondata>]

| ['\' BtnArray ':=' <array {*} (IN) of string>]

['\' Icon ':=' <expression (IN) of icondata>]

['\' DefaultIndex ':=' <expression (IN) of num>]

['\' MaxTime ':=' <expression (IN) of num>]

['\' DIBreak ':=' <variable (VAR) of signaldi>]

['\' DIPassive]

['\' DOBreak ':=' <variable (VAR) of signaldo>]

['\' DOPassive]

['\' PersBoolBreak ':=' <persistent (PERS) of bool>]

['\' PersBoolPassive]

['\' BreakFlag ':=' <var or pers (INOUT) of errnum>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ')'

A function with return value of the data type num.

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

buttondata - Push button data on page 1568Push button data

btnres - Push button result data on page 1565Push button result data

listitem - List item data structure on page 1649List item data structure

UIMsgBox - User Message Dialog Box type basic on
page 974

User interaction message box
type basic

UIMessageBox - User Message Box type advanced on
page 1531

User interaction message box
type advanced

UINumEntry - User Number Entry on page 1539User interaction number entry

UINumTune - User Number Tune on page 1546User interaction number tune

UIAlphaEntry - User Alpha Entry on page 1501User interaction alpha entry

UIClientExist - Exist User Client on page 1508Systemconnected to FlexPendant
etc.

TPErase - Erases text printed on the FlexPendant on
page 855

Clean up the operator window

1530 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.209 UIListView - User List View
RobotWare - OS
Continued

2.210 UIMessageBox - User Message Box type advanced

Usage
UIMessageBox (User Interaction Message Box) is used to communicate with the
user of the robot system on available user device, such as the FlexPendant. A
message is written to the operator, who answers by selecting a button. The user
selection is then transferred back to the program.

Basic examples
The following example illustrates the function UIMessageBox.
See also More examples on page 1536.

Example 1
VAR btnres answer;

CONST string my_message{5}:= ["Message Line 1","Message Line 2",
"Message Line 3","Message Line 4","Message Line 5"];

CONST string my_buttons{2}:=["OK","Skip"];

...

answer:= UIMessageBox (

\Header:="UIMessageBox Header"

\MsgArray:=my_message

\BtnArray:=my_buttons

\Icon:=iconInfo);

IF answer = 1 THEN

! Operator selection OK

ELSEIF answer = 2 THEN

! Operator selection Skip

ELSE

! No such case defined

ENDIF

xx0500002409

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1531
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.210 UIMessageBox - User Message Box type advanced

RobotWare - OS

Abovemessage box is with icon, header, message, and user defined push buttons
that are written on the FlexPendant display. Program execution waits until OK or
Skip is pressed. In other words, answer will be assigned 1 (OK) or 2 (Skip)
depending on which of the buttons is pressed (corresponding array index).

Note

Message Line 1 to Message Line 5 are displayed on separate lines 1 to 5
(the switch \Wrap is not used).

Return value
Data type: btnres
The numeric value of the button that is selected from the message box.
If argument \Buttons is used, the predefined symbolic constants of type btnres
is returned.
If argument \BtnArray is used, the corresponding array index is returned.
If function breaks via \BreakFlag or if \Buttons:=btnNone:

• If parameter \DefaultBtn is specified, this index is returned.
• If parameter \DefaultBtn is not specified, resUnkwn equal to 0 is returned.

If function breaks via ERROR handler, there is no return value at all.

Arguments
UIMessageBox ([\Header] [\Message] | [\MsgArray] [\Wrap][\Buttons]

| [\BtnArray] [\DefaultBtn] [\Icon][\Image] [\MaxTime]
[\DIBreak] [\DIPassive] [\DOBreak] [\DOPassive]
[\PersBoolBreak] [\PersBoolPassive] [\BreakFlag]
[\UIActiveSignal])

[\Header]

Data type: string
Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string
One text line to be written on the display. Max 55 characters.

[\MsgArray]

Message Array
Data type: string
Several text lines from an array to be written on the display.
Only one of parameter \Message or \MsgArray can be used at the same time.
Max. layout space is 11 lines with 55 characters each.

[\Wrap]

Data type: switch

Continues on next page
1532 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.210 UIMessageBox - User Message Box type advanced
RobotWare - OS
Continued

If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with single spaces between each individual string and spread out on
as few lines as possible.
Default, each string in the argument \MsgArray will be on separate line on the
display.

[\Buttons]

Data type: buttondata
Defines the push buttons to be displayed. Only one of the predefined buttons
combination of type buttondata can be used. See Predefined data on page 1535.
Default, the system displays the OK button.

[\BtnArray]

Button Array
Data type: string
Own definition of push buttons stored in an array of strings. This function returns
the array index when corresponding string is selected.
Only one of parameter \Buttons or \BtnArray can be used at the same time.
Max. 5 buttons with 42 characters each.

[\DefaultBtn]

Default Button
Data type: btnres
Allows to specify a value that should be returned if the message box is interrupted
by \MaxTime, \DIBreak, or \DOBreak. It’s possible to specify the predefined
symbolic constant of type btnres or any user defined value. See Predefined data
on page 1535.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1535.
Default, no icon.

[\Image]

Data type: string
The name of the image that should be used. To launch own images, the images
has to be placed in the HOME: directory in the active system or directly in the active
system.
The recommendation is to place the files in the HOME: directory so that they are
saved if a Backup and Restore is done.
A Restart is required and then the FlexPendant loads the images.
A demand on the system is that the RobotWare option FlexPendant Interface is
used.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1533
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.210 UIMessageBox - User Message Box type advanced

RobotWare - OS
Continued

The image that will be shown can have the width of 185 pixels and the height of
300 pixels. If the image is bigger, only 185 * 300 pixels of the image will be shown
starting at the top left of the image.
No exact value can be specified on the size that an image can have or the amount
of images that can be loaded to the FlexPendant. It depends on the size of other
files loaded to the FlexPendant. The program execution will just continue if an
image is used that has not been loaded to the FlexPendant.

[\MaxTime]

Data type: num
Themaximum amount of time in seconds that program execution waits. If no button
is selected within this time, the program continues to execute in the error handler
unless the BreakFlag is used (see below). The constant ERR_TP_MAXTIME can
be used to test whether or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital input signal that may interrupt the operator dialog. If no button is selected
when the signal is set to 1 (or is already 1) then the program continues to execute
in the error handler, unless the BreakFlag is used (see below). The constant
ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital output signal that may interrupt the operator dialog. If no button is
selected when the signal is set to 1 (or is already 1) then the program continues
to execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak

Continues on next page
1534 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.210 UIMessageBox - User Message Box type advanced
RobotWare - OS
Continued

is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler
will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the message box is activated on the FlexPendant. When the user selection
has been done and the execution continue, the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the function is
ready, or when PP is moved.

Program execution
The message box with icon, header, message lines, image, and buttons are
displayed according to the programmed arguments. Program execution waits until
the user selects one button or the message box is interrupted by time-out or signal
action. The user selection and interrupt reason are transferred back to the program.
A new message box on TRAP level takes focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1535
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.210 UIMessageBox - User Message Box type advanced

RobotWare - OS
Continued

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

!Buttons:

CONST buttondata btnNone := -1;

CONST buttondata btnOK := 0;

CONST buttondata btnAbrtRtryIgn := 1;

CONST buttondata btnOKCancel := 2;

CONST buttondata btnRetryCancel := 3;

CONST buttondata btnYesNo := 4;

CONST buttondata btnYesNoCancel := 5;

!Results:

CONST btnres resUnkwn := 0;

CONST btnres resOK := 1;

CONST btnres resAbort := 2;

CONST btnres resRetry := 3;

CONST btnres resIgnore := 4;

CONST btnres resCancel := 5;

CONST btnres resYes := 6;

CONST btnres resNo := 7;

More examples
The following example illustrates the function UIMessageBox.

Example 1
VAR errnum err_var;

VAR btnres answer;

...

answer := UIMessageBox (\Header:= "Cycle step 3"

\Message:="Continue with the calibration ?" \Buttons:=btnOKCancel

\DefaultBtn:=resCancel \Icon:=iconInfo \MaxTime:=60 \DIBreak:=di5

\BreakFlag:=err_var);

IF answer = resOK THEN

! OK from the operator

ELSE

! Cancel from the operator or operation break

TEST err_var

CASE ERR_TP_MAXTIME:

! Time out

CASE ERR_TP_DIBREAK:

! Input signal break

DEFAULT:

! Not such case defined

ENDTEST

ENDIF

The message box is displayed, and the operator can answer OK or Cancel. The
message box can also be interrupted with time out or break by digital input signal.
In the program it’s possible to find out the reason.

Continues on next page
1536 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.210 UIMessageBox - User Message Box type advanced
RobotWare - OS
Continued

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no client, for example, a FlexPendant, to take care
of the instruction.

ERR_TP_NO_CLIENT

If parameter \BreakFlag is not used, these situations can then be dealt with by
the error handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator,
the system variable ERRNO is set to ERR_TP_MAXTIME and the execution
continues in the error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator,
the system variable ERRNO is set to ERR_TP_DIBREAK and the execution
continues in the error handler.

• If a digital output is set (parameter \DOBreak) before an input from the
operator, the system variable ERRNO is set to ERR_TP_DOBREAK and the
execution continues in the error handler.

• If a persistent boolean is set (parameter \PersBoolBreak) before an input
from the operator then the system variable ERRNO is set to
ERR_TP_PERSBOOLBREAK and the execution continues in the error handler.

Limitations
Avoid using too small a value for the time-out parameter \MaxTime when
UIMessageBox is frequently executed, for example in a loop. It can result in an
unpredictable behavior of the system performance, like slow response of the
FlexPendant.

Syntax
UIMessageBox '('

['\' Header ':=' <expression (IN) of string>] ',']

['\' Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Buttons ':=' <expression (IN) of buttondata>]

| ['\' BtnArray ':=' <array {*} (IN) of string>]

['\' DefaultBtn ':=' <expression (IN) of btnres>]

['\' Icon ':=' <expression (IN) of icondata>]

['\' Image ':=' <expression (IN) of string>]

['\' MaxTime ':=' <expression (IN) of num>]

['\' DIBreak ':=' <variable (VAR) of signaldi>]

['\' DIPassive]

['\' DOBreak ':=' <variable (VAR) of signaldo>]

['\' DOPassive]

['\' PersBoolBreak ':=' <persistent (PERS) of bool>]

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1537
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.210 UIMessageBox - User Message Box type advanced

RobotWare - OS
Continued

['\' PersBoolPassive]

['\' BreakFlag ':=' <var or pers (INOUT) of errnum>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ')'

A function with return value of the data type btnres.

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

buttondata - Push button data on page 1568Push button data

btnres - Push button result data on page 1565Push button result data

UIMsgBox - User Message Dialog Box type basic
on page 974

User interactionmessage box type basic

UINumEntry - User Number Entry on page 1539User interaction number entry

UINumTune - User Number Tune on page 1546User interaction number tune

UIAlphaEntry - User Alpha Entry on page 1501User interaction alpha entry

UIListView - User List View on page 1523User interaction list view

UIClientExist - Exist User Client on page 1508System connected to FlexPendant etc.

Product specification - Controller software IRC5FlexPendant interface

TPErase - Erases text printed on the FlexPendant
on page 855

Clean up the operator window

1538 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.210 UIMessageBox - User Message Box type advanced
RobotWare - OS
Continued

2.211 UINumEntry - User Number Entry

Usage
UINumEntry (User Interaction Number Entry) is used to let the operator enter a
numeric value from the available user device, such as the FlexPendant. A message
is written to the operator, who answers with a numeric value. The numeric value
is then checked, approved and transferred back to the program.

Basic examples
The following example illustrates the function UINumEntry.
See also More examples on page 1543.

Example 1
VAR num answer;

...

answer := UINumEntry(

\Header:="UINumEntry Header"

\Message:="How many units should be produced?"

\Icon:=iconInfo

\InitValue:=5

\MinValue:=1

\MaxValue:=10

\AsInteger);

FOR i FROM 1 TO answer DO

produce_part;

ENDFOR

xx0500002412

Above numeric message box with icon, header, message, init-, max-, andminvalue
are written on the FlexPendant display. The message box checks that the operator
selects an integer within the value range. Program execution waits until OK is
pressed and then the selected numerical value is returned. The routine
produce_part is then repeated the number of input times via the FlexPendant.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1539
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.211 UINumEntry - User Number Entry

RobotWare - OS

Return value
Data type: num
This function returns the input numeric value.
If function breaks via \BreakFlag:

• If parameter \InitValue is specified, this value is returned
• If parameter \InitValue is not specified, value 0 is returned.

If function breaks via ERROR handler, no return value at all.

Arguments
UINumEntry ([\Header] [\Message] | [\MsgArray]

[\Wrap][\Icon][\InitValue] [\MinValue] [\MaxValue]
[\AsInteger][\MaxTime] [\DIBreak] [\DIPassive] [\DOBreak]
[\DOPassive] [\PersBoolBreak] [\PersBoolPassive] [\BreakFlag]
[\UIActiveSignal])

[\Header]

Data type: string
Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string
One text line to be written on the display. Max 40 characters.

[\MsgArray]

Message Array
Data type: string
Several text lines from an array to be written on the display.
Only one of parameter \Message or \MsgArray can be used at the same time.
Max. layout space is 9 lines with 40 characters each.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string, and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on a separate line on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1543.
Default no icon.

[\InitValue]

Data type: num
Initial value that is displayed in the entry box.

Continues on next page
1540 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.211 UINumEntry - User Number Entry
RobotWare - OS
Continued

[\MinValue]

Data type: num
The minimum value for the return value.

[\MaxValue]

Data type: num
The maximum value for the return value.

[\AsInteger]

Data type: switch
Eliminates the decimal point from the number pad to ensure that the return value
is an integer.

[\MaxTime]

Data type: num
The maximum amount of time in seconds that program execution waits. If the OK
button is not pressed within this time, the program continues to execute in the
error handler unless the BreakFlag is used (see below). The constant
ERR_TP_MAXTIME can be used to test whether or not the maximum time has
elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital input signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1) then the program continues
to execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital output signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1) then the program continues
to execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1541
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.211 UINumEntry - User Number Entry

RobotWare - OS
Continued

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak
is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler
will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the message box is activated on the FlexPendant. When the user selection
has been done and the execution continue, the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the function is
ready, or when PP is moved.

Continues on next page
1542 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.211 UINumEntry - User Number Entry
RobotWare - OS
Continued

Program execution
The numeric message box with numeric pad, icon, header, message lines, init-,
max-, and minvalue are displayed according to the programmed arguments.
Program execution waits until the user has entered an approved numeric value
and presses OK or the message box is interrupted by time-out or signal action.
The input numeric value and interrupt reason are transferred back to the program.
New message box on TRAP level take focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

More examples
The following example illustrates the function UINumEntry.

Example 1
VAR errnum err_var;

VAR num answer;

VAR num distance;

...

answer := UINumEntry (\Header:= "BWD move on path"

\Message:="Enter the path overlap ?" \Icon:=iconInfo

\InitValue:=5 \MinValue:=0 \MaxValue:=10

\MaxTime:=60 \DIBreak:=di5 \BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer distance := 5;

CASE 0

! Operator answer

distance := answer;

DEFAULT:

! Not such case defined

ENDTEST

The message box is displayed and the operator can enter a numeric value and
press OK. The message box can also be interrupted with a time out or break by
digital input signal. In the program it’s possible to find out the reason and take the
appropriate action.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID and it
has not been connected to an I/O signal defined in the I/O
configuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1543
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.211 UINumEntry - User Number Entry

RobotWare - OS
Continued

Cause of errorName

There is no client, for example, a FlexPendant, to take care
of the instruction.

ERR_TP_NO_CLIENT

The initial value (parameter \InitValue) is not specified
within the range of the minimum and maximum value
(parameters \MinValue and \MaxValue).

ERR_UI_INITVALUE

Theminimum value (parameter \MinValue) is greater then
the maximum value (parameter \MaxValue).

ERR_UI_MAXMIN

The initial value (parameter \InitValue) is not an integer
as specified in the parameter \AsInteger.

ERR_UI_NOTINT

If parameter \BreakFlag is not used, these situations can then be dealt with by
the error handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator
then the system variable ERRNO is set to ERR_TP_MAXTIME and the execution
continues in the error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator
then the system variable ERRNO is set to ERR_TP_DIBREAK and the execution
continues in the error handler.

• If a digital output is set (parameter \DOBreak) before an input from the
operator then the system variable ERRNO is set to ERR_TP_DOBREAK and the
execution continues in the error handler.

• If a persistent boolean is set (parameter \PersBoolBreak) before an input
from the operator then the system variable ERRNO is set to
ERR_TP_PERSBOOLBREAK and the execution continues in the error handler.

Limitations
Avoid using too small a value for the time-out parameter \MaxTime when
UINumEntry is frequently executed, for example in a loop. It can result in
unpredictable behavior from the system performance, like slow response of the
FlexPendant.

Syntax
UINumEntry '('

['\' Header ':=' <expression (IN) of string>]

[Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':=' <array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

['\' InitValue ':=' <expression (IN) of dnum>]

['\' MinValue ':=' <expression (IN) of dnum>]

['\' MaxValue ':=' <expression (IN) of dnum>]

['\' AsInteger]

['\' MaxTime ':=' <expression (IN) of num>]

['\' DIBreak ':=' <variable (VAR) of signaldi>]

['\' DIPassive]

['\' DOBreak ':=' <variable (VAR) of signaldo>]

['\' DOPassive]

Continues on next page
1544 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.211 UINumEntry - User Number Entry
RobotWare - OS
Continued

['\' PersBoolBreak ':=' <persistent (PERS) of bool>]

['\' PersBoolPassive]

['\' BreakFlag ':=' <var or pers (INOUT) of errnum>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ')'

A function with return value of the data type num.

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

UIMsgBox - User Message Dialog Box type
basic on page 974

User interaction message box type basic

UIMessageBox - User Message Box type
advanced on page 1531

User interactionmessage box type advanced

UINumTune -UserNumberTuneonpage1546User interaction number tune

UIAlphaEntry - User AlphaEntry on page1501User interaction alpha entry

UIListView - User List View on page 1523User interaction list view

UIClientExist - Exist User Client on page1508System connected to FlexPendant etc.

TPErase - Erases text printed on the Flex-
Pendant on page 855

Clean up the operator window

Technical reference manual - RAPID Instructions, Functions and Data types 1545
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.211 UINumEntry - User Number Entry

RobotWare - OS
Continued

2.212 UINumTune - User Number Tune

Usage
UINumTune (User Interaction Number Tune) is used to let the operator tune a
numeric value from the available user device, such as the FlexPendant. A message
is written to the operator, who tunes a numeric value. The tuned numeric value is
then checked, approved and transferred back to the program.

Basic examples
The following example illustrates the function UINumTune.
See also More examples on page 1550.

Example 1
VAR num flow;

...

flow := UINumTune(

\Header:="UINumTune Header"

\Message:="Tune the flow?"

\Icon:=iconInfo,

2.5,

0.1

\MinValue:=1.5

\MaxValue:=3.5);

xx0500002414

Above numeric tune message box with icon, header, message, init-, increment,
max-, and minvalue are written on the FlexPendant display. The message box
checks that the operator tune the flow value with step 0.1 from init value 2.5 is
within the value range 1.5 .. 3.5. Program execution waits until OK is pressed and
then the selected numerical value is returned and stored in the variable flow.

Return value
Data type: num

Continues on next page
1546 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.212 UINumTune - User Number Tune
RobotWare - OS

This function returns the tuned numeric value.
If function breaks via \BreakFlag, the specified \InitValue is returned.
If function breaks via ERROR handler, no return value is returned at all.

Arguments
UINumTune ([\Header] [\Message] | [\MsgArray] [\Wrap] [\Icon]

InitValue Increment [\MinValue] [\MaxValue] [\MaxTime]
[\DIBreak] [\DIPassive] [\DOBreak] [\DOPassive]
[\PersBoolBreak] [\PersBoolPassive] [\BreakFlag]
[\UIActiveSignal])

[\Header]

Data type: string
Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string
One text line to be written on the display. Max 40 characters.

[\MsgArray]

Message Array
Data type: string
Several text lines from an array to be written on the display.
Only one of parameter \Message or \MsgArray can be used at the same time.
Max. layout space is 11 lines with 40 characters each.

[\Wrap]

Data type: switch
If selected, all the specified strings in the argument \MsgArraywill be concatenated
to one string with a single space between each individual string, and spread out
on as few lines as possible.
Default, each string in the argument \MsgArray will be on a separate line on the
display.

[\Icon]

Data type: icondata
Defines the icon to be displayed. Only one of the predefined icons of type icondata
can be used. See Predefined data on page 1550.
Default no icon.

InitValue

Data type: num
Initial value that is displayed in the entry box.

Increment

Data type: num
This parameter specifies how much the value should change when the plus or
minus button is pressed.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1547
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.212 UINumTune - User Number Tune

RobotWare - OS
Continued

[\MinValue]

Data type: num
The minimum value for the return value.

[\MaxValue]

Data type: num
The maximum value for the return value.

[\MaxTime]

Data type: num
The maximum amount of time in seconds that program execution waits. If the OK
button is not pressed within this time, the program continues to execute in the
error handler unless the BreakFlag is used (see below). The constant
ERR_TP_MAXTIME can be used to test whether or not the maximum time has
elapsed.

[\DIBreak]

Digital Input Break
Data type: signaldi
The digital input signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1) then the program continues
to execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DIPassive]

Digital Input Passive
Data type: switch
This switch overrides the default behavior when using DIBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DIBreak
is set to 0 (or already is 0). The constant ERR_TP_DIBREAK can be used to test
whether or not this has occurred.

[\DOBreak]

Digital Output Break
Data type: signaldo
The digital output signal that may interrupt the operator dialog. If the OK button is
not pressed before the signal is set to 1 (or is already 1) then the program continues
to execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\DOPassive]

Digital Output Passive
Data type: switch
This switch overrides the default behavior when using DOBreak optional argument.
Instead of reacting when signal is set to 1 (or already 1), the instruction should
continue in the error handler (if no BreakFlag is used) when the signal DOBreak

Continues on next page
1548 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.212 UINumTune - User Number Tune
RobotWare - OS
Continued

is set to 0 (or already is 0). The constant ERR_TP_DOBREAK can be used to test
whether or not this has occurred.

[\PersBoolBreak]

Persistent Boolean Break
Data type: bool
The persistent boolean that may interrupt the operator dialog. If no button is selected
when the persistent boolean is set to TRUE (or is already TRUE) then the program
continues to execute in the error handler unless the BreakFlag is used (see
below). The constant ERR_TP_PERSBOOLBREAK can be used to test whether or
not this has occurred.

[\PersBoolPassive]

Persistent Boolean Passive
Data type: switch
This switch overrides the default behavior when using PersBoolBreak optional
argument. Instead of reacting when persistent boolean is set to TRUE (or already
TRUE), the instruction should continue in the error handler (if no BreakFlag is
used) when the persistent boolean PersBoolBreak is set to FALSE (or already
is FALSE). The constant ERR_TP_PERSBOOLBREAK can be used to test whether
or not this has occurred.

[\BreakFlag]

Data type: errnum
A variable that will hold the error code if MaxTime, DIBreak, DOBreak, or
PersBoolBreak is used. If this optional variable is omitted then the error handler
will be executed. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK,
ERR_TP_DOBREAK, and ERR_TP_PERSBOOLBREAK can be used to select the reason.

[\UIActiveSignal]

Data type: signaldo
The digital output signal used in optional argument UIActiveSignal is set to 1
when the message box is activated on the FlexPendant. When the user selection
has been done and the execution continue, the signal is set to 0 again.
No supervision of stop or restart exist. The signal is set to 0 when the function is
ready, or when PP is moved.

Program execution
The numeric tunemessage box with tune +/- buttons, icon, header, message lines,
init-, increment, max, and minvalue are displayed according to the programmed
arguments. Program execution waits until the user has tuned the numeric value
and pressed OK or the message box is interrupted by time-out or signal action.
The input numeric value and interrupt reason are transferred back to the program.
New message box on TRAP level take focus from message box on basic level.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1549
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.212 UINumTune - User Number Tune

RobotWare - OS
Continued

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

More examples
The following example illustrates the function UINumTune.

Example 1
VAR errnum err_var;

VAR num tune_answer;

VAR num distance;

...

tune_answer := UINumTune (\Header:=" BWD move on path"
\Message:="Enter the path overlap ?" \Icon:=iconInfo, 5, 1
\MinValue:=0 \MaxValue:=10 \MaxTime:=60 \DIBreak:=di5
\BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer

distance := 5;

CASE 0:

! Operator answer

distance := tune_answer;

DEFAULT:

! No such case defined

ENDTEST

The tune message box is displayed and the operator can tune the numeric value
and press OK. The message box can also be interrupted with time-out or break by
digital input signal. In the program it's possible to find out the reason and take the
appropriate action.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no client, for example, a FlexPendant, to take care
of the instruction.

ERR_TP_NO_CLIENT

The initial value (parameter \InitValue) is not specified
within the range of the minimum and maximum value
(parameters \MinValue and \MaxValue).

ERR_UI_INITVALUE

Theminimum value (parameter \MinValue) is greater then
the maximum value (parameter \MaxValue).

ERR_UI_MAXMIN

Continues on next page
1550 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.212 UINumTune - User Number Tune
RobotWare - OS
Continued

If parameter \BreakFlag is not used, these situations can then be dealt with by
the error handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator
then the system variable ERRNO is set to ERR_TP_MAXTIME and the execution
continues in the error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator
then the system variable ERRNO is set to ERR_TP_DIBREAK and the execution
continues in the error handler.

• If a digital output is set (parameter \DOBreak) before an input from the
operator then the system variable ERRNO is set to ERR_TP_DOBREAK and the
execution continues in the error handler.

• If a persistent boolean is set (parameter \PersBoolBreak) before an input
from the operator then the system variable ERRNO is set to
ERR_TP_PERSBOOLBREAK and the execution continues in the error handler.

Limitations
Avoid using too small a value for the time-out parameter \MaxTime when
UINumTune is frequently executed, for example in a loop. It can result in
unpredictable behavior from the system performance, like slow response of the
FlexPendant.

Syntax
UINumTune '('

['\' Header ':=' <expression (IN) of string>]

[Message ':=' <expression (IN) of string>]

| ['\' MsgArray ':='<array {*} (IN) of string>]

['\' Wrap]

['\' Icon ':=' <expression (IN) of icondata>]

[InitValue ':=' <expression (IN) of num>]

[Increment ':=' <expression (IN) of num>]

['\' MinValue ':=' <expression (IN) of num>]

['\' MaxValue ':=' <expression (IN) of num>]

['\' MaxTime ':=' <expression (IN) of num>]

['\' DIBreak ':=' <variable (VAR) of signaldi>]

['\' DIPassive]

['\' DOBreak ':=' <variable (VAR) of signaldo>]

['\' DOPassive]

['\' PersBoolBreak ':=' <persistent (PERS) of bool>]

['\' PersBoolPassive]

['\' BreakFlag ':=' <var or pers (INOUT) of errnum>]

['\' UIActiveSignal ':=' <variable (VAR) of signaldo>] ')'

A function with return value of the data type num.

Related information

SeeFor information about

icondata - Icon display data on page 1639Icon display data

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1551
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.212 UINumTune - User Number Tune

RobotWare - OS
Continued

SeeFor information about

UIMsgBox - User Message Dialog Box type
basic on page 974

User interaction message box type basic

UIMessageBox - User Message Box type
advanced on page 1531

User interactionmessage box type advanced

UINumEntry -UserNumberEntryonpage1539User interaction number entry

UIAlphaEntry - User AlphaEntry on page1501User interaction alpha entry

UIListView - User List View on page 1523User interaction list view

UIClientExist - Exist User Client on page1508System connected to FlexPendant etc.

TPErase - Erases text printed on the Flex-
Pendant on page 855

Clean up the operator window

1552 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.212 UINumTune - User Number Tune
RobotWare - OS
Continued

2.213 ValidIO - Valid I/O signal to access

Usage
ValidIO is used to check if the specified I/O signal can be accessed without any
error at present.

Basic examples
The following example illustrates the function ValidIO.

Example 1
IF ValidIO(mydosignal) SetDO mydosignal, 1;

Set the digital output signal mydosignal to 1 if its I/O device is up and running.

Return value
Data type: bool
Returns TRUE if the I/O signal is valid and the I/O device for the signal is up and
running.
Returns FALSE if the I/O device is not up and running, or if no AliasIO instruction
has been executed to connect a signal variable declared in the RAPID program to
a signal defined in I/O configuration.

Arguments
ValidIO (Signal)

Signal

Data type: signalxx
The I/O signal name. Must be of data type signaldo, signaldi, signalgo,
signalgi, signalao or signalai.

Program execution
Execution behaviour:

• Check if valid I/O signal
• Check if the I/O device for the signal is up and running.

No error messages are generated.

Syntax
ValidIO '('

[Signal ':='] <variable (VAR) of anytype> ')'

A function with a return value of the data type bool.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Input/Output instructions

Technical reference manual - RAPID Over-
view

Input/Output functionality in general

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1553
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.213 ValidIO - Valid I/O signal to access

RobotWare - OS

SeeFor information about

Technical reference manual - System para-
meters

Configuration of I/O

AliasIO - Define I/O signal with alias name on
page 32

Define I/O signal with alias name

ReadCfgData - Reads attribute of a system
parameter on page 579

Read attribute of a system parameter

1554 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.213 ValidIO - Valid I/O signal to access
RobotWare - OS
Continued

2.214 ValToStr - Converts a value to a string

Usage
ValToStr (Value To String) is used to convert a value of any data type to a string.

Basic examples
The following examples illustrate the function ValToStr.

Example 1
VAR string str;

VAR pos p := [100,200,300];

str := ValToStr(p);

The variable str is given the value "[100,200,300]".

Example 2
str := ValToStr(TRUE);

The variable str is given the value TRUE.

Example 3
str := ValToStr(1.234567890123456789);

The variable str is given the value "1.23456789012346".

Example 4
VAR num numtype:=1.234567890123456789;

str := ValToStr(numtype);

The variable str is given the value "1.23457".

Example 5
VAR dnum dnumtype:=1.234567890123456789;

str := ValToStr(dnumtype);

The variable str is given the value "1.23456789012346".

Return value
Data type: string
The value is converted to a string with standard RAPID format. This means, in
principle, 6 significant digits. Literal value interpreted as a dnum (see example 3)
and dnum variabels (see example 5) though have 15 significant digits.
A runtime error is generated if the resulting string is too long.

Arguments
ValToStr (Val)

Val

Value
Data type: anytype
A value of any data type. All types of value data with structure atomic, record,
record component, array, or array element can be used.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1555
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.214 ValToStr - Converts a value to a string

RobotWare - OS

Syntax
ValToStr '('

[Val ':='] <expression (IN) of anytype> ')'

A function with a return value of the data type string.

Related information

SeeFor information about

Technical reference manual - RAPID OverviewString functions

string - Strings on page 1728Definition of string

Technical reference manual - RAPID OverviewString values

1556 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.214 ValToStr - Converts a value to a string
RobotWare - OS
Continued

2.215 VectMagn - Magnitude of a pos vector

Usage
VectMagn (Vector Magnitude)is used to calculate the magnitude of a pos vector.

Basic examples
The following example illustrates the function VectMagn.

Example 1

xx0500002446

A vector A can be written as the sum of its components in the three orthogonal
directions:
A=Axx+Ayy+Ayy
The magnitude of A is:

The vector is described by the data type pos and the magnitude by the data type
num:

VAR num magnitude;

VAR pos vector;

...

vector := [1,1,1];

magnitude := VectMagn(vector);

Return value
Data type: num
The magnitude of the vector (data type pos).

Arguments
VectMagn (Vector)

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1557
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.215 VectMagn - Magnitude of a pos vector

RobotWare - OS

Vector

Data type: pos
The vector described by the data type pos.

Syntax
VectMagn '('

[Vector ':='] <expression (IN) of pos> ')'

A function with a return value of the data type num.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view

Mathematical instructions and functions

1558 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.215 VectMagn - Magnitude of a pos vector
RobotWare - OS
Continued

2.216 XOR - Evaluates a logical value

Usage
XOR (Exclusive Or) is a conditional expression used to evaluate a logical value
(true/false).

Basic examples
The following examples illustrate the function XOR.

Example 1
VAR bool a;

VAR bool b;

VAR bool c;

c := a XOR b;

The return value c is TRUE if one, and only one, of a or b are TRUE. Otherwise the
return value is FALSE.

Example 2
VAR num a;

VAR num b;

VAR bool c;

...

c := a>5 XOR b=3;

The return value of c is TRUE if one, and only one, of the conditions are TRUE.
Either a is larger than 5, or b equals 3. Otherwise the return value is FALSE.

Return value
Data type: bool
The return value is TRUE if one, and only one, of the conditional expressions are
correct. Otherwise the return value is FALSE.

Syntax
<expression of bool> XOR <expression of bool>

A function with a return value of data type bool.

Related information

SeeFor information about

AND - Evaluates a logical value on page 1127AND

OR - Evaluates a logical value on page 1356OR

NOT - Inverts a logical value on page 1347NOT

Technical reference manual - RAPID OverviewExpressions

Technical reference manual - RAPID Instructions, Functions and Data types 1559
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

2 Functions
2.216 XOR - Evaluates a logical value

RobotWare - OS

This page is intentionally left blank

3 Data types
3.1 aiotrigg - Analog I/O trigger condition

Usage
aiotrigg (Analog I/O Trigger) is used to define the condition to generate an
interrupt for an analog input or output signal.

Description
Data of the type aiotrigg defines the way a low and a high threshold will be used
to determine whether the logical value of an analog signal satisfies a condition to
generate an interrupt.

Basic examples
The following example illustrates the data type aiotrigg:

Example 1
VAR intnum sig1int;

PROC main()

CONNECT sig1int WITH iroutine1;

ISignalAI \Single, ai1, AIO_BETWEEN, 1.5, 0.5, 0, sig1int;

Orders an interrupt which is to occur the first time the logical value of the analog
input signal ai1 is between 0.5 and 1.5. A call is then made to the iroutine1
trap routine.

Predefined data
The following symbolic constants of the data type aiotrigg are predefined and
can be used when specifying a condition for the instructions ISignalAI and
ISignalAO.

CommentSymbolic constantValue

Signal will generate interrupts if above specified high valueAIO_ABOVE_HIGH1

Signal will generate interrupts if below specified high valueAIO_BELOW_HIGH2

Signal will generate interrupts if above specified low valueAIO_ABOVE_LOW3

Signal will generate interrupts if below specified low valueAIO_BELOW_LOW4

Signal will generate interrupts if between specified low and
high values

AIO_BETWEEN5

Signal will generate interrupts if below specified low value
or above specified high value

AIO_OUTSIDE6

Signal will always generate interruptsAIO_ALWAYS7

Characteristics
aiotrigg is an alias data type for num and consequently inherits its characteristics.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1561
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.1 aiotrigg - Analog I/O trigger condition

RobotWare - OS

Related information

SeeFor information about

ISignalAI - Interrupts from analog input signal
on page 326

Interrupt from analog input signal

ISignalAO - Interrupts from analog output signal
on page 336

Interrupt from analog output signal

Technical referencemanual - RAPID Overview,
section Basic characteristics - Data types

Data types in general, alias data types

1562 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.1 aiotrigg - Analog I/O trigger condition
RobotWare - OS
Continued

3.2 ALIAS - Assigning an alias data type

Usage
ALIAS is used to define a data type as being equal to another data type. Alias types
provide a means to classify objects. The system may use the alias classification
to look up and present type related objects. An alias type is introduced by an alias
definition.
The built-in alias types are errnum and intnum, both aliases for num.

errnum type
The errnum type is an alias for num and is used for the representation of error
numbers.

intnum type
The intnum type is an alias for num and is used for the representation of interrupt
numbers.

Basic examples
The following example illustrates the ALIAS definition.

Example 1
ALIAS num level;

CONST level low := 2.5;

CONST level high := 4.0;

An alias type level is defined (alias for num).

Limitations
To be recognized by RAPID, any alias definitions must be declared at the very top
of the program or system module before all other data declarations. The only data
type that is allowed to be declared before alias is RECORD.
One alias type cannot be defined upon another alias type.

Syntax
ALIAS <type name> <identifier> ';'

Alias definition.

Related information

SeeFor information about

errnum - Error number on page 1621errnum - Error number

intnum - Interrupt identity on page 1643intnum - Interrupt identity

Technical reference manual manual - RAPID
kernel

Lexical elements

Technical reference manual - RAPID Instructions, Functions and Data types 1563
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.2 ALIAS - Assigning an alias data type

RobotWare - OS

3.3 bool - Logical values

Usage
bool is used for logical values (true/false).

Description
The value of data of the type bool can be either TRUE or FALSE.

Basic examples
The following examples illustrate the data type bool :

Example 1
flag1 := TRUE;

flag is assigned the value TRUE.

Example 2
VAR bool highvalue;

VAR num reg1;

...

highvalue := reg1 > 100;

highvalue is assigned the value TRUE if reg1 is greater than 100; otherwise,
FALSE is assigned.

Example 3
IF highvalue Set do1;

The do1 signal is set if highvalue is TRUE.

Example 4
highvalue := reg1 > 100;

mediumvalue := reg1 > 20 AND NOT highvalue;

mediumvalue is assigned the value TRUE if reg1 is between 20 and 100.

Related information

SeeFor information about

Technical referencemanual - RAPID Overview,
section Basic characteristics - Expressions

Logical expressions

Technical referencemanual - RAPID Overview,
section Basic characteristics - Expressions

Operations using logical values

1564 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.3 bool - Logical values
RobotWare - OS

3.4 btnres - Push button result data

Usage
btnres (button result) is used for representing the user selection of the push
button display on the User Device such as the FlexPendant.

Description
A btnres constant is intended to be used when checking the result value from
the instruction UIMsgBox and the return value from the functions UIMessageBox
and UIListView.

Basic examples
The following example illustrates the data type btnres:

Example 1
VAR btnres answer;

UIMsgBox "More ?" \Buttons:=btnYesNo \Result:= answer;

IF answer= resYes THEN

...

ELSEIF answer =ResNo THEN

...

ENDIF

The standard button enumeration btnYesNo will give one Yes and one No push
button on the user interface. The user selection will be stored in the variable
answer.

Predefined data
The following constants of the data type btnres are predefined in the system

Button answerConstantsValue

Unknown resultresUnkwn0

OKresOK1

AbortresAbort2

RetryresRetry3

IgnoreresIgnore4

CancelresCancel5

YesresYes6

NoresNo7

It is possible to work with user defined push buttons that answer with the functions
UIMessageBox and UIListView.

Characteristics
btnres is an alias data type for num and consequently inherits its characteristics.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1565
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.4 btnres - Push button result data

RobotWare - OS

Related information

SeeFor information about

UIMsgBox - User Message Dialog Box type basic on
page 974

User Interaction Message Box

UIMessageBox - User Message Box type advanced
on page 1531

User Interaction Message Box

UIListView - User List View on page 1523User Interaction List View

buttondata - Push button data on page 1568Alias data type button data

1566 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.4 btnres - Push button result data
RobotWare - OS
Continued

3.5 busstate - State of I/O network

Usage
busstate is used to mirror which state an I/O network is currently in.

Description
A busstate constant is intended to be used when checking the return value from
the instruction IOBusState.

Basic examples
The following example illustrates the data type busstate:

Example 1
VAR busstate bstate;

IOBusState "IBS", bstate \Phys;

TEST bstate

CASE IOBUS_PHYS_STATE_RUNNING:

! Possible to access some signal on the IBS bus

DEFAULT:

! Actions for not up and running IBS bus

ENDTEST

Predefined data
The predefined symbolic constants of the data type busstate can be viewed in
instruction IOBusState.

Characteristics
busstate is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

IOBusState - Get current state of I/O network on
page 309

Get current state of I/O network

Technical reference manual - RAPID Overview,
section RAPID Summary - Input and Output Signals

Input/Output instructions

Technical reference manual - RAPID Overview,
section Motion and I/O Principles - I/O Principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Instructions, Functions and Data types 1567
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.5 busstate - State of I/O network

RobotWare - OS

3.6 buttondata - Push button data

Usage
buttondata is used for representing a standard push button combination for
display on the User Device such as the FlexPendant.

Description
A buttondata constant is used for representing response push buttons in
instruction UIMsgBox and functions UIMessageBox and UIListView.

Basic examples
The following example illustrates the data type buttondata:

Example 1
VAR btnres answer;

UIMsgBox "More ?" \Buttons:=btnYesNo \Result:= answer;

IF answer= resYes THEN

...

ELSE

...

ENDIF

The standard button enumeration btnYesNo will give one Yes and one No push
button.

Predefined data
The following constants of the data type buttondata are predefined in the system.

Button displayedConstantsValue

No buttonbtnNone- 1

OKbtnOK0

Abort, Retry and IgnorebtnAbrtRtryIgn1

OK and CancelbtnOKCancel2

Retry and CancelbtnRetryCancel3

Yes and NobtnYesNo4

Yes, No and CancelbtnYesNoCancel5

It is possible to display user defined push buttons with the functions UIMessageBox
and UIListView.

Characteristics
buttondata is an alias data type for num and consequently inherits its
characteristics.

Continues on next page
1568 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.6 buttondata - Push button data
RobotWare - OS

Related information

SeeFor information about

UIMsgBox - User Message Dialog Box type ba-
sic on page 974

User Interaction Message Box

UIMessageBox - User Message Box type ad-
vanced on page 1531

User Interaction Message Box

UIListView - User List View on page 1523User Interaction List View

btnres - Push button result data on page 1565Alias data type button result

Technical referencemanual - RAPIDOverview,
section Basic Characteristics - Data Types

Data types in general, alias data types

Technical reference manual - RAPID Instructions, Functions and Data types 1569
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.6 buttondata - Push button data

RobotWare - OS
Continued

3.7 byte - Integer values 0 - 255

Usage
byte is used for integer values (0 - 255) according to the range of a byte.
This data type is used in conjunction with instructions and functions that handle
the bit manipulations and convert features.

Description
Data of the type byte represents an integer byte value.

Basic examples
The following examples illustrate the data type byte:

Example 1
VAR byte data1 := 130;

Definition of a variable data1 with a decimal value 130.

Example 2
CONST num parity_bit := 8;

VAR byte data1 := 130;

BitClear data1, parity_bit;

Bit number 8 (parity_bit) in the variable data1 will be set to 0, e.g. the content
of the variable data1 will be changed from 130 to 2 (integer representation).

Error handling
If an argument of the type byte has a value that is not in the range between 0 and
255, an error is returned on program execution.

Characteristics
byte is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverview,
sectionBasic characteristics - Data types

Alias data types

Technical referencemanual - RAPIDOverview,
sectionRAPID summary - Bit functions

Bit functions

Product specification - Controller software IRC5Advanced RAPID

1570 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.7 byte - Integer values 0 - 255
RobotWare - OS

3.8 cameradev - camera device

Usage
cameradev (camera device) is used to define the different camera devices which
can be controlled and accessed from the RAPID program. The data type cameradev
is used for instructions and functions communicating with a camera. The names
of the camera devices are defined in the system parameters and, consequently,
must not be defined in the program.

Description
Data of the type cameradev only contains a reference to the camera device.

Limitations
Data of the type cameradev must not be defined in the program. However, if it is
then an error message will be displayed as soon as an instruction or function that
refers to this cameradev is executed. The data type can, on the other hand, be
used as a parameter when declaring a routine.

Predefined data
All cameras defined in the system parameters are predefined in every program
task.

Basic examples
The following example illustrates the data type cameradev.

Example 1
CamLoadJob mycamera, "myjob.job";

Characteristics
cameradev is a non-value data type. This means that data of this type does not
permit value-oriented operations.

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

Technical reference manual - RAPID Instructions, Functions and Data types 1571
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.8 cameradev - camera device

Integrated Vision

3.9 cameratarget - camera data

Usage
cameratarget is used to exchange vision data from the camera image to the
RAPID program.

Description
Data of the type cameratarget is a user defined collection of data that can be
set up to exchange vision data from the camera image to the RAPID program.
The data has a range of components that can be set up according to the specific
needs in the current vision application. The cframe component is meant for
transmitting information about the location of an object whereas the numerical
values and the strings are meant to hold inspection data.

Components
The data type has the following components:

name

Data type: string
The name identifier of the cameratarget.

cframe

current frame
Data type: pose
For storing position data which is normally used for guiding the robot by modifying
the work object.

val1

value 1
Data type: num
For storing numerical outputs such as measurements.

...

val5

value 5
Data type: num
For storing numerical outputs such as measurements.

string1

Data type: string
For storing numerical vision output such as inspection or identification output.

string2

Data type: string
For storing numerical vision output such as inspection or identification output.

Continues on next page
1572 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.9 cameratarget - camera data
Integrated Vision

type

Data type: num
A numerical identifier of the camera target. Similar purpose as the name component.

cameraname

Data type: string
The name of the camera.

sceneid

scene identification
Data type: num
The unique identifier of the image used to generate the cameratarget.

Basic examples
The following example illustrates the data type cameratarget.

Example 1
VAR cameratarget target1;

...

wobjmycamera.oframe := target1.cframe;

MoveL pickpart, v100, fine, mygripper \WObj:= wobjmycamera;

The cframe coordinate transformation is assigned to the object frame of the work
object. The robtarget pickpart has previously been tuned to a correct picking
position within the object frame of the work object.

Structure
< dataobject of cameratarget >

< name of string >

< cframe of pose >

< trans of pos >

< rot of orient >

< val1 of num >

< val2 of num >

< val3 of num >

< val4 of num >

< val5 of num >

< string1 of string >

< string2 of string >

< type of num >

< cameraname of string >

< sceneid of num >

Related information

SeeFor information about

Application manual - Integrated VisionIntegrated Vision

Technical reference manual - RAPID Instructions, Functions and Data types 1573
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.9 cameratarget - camera data

Integrated Vision
Continued

3.10 capaptrreferencedata - Variable setup data for At-Point-Tracker

Usage
capaptrreferencedata is used to setup the needed information for the
At-Point-Tracker correction process setup by the CapAPTrSetupAO,
CapAPTrSetupAI, and CapAPTrSetupPERS instructions.

Components

reference_y

Data type: num
Defines the reference for the Y position.

reference_z

Data type: num
Defines the reference for the Z position.

threshold_y

Data type: num
The difference between the input signal and the reference_y value must be
greater than the threshold_y value for the regulator to react on the change.

threshold_z

Data type: num
The difference between the input signal and the reference_z value must be
greater than the threshold_z value for the regulator to react on the change.

gain_y

Data type: num
The difference between the reference_y value and the input signal value is scaled
with the gain_y value.

gain_z

Data type: num
The difference between the reference_z value and the input signal value is scaled
with the gain_z value.

Structure
< data object of capaptrreferencedata >

< reference_y of num >

< reference_z of num >

< threshold_y of num >

< threshold_z of num >

< gain_y of num >

< gain_z of num >

Continues on next page
1574 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.10 capaptrreferencedata - Variable setup data for At-Point-Tracker
Continuous Application Platform (CAP)

Related information

SeeFor information about

CapAPTrSetupAI - Setup an At-Point-Tracker
controlled by analog input signals on page 74

Instruction CapAPTrSetupAI

CapAPTrSetupAO - Setup an At-Point-Tracker
controlled by analog output signals on page 77

Instruction CapAPTrSetupAO

CapAPTrSetupPERS - Setup an At-Point-Tracker
controlled by persistent variables on page 80

Instruction CapAPTrSetupPERS

Application manual - Continuous Application
Platform

Continuous Application Platform

Application manual - Controller software IRC5Sensor Interface

Technical reference manual - RAPID Instructions, Functions and Data types 1575
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.10 capaptrreferencedata - Variable setup data for At-Point-Tracker

Continuous Application Platform (CAP)
Continued

3.11 capdata - CAP data

Usage
capdata contains all data necessary for defining the behavior of the CAP process.

Components

start_fly
Flying start
Data type: bool
Defines whether or not flying start is used:

ConsequenceValue

flying start is usedTRUE

flying start is NOT usedFALSE

Flying start means that the robot motion is started before the process is started.
The process is then started on the run (see flypointdata - Data for flying start/end
on page 1635).

end_fly
Flying end
Data type: bool
Defines whether or not flying end is used:

ConsequenceValue

flying end is usedTRUE

flying end is NOT usedFALSE

Flying endmeans that the CAP process can be terminated before the robot reaches
the end point, thus allowing the robot to leave the process path on the run that is,
using a zone point (see flypointdata - Data for flying start/end on page 1635).

first_instr
First instruction
Data type: bool
Defines whether or not a CapL/CapC instruction is the first instruction in a sequence
of CapL/CapC instructions:

ConsequenceValue

this is the first instruction in a sequence of CapL/CapC instructionsTRUE

this is not the first instruction in a sequence of CapL/CapC instruc-
tions

FALSE

last_instr
Last instruction
Data type: bool

Continues on next page
1576 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.11 capdata - CAP data
Continuous Application Platform (CAP)

Defines whether or not a CapL/CapC instruction is the last instruction in a sequence
of CapL/CapC instructions:

ConsequenceValue

this is the last instruction in a sequence of CapL/CapC instructionsTRUE

this is not the last instruction in a sequence of CapL/CapC instruc-
tions

FALSE

restart_dist
Restart distance, unit: mm
Data type: num
Defines the distance the robot has to back along the path, when it is restarted after
having encountered a stop when a CAP process was active.
In MultiMove systems all synchronized robots must use the same restart distance.

speed_data
Speed data for CAP
Data type: capspeeddata
Defines all CAP data concerning speed (see capspeeddata - Speed data for CAP
on page 1584).

start_fly_point
Data type: flypointdata
These data are only taken into account when start_fly is TRUE.
Defines flying start information for the CAP process (see flypointdata - Data for
flying start/end on page 1635.)

end_fly_point
Data type: flypointdata
These data are only taken into account when end_fly is TRUE.
Defines flying end information for the CAP process (see flypointdata - Data for
flying start/end on page 1635.)

sup_timeouts
Data type: supervtimeouts
Defines the timeouts used for all handshake supervision phases (see
supervtimeouts - Handshake supervision time outs on page 1731 and section
Supervision in Application manual - Continuous Application Platform).

proc_times
Data type: processtimes
Defines the timeouts used for the status supervision phases PRE, POST1, and
POST2 (see processtimes - process times on page 1686 and section Supervision
and process phases in Application manual - Continuous Application Platform).

block_at_restart
Data type: restartblkdata

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1577
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.11 capdata - CAP data

Continuous Application Platform (CAP)
Continued

Defines the behavior of the CAP process during a restart (see restartblkdata -
blockdata for restart on page 1691).

Structure
< data object of capdata >

< start_fly of bool >

< end_fly of bool >

< first_instr of bool >

< last_instr of bool >

< restart_dist of num >

< speed_data of capspeeddata >

< fly_start of num >

< start of num >

< startspeed_time of num >

< startmove_delay of num >

< main of num >

< fly_end of num >

< start_fly_point of flypointdata >

< from_start of bool >

< time_before of num >

< distance of num >

< end_fly_point of flypointdata >

< from_start of bool >

< time_before of num >

< distance of num >

< sup_timeouts of supervtimeouts >

< pre_cond of num >

< start_cond of num >

< end_main_cond of num >

< end_post1_cond of num >

< end_post2_cond of num >

< proc_times of processtimes >

< pre of num >

< post1 of num >

< post2 of num >

< block_at_restart of restartblkdata >

< weave_start of bool >

< motion_delay of bool >

< pre_phase of bool >

< startspeed_phase of bool >

< post1_phase of bool >

< post2_phase of bool >

Related information

Described in:

Application manual - Continuous Application
Platform

Continuous Application Platform

capspeeddata - Speed data for CAP on
page 1584

capspeeddata data type

Continues on next page
1578 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.11 capdata - CAP data
Continuous Application Platform (CAP)
Continued

Described in:

flypointdata - Data for flying start/end on
page 1635

flypointdata data type

supervtimeouts - Handshake supervision time
outs on page 1731

supervtimeouts data type

processtimes - process times on page 1686processtimes data type

restartblkdata - blockdata for restart on
page 1691

block_at_restart data type

CapL - Linear CAP motion instruction on
page 97

CapL instruction

CapC - Circular CAP motion instruction on
page 83

CapC instruction

Technical reference manual - RAPID Instructions, Functions and Data types 1579
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.11 capdata - CAP data

Continuous Application Platform (CAP)
Continued

3.12 caplatrackdata - CAP Look-Ahead-Tracker track data

Usage
caplatrackdata contains data, with which the user can influence how the
CapL/CapC instructions incorporate the path correction data generated by a
Look-Ahead-Tracker (for example, Laser Tracker). caplatrackdata is part of the
captrackdata.

Components

joint_no
Data type: num
Defines the joint type (expressed as a number) the sensor equipment shall use
during tracking.

filter
Data type: num
Defines the time constant of a low pass filter applied to path corrections. The
component may be set to values between 1 and 10 where 1 gives the fastest
response (no filtering) to path errors detected by the sensor.

calibframe_no
Data type: num
Defines which calibration frame of the three frames defined in CapLATrSetup,
that shall be used.

DescriptionCalibration
frame

Value

Mandatory in CapLATrSetupcalibframe1

Optional in CapLATrSetupcalibframe22

Optional in CapLATrSetup)calibframe33

seamoffs_y, seamoffs_z
Data type: num
The seam offset components are used to add constant offsets to the sensor
generated path (in mm). If for example the sensor considers the upper edge of a

Continues on next page
1580 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.12 caplatrackdata - CAP Look-Ahead-Tracker track data
Continuous Application Platform (CAP)

lap joint to be the correct seam position, as indicated in the figure below, the seam
offsets may be used to correct the path.

xx1200000199

The corrections are defined in the path coordinate system, which is right handed.

xx1200000200

• The x-direction is parallel to the path tangent.
• The z-direction is the tool z-vector.
• The x-direction is perpendicular to a plane through the x and z-directions.

seamadapt_y, seamadapt_z
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1581
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.12 caplatrackdata - CAP Look-Ahead-Tracker track data

Continuous Application Platform (CAP)
Continued

The seam adapt components are similar to the seam offset components. The
magnitudes of the offsets are however not given as fixed values. The offsets are
calculated as the measured seam gap multiplied by the seam adapt values.
The components are used to adapt the tool offset with respect to the seam to
optimize the process for different gap sizes.

track_mode
Data type: num
With the track_mode component it is possible to selectively influence the tracking
behavior of a laser tracker.

Track ModeValue

Normal tracking. y- and z-corrections are both taken into account0

Tracking as if y-corrections sent by the Laser Tracker were zero. z-cor-
rections are taken into account. i

1

Tracking as if z-corrections sent by the Laser Tracker were zero. y-cor-
rections are taken into account. i

2

Tracking as if y- and z-corrections sent by the Laser Tracker were zero.
i

3

y-correction switched off totally, that is, the correction of the y component
is set to zero before it is sent to the robot. z-correction is taken into ac-
count. ii

4

z-correction switched off totally, that is, the correction of the z component
is set to zero before it is sent to the robot. y-correction is taken into ac-
count. ii

5

y- and z-corrections are switched off totally, that is, the correction of the
y and the z component is set to zero before it is sent to the robot. ii

6

y-correction is faded out, that is, the TCP returns ramped to the pro-
grammed y component of the path. z-correction is active.

7

z-correction is faded out, that is, the TCP returns ramped to the pro-
grammed z component of the path. y-correction is active.

8

y- and z-corrections are faded out, that is, the TCP returns ramped to
the programmed path.

9

y-correction is faded in, that is, the TCP returns ramped to the pro-
grammed y component of the path. z-correction is active.

10

z-correction is faded in, that is, the TCP returns ramped to the pro-
grammed z component of the path. y-correction is active.

11

y- and z-corrections are faded in, that is, the TCP returns ramped to the
programmed path.

12

Tracking as if y-corrections sent by the Laser Tracker were zero. z-cor-
rections are taken into account. The difference to track_mode 1 is, that
the mode starts at the robot TCP position and not at the sensor TCP
position. i

13

Tracking as if z-corrections sent by the Laser Tracker were zero. y-cor-
rections are taken into account. The difference to track_mode 2 is that
the mode starts at the robot TCP position and not at the sensor TCP
position. i

14

Continues on next page
1582 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.12 caplatrackdata - CAP Look-Ahead-Tracker track data
Continuous Application Platform (CAP)
Continued

Track ModeValue

Tracking as if y- and z-corrections sent by the Laser Tracker were zero.
The difference to track_mode 3 is that the mode starts at the robot TCP
position and not at the sensor TCP position. i

15

i For track_mode 1, 2, or 3, the accumulated correction from the previous CapL/CapC instruction
will be preserved for y or/and z and passed on to the next CapL/CapC instruction. This is the case
during the hole lifetime of the CAP process. A new CAP process will be unaffected

ii For track_mode 4, 5, or 6, the sensor readings are accumulated even though y- and/or z-correction
is set to zero before sending to the robot. That means, a ’dip’ might occur in the beginning and in
the end of the CapL/CapC instruction.

Basic examples
PERS captrackdata captrack := ["laser1:",50,[1,10,1,0,0,0,0,0]]

CapL p1, v200, cd, wsd, cwd, z20, tWeldGun \Track:=captrack;

Syntax
< data object of caplatrackdata >

< joint_no of num >

< filter of num >

< calibframe_no of num >

< seamoffs_y of num >

< seamoffs_z of num >

< seamadapt_y of num >

< seamadapt_z of num >

< track_mode of num >

Related information

Described in:

captrackdata - CAP track data on page 1586captrackdata data type

Application manual - Continuous Application
Platform

Continuous Application Platform

Technical reference manual - RAPID Instructions, Functions and Data types 1583
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.12 caplatrackdata - CAP Look-Ahead-Tracker track data

Continuous Application Platform (CAP)
Continued

3.13 capspeeddata - Speed data for CAP

Usage
capspeeddata is used to define all data concerning velocity for a CAP process -
it is part of capdata and defines all velocity data and process times needed for a
CAP process:

• velocity and how long this velocity shall be used at the start of the CAP
process,

• delay for the movement of the robot relative the start of the CAP process,
• velocity for the CAP process,

The velocity is restricted by the performance of the robot. This differs, depending
on the type of robot and the path of movement.

Components

fly_start
Data type: num
Not used.

start
Data type: num
Velocity (in mm/s) used at the start of the CAP process.

startspeed_time
Data type: num
The time (in seconds) to run at start velocity.

startmove_delay
Data type: num
The time (in seconds) that the robot movement is delayed relative the start of the
CAP process.

main
Data type: num
The main CAP process velocity (mm/s).

fly_end
Data type: num
Not used.

Structure
< data object of capspeeddata >

< fly_start of num >

< start of num >

< startspeed_time of num >

< startmove_delay of num >

< main of num >

< fly_end of num >

Continues on next page
1584 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.13 capspeeddata - Speed data for CAP
Continuous Application Platform (CAP)

Related information

Described in:

capdata - CAP data on page 1576capdata data type

Application manual - Continuous Application
Platform

Continuous Application Platform

Technical reference manual - RAPID Instructions, Functions and Data types 1585
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.13 capspeeddata - Speed data for CAP
Continuous Application Platform (CAP)

Continued

3.14 captrackdata - CAP track data

Usage
captrackdata provides the CapL/CapC instructions with all data necessary for
path correction with a Look-Ahead- or At-Point-Tracker. The data is passed to the
CapL/C instructions with use of the optional argument \Track.
The component device determines, which type of tracker is to be used.
captrackdata cannot be changed within a sequence of CapL/CapC instructions.
The component device is set by the first CapL/C instruction - if it is different in
the remaining CapL/C instructions of the same sequence of CapL/CapC
instructions, it will not have any effect.
To be able to change the captrackdata to be used in a CapL/CapC instruction,
the sequence has to be terminated first by setting the component last_inst to
TRUE in capdata.
If the \Track is not present in the first CapL/C instruction and all following in the
same sequence of CapL/CapC instructions, no correction will be applied.

Components

device
Sensor device
Data type: string
Defines, to which device the sensor is connected, that shall be used in the
CapL/CapC instructions to generate path corrections.

max_corr
Maximum allowed path correction
Data type: num
Defines the maximum path correction allowed.
For Look-Ahead trackers:

• If the TCP offset due to path corrections is more than max_corr and
\WarnMaxCorr was specified in CapLATrSetup, the robot will continue its
path but the applied path correction will not exceed max_corr.

• If \WarnMaxCorr was not specified, a track error is reported and program
execution is stopped.

For At-Point trackers:
• If the TCP offset due to path corrections is more than max_corr, a track

error is reported and program execution is stopped.

Continues on next page
1586 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.14 captrackdata - CAP track data
Continuous Application Platform (CAP)

The figure shows the tool in a position relative to the programmed path where a
max_corr track error would be reported. Unit: mm

xx1200000198

la_trackdata
Look-Ahead-Tracker track data
Data type: caplatrackdata
Defines tracking data, that are specific for Look-Ahead-Trackers (for example, laser
trackers).

Basic examples
SIO.cfg:

COM_TRP:

-Name "SCOUT:" -Type "RTP1"

-Name "digi-ip:" -Type "SOCKDEV" -PhyChannel "LAN1" -RemoteAdress
"192.168.125.5"

RAPID program:
PERS captrackdata captrack1 := ["digi-ip:",50,[1,10,1,0,0,0,0,0]];

CONST string laser := "digi-ip:";

PERS pose pose1 := [[137.867,-326.31,18.5],
[0.640984,0.766438,0.0348674,0.0223137]];

PROC main()

VAR pos sensorPos;

CapLATrSetup laser, pose1, pos \SensorFreq:=10 \CorrFilter:=5
\MaxBlind:=100 \MaxIncCorr:=2;

WriteVar laser, 6, 1;

! sensor ON

CapL p1, v200, cd, wsd_event, cwd, z20, tWeldGun
\Track:=captrack1;

CapC p2, p3, v200, cd2, wsd, cwd, z20, tWeldGun \Track:=captrack1;

CapL p4, v200, cd3, wsd, cwd, fine, tWeldGun \Track:=captrack1;

WriteVar laser, 6, 0;

! sensor OFF

ENDPROC

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1587
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.14 captrackdata - CAP track data

Continuous Application Platform (CAP)
Continued

Syntax
< data object of captrackdata >

< device of string >

< max_corr of num>

< la_trackdata of caplatrackdata >

Related information

Described in:

caplatrackdata - CAP Look-Ahead-Tracker
track data on page 1580

caplatrackdata

CapAPTrSetup - Setup an At-Point-Tracker
on page 71

CapAPTrSetup

CapLATrSetup - Set up a Look-Ahead-
Tracker on page 106

CapLATrSetup

Application manual - Continuous Application
Platform

Continuous Application Platform

1588 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.14 captrackdata - CAP track data
Continuous Application Platform (CAP)
Continued

3.15 capweavedata - Weavedata for CAP

Usage
capweavedata is used to define weaving for a CAP process during its MAIN phase
(see Application manual - Continuous Application Platform).

Description of weaving
Weaving is superimposed on the basic path of the process. That means, that the
process speed (defined in capspeeddata) is kept as defined, but the TCP speed
is increased unless the physical robot limitations are reached.
Available weaving types:

• geometric weaving: most accurate shape
• wrist weaving: only robot axis 6 is used for weaving
• rapid weaving axis 1-3: only robot axis 1, 2 and 3 are used for weaving
• rapid weaving axis 4-6: only robot axis 4, 5 and 6 are used for weaving

Available weaving shapes:
• Zig-zag weaving
• V-shaped weaving
• Triangular weaving
• Circular weaving

All capweavedata components apply to the MAIN phase.

Components
The path coordinate system is defined by:

• X: path/movement direction
• Z: tool z-direction
• Y: perpendicular to both X and Z as to build a right-handed coordinate system

active
Data type: bool

DescriptionValue

Perform weaving during the MAIN phase of the CAP processTRUE

DoNOT performweaving during theMAIN phase of the CAP processFALSE

width
Data type: num
For circular weaving, width is the radius of the circle (W in the following figure).
For all other weaving shapes, width is the total amplitude of the weaving pattern.

YW

XW

YW

XW

w

w

xx1200000721

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1589
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.15 capweavedata - Weavedata for CAP

Continuous Application Platform (CAP)

shape
Data type: num
The shape of the weaving pattern in the main phase.

ResultShape geometryValue

No weaving0

Weaving horizontal to the seam
YW

XW

ZW

XW

ZW

YW

xx1200000714

Zig-zag weaving1

Weaving in the shape of a "V", ver-
tical to the seam
YW

XW

ZW

XW

ZW

YW

xx1200000715

V-shaped weaving2

A triangular shape, vertical to the
seam
YW

XW

ZW

XW

ZW

YW

xx1200000716

Triangular weaving3

A circular shape, vertical to the
seam
YW

XW

ZW

XW

ZW

YW

xx1200000717

Circular weaving
(Only available with geometric
weaving, weaving type 0)

4

type
Data type: num
Defines what axes are used for weaving during the MAIN phase

Weaving typeSpecified value

Geometric weaving. All axes are used during weaving.0

Wrist weaving.1

Rapid weaving. Axes 1, 2, and 3 used.2

Rapid weaving. Axes 4, 5, and 6 used.3

*
*
*
*

3

2

1

0
weave accuracy

weave frequency

xx1200000718

Continues on next page
1590 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.15 capweavedata - Weavedata for CAP
Continuous Application Platform (CAP)
Continued

Note

All robots, that use TrueMove/QuickMove second generation have the following
changed behavior for the different weaving types available in RW Arc and CAP,
compared to TrueMove/QuickMove first generation:
• Geometric weaving: There is no change.
• Wrist weaving: uses mainly the wrist axes (4, 5, and 6) but small corrections

can also be added to the main axes to be able to keep the pattern in the
desired plane.

• Rapid weaving: In TrueMove/QuickMove second generation both geometric
weaving and wrist weaving have highly improved performance. Therefore
Rapid weaving (both types) is not necessary as a special weaving type any
more.
Rapid weaving axis 1, 2, and 3 is the same as geometric weaving.
Rapid weaving axis 4, 5, and 6 is the same as wrist weaving.
The weaving types are still available for backward compatibility.

The system uses TrueMove/QuickMove second generation, if there is a switch
dyn_ipol_type 1 in MOC.cfg in the MOTION_PLANNER data.

length
Data type: num
Defines the length of the weaving cycle in the MAIN phase for geometric weaving
(type = 0) and wrist weaving (type = 1). The length argument is not used for the
other weaving types.
For circular weaving the length component defines the distance between two
successive circles (L) if the cycle_time argument is set to 0. If cycle_time has
a value then the length can be displaced. The TCP rotates left with a positive length
value, and right with a negative length value.

xx1200000187

cycle_time
Data type: num
Defines the weaving frequency (in Hz) in the MAIN phase for both types of Rapid
weaving (type = 2 or 3) and for circular weaving. The cycle_time argument is not
used for the other weaving types.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1591
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.15 capweavedata - Weavedata for CAP

Continuous Application Platform (CAP)
Continued

For circular weaving the cycle_time argument defines the number of circles per
second. The TCP rotates left with a positive cycle_time value, and right with a
negative cycle_time value.

xx1200000188

height
Data type: num
Defines the height of the weaving pattern (in mm) during V-shaped and triangular
weaving.
Not available for circular weaving.

ZW

YW

ZW

YW

H

xx1200000722

dwell_left
Data type: num
The length of the dwell (DL) used to force the TCP to move only in the direction of
the seam at the left turning point of the weave. Not available for circular weaving.

YW

XW

YW

XW

DL

A B

DL

xx1200000723

Zigzag and V-shaped weavingA

Triangular weavingB

Continues on next page
1592 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.15 capweavedata - Weavedata for CAP
Continuous Application Platform (CAP)
Continued

dwell_center
Data type: num
The length of the dwell (DC) used to force the TCP to move only in the direction
of the seam at the center point of the weave. Not available for circular weaving.

YW

XW

YW

XW

DC DC

A B

DC

xx1200000724

Zigzag and V-shaped weavingA

Triangular weavingB

dwell_right
Data type: num
The length of the dwell (DR) used to force the TCP to move only in the direction
of the seam at the right turning point of the weave. Not available for circular weaving.

YW

XW

YW

XW

DR

A B

DR

xx1200000725

Zigzag and V-shaped weavingA

Triangular weavingB

dir
Data type: num
The weave direction angle horizontal to the seam. An angle of zero degrees results
in a weave vertical to the seam.

YW

XW

YW

XW

YW

XW

xx1200000726

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1593
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.15 capweavedata - Weavedata for CAP

Continuous Application Platform (CAP)
Continued

tilt
Data type: num
The weave tilt angle, vertical to the seam. An angle of zero degrees results in a
weave which is vertical to the seam.

YW

XW

YW

XW

YW

XW

xx1200000727

rot
Data type: num
The weave orientation angle, horizontal-vertical to the seam. An angle of zero
degrees results in symmetrical weaving.

ZW

YW

ZW

YW

ZW

YW

xx1200000728

bias
Data type: num
The bias horizontal to the weaving pattern. The bias can only be specified for
zig-zag weaving and may not be greater than half the width of the weave. Not
available for circular weaving.
The following figure shows zigzag weaving with and without bias (B).

YW

XW

YW

XW

B

xx1200000729

ptrn_sync_on
Data type: bool

DescriptionValue

Send synchronization pulses at the right and left turning points of
the weave pattern

TRUE

Do NOT send synchronization pulses at the right and left turning
points of the weave pattern

FALSE

Continues on next page
1594 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.15 capweavedata - Weavedata for CAP
Continuous Application Platform (CAP)
Continued

Limitations
The maximum weaving frequency is 2 Hz.
The inclination of the weaving pattern must not exceed the ratio 1:10 (84 degrees).
See the following figure.

dy

dx

dy/dx<10

xx1200000730

Change of weave_type in weavedata is not possible in zone points, only in fine
points. This is the behavior for both TrueMove and QuickMove, first and second
generation.
All robots, that use TrueMove orQuickMove second generation have the following
changed behavior for the different weaving types available in RW Arc, compared
to TrueMove or QuickMove first generation:

• Geometric weaving - There is no change.
• Wrist weaving - uses mainly the wrist axes (4, 5, and 6) but small corrections

can also be added to the main axes to be able to keep the pattern in the
desired plane.

• Rapid weaving - In TrueMove or QuickMove second generation both
geometric weaving and wrist weaving have highly improved performance.
Therefore Rapid weaving (both types) is not necessary as a special weaving
type any more.
Rapid weaving axis 1, 2, and 3 is the same as geometric weaving.
Rapid weaving axis 4, 5, and 6 is the same as wrist weaving.
The weaving types are still available for backward compatibility.

The system uses TrueMove or QuickMove second generation, if there is a switch
dyn_ipol_type 1 in MOC.cfg in the MOTION_PLANNER data (system
parameters).

Syntax
< data object of capweavedata >

< active of bool>

< width of num >

< shape of num >

< type of num >

< length of num >

< cycle_time of num >

< height of num >

< dwell_left of num >

< dwell_center of num >

< dwell_right of num >

< dir of num >

< tilt of num >

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1595
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.15 capweavedata - Weavedata for CAP

Continuous Application Platform (CAP)
Continued

< rot of num >

< bias of num >

< ptrn_sync_on of bool >

Related information

Described in:

capdata - CAP data on page 1576capdata data type

Application manual - Continuous Application
Platform

Continuous Application Platform

1596 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.15 capweavedata - Weavedata for CAP
Continuous Application Platform (CAP)
Continued

3.16 cfgdomain - Configuration domain

Usage
cfgdomain (configuration domain) is used to specify a configuration domain.

Description
Data of the type cfgdomain is intended to be used to define the configuration
domain that shall be saved with instruction SaveCfgData.

Basic examples
The following example illustrates the data type cfgdomain:

Example 1
SaveCfgData "SYSPAR" \File:="MYEIO.cfg", EIO_DOMAIN;

Saving I/O domain configuration to the file MYEIO.cfg in directory SYSPAR.

Predefined data
The following predefined constants can be used to specify a configuration domain.

DescriptionName

I/O system configurationEIO_DOMAIN

Motion configurationMOC_DOMAIN

Communication domainSIO_DOMAIN

Process domainPROC_DOMAIN

Controller domainSYS_DOMAIN

Man-machine communicationMMC_DOMAIN

All domains listed aboveALL_DOMAINS

Characteristics
cfgdomain is an alias data type for string and consequently inherits its
characteristics.

Related information

SeeFor information about

SaveCfgData - Save system parameters to file on
page 645

Save system parameters to file

Technical reference manual - System parametersSystem parameters

Technical reference manual - RAPID Instructions, Functions and Data types 1597
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.16 cfgdomain - Configuration domain

RobotWare - OS

3.17 clock - Time measurement

Usage
Clock is used for time measurement. A clock functions like a stopwatch used for
timing.

Description
Data of the type clock stores a timemeasurement in seconds and has a resolution
of 0.001seconds.

Basic examples
The following example illustrates the data type clock:

Example 1
VAR clock myclock;

ClkReset myclock;

The clock, myclock, is declared and reset. Before using ClkReset, ClkStart,
ClkStop, and ClkRead, you must declare a variable of data type clock in your
program.

Limitations
The maximum time that can be stored in a clock variable is approximately 49 days
(4,294,967 seconds). The instructions ClkStart, ClkStop, and ClkRead report
clock overflows in the very unlikely event that one occurs.
A clock must be declared as a VAR variable type, not as a persistent variable
type.

Characteristics
clock is a non-value data type and cannot be used in value-oriented operations.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverview,
section RAPID summary - System & time

Summary of Time and Date Instructions

Technical referencemanual - RAPIDOverview,
section Basic characteristics - Data types

Non-value data type characteristics

1598 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.17 clock - Time measurement
RobotWare - OS

3.18 confdata - Robot configuration data

Usage
confdata is used to define the axis configurations of the robot.

Description
All positions of the robot are defined and stored using rectangular coordinates.
When calculating the corresponding axis positions, there will often be two or more
possible solutions. This means that the robot is able to achieve the same position,
that is, the tool is in the same position and with the same orientation, with several
different positions or configurations of the robots axes.
Some robot types use iterative numerical methods to determine the robot axes
positions. In these cases the configuration parametersmay be used to define good
starting values for the joints to be used by the iterative procedure.
To unambiguously denote one of these possible configurations, the robot
configuration is specified using four axis values. For a rotating axis, the value
defines the current quadrant of the robot axis. The quadrants are numbered 0, 1,
2, and so on (they can also be negative). The quadrant number is connected to
the current joint angle of the axis.
For 6-axis robots, quadrant 0 is the first quarter revolution, 0° to 90°, in a positive
direction from the zero position; quadrant 1 is the next quarter revolution, 90° to
180°, and so on. Quadrant -1 is the quarter revolution 0° to (-90°), and so on.
The figure shows the configuration quadrants for axis 1, 4 or 6 on a 6-axis robot,
where the zero position is strait up.

-3

-4

-1

-2

0

1
2

3

xx0500002398

For 7-axis robots, quadrant 0 is the quarter revolution centered around the zero
position, -45° to +45°; quadrant 1 is the next quarter revolution in positive direction,
45° to 135°, and so on. Quadrant -1 is the quarter revolution from -45° to -135°,
and so on.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1599
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.18 confdata - Robot configuration data

RobotWare - OS

The figure shows the configuration quadrants for axis 1, 4 or 6 on a 7-axis robot,
where the zero position is strait up.

-3

-4

-1

-2

0

1

2

3

xx1700001572

For a linear axis, the value defines a meter interval for the robot axis. For each
axis, value 0 means a position between 0 and 1 meters and 1 means a position
between 1 and 2 meters. For negative values, -1 means a position between -1 and
0 meters, and so on.
The figure shows configuration values for a linear axis.

xx0500002399

Configuration supervision
For some robot models the configuration data (confdata) is also used to perform
supervision of the programmed points for linear movements if ConfL\On is set.
No configuration supervision is performed with ConfJ\On, for more information
see ConfJ - Controls the configuration during joint movement on page 143.
Before an orderedmovement is started, a verification is made to see if it is possible
to achieve the programmed configuration. If it is not possible, the program is
stopped. When the movement is finished (in a zone or in a finepoint), it is also
verified that the robot has reached the programmed configuration.
The configuration supervision with ConfL\Onworks differently for different robots.
See the following sections for details.

6-axis robots
The configuration supervision will check that axes 1, 4, and 6 will not move more
than 180 degrees, and that the ordered movement does not require a change in
cfx (cfx is only used for serial link robots, not for parallel rod robots).

4-axis robots
The configuration supervision will check that axes 1 and 6 will not move more than
180 degrees.

Continues on next page
1600 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.18 confdata - Robot configuration data
RobotWare - OS
Continued

Parallel arm robots (delta robots)
The configuration supervision will check that axis 4 will not move more than 180
degrees.

SCARA robots
The configuration supervision will check that axes 1 and 4 will not move more than
180 degrees. It will also check the sign of axis 2.

7-axis robots
The configuration supervision will check that axes 1, 4, and 6 will not move more
than 180 degrees, and that the ordered movement does not require a change in
cfx.

Paint robots
No configuration supervision is done.

Robot configuration data

6-axis robots with serial link
There are three singularities within the working range of the robot. For more
information about singularities, see Technical referencemanual - RAPIDOverview.

• cf1 is the quadrant number for axis 1.
• cf4 is the quadrant number for axis 4.
• cf6 is the quadrant number for axis 6.

cfx is used to select one of eight possible robot configurations numbered from 0
through 7. The following table describes each one of them in terms of how the
robot is positioned relative to the three singularities.

Axis 5 angleWrist center relative to lower
arm

Wrist center relative to axis 1cfx

PositiveIn front ofIn front of0

NegativeIn front ofIn front of1

PositiveBehindIn front of2

NegativeBehindIn front of3

PositiveIn front ofBehind4

NegativeIn front ofBehind5

PositiveBehindBehind6

NegativeBehindBehind7

The following figures describe the eight different configurations with the same tool
position and orientation.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1601
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.18 confdata - Robot configuration data

RobotWare - OS
Continued

The following figure shows an example of robot configuration 0 and 1. Note the
different signs of the axis 5 angle.

xx0500002400

The following figure shows an example of robot configuration 2 and 3. Note the
different signs of the axis 5 angle.

xx0500002401

The following figure shows an example of robot configuration 4 and 5. Note the
different signs of the axis 5 angle.

xx0500002402

Continues on next page
1602 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.18 confdata - Robot configuration data
RobotWare - OS
Continued

The following figure shows an example of robot configuration 6 and 7. Note the
different signs of the axis 5 angle.

xx0500002403

6-axis robots with parallel rod
Only the three configuration parameters cf1, cf4, and cf6 are used.

4-axis robots
Only the configuration parameter cf6 is used.

Parallel arm robots
Only the configuration parameter cf4 is used.

SCARA robots
Only the three configuration parameters cf1, cf4, and cfx are used.
The cfx value is used to display the sign of the axis 2 angle. cfx is 1 if the axis 2
angle is negative, otherwise cfx is 0.

7-axis robots
All four configuration parameters are used. cf1, cf4, cf6 for joints 1, 4, and 6
respectively. cfx is used to select one of 8 possible robot configurations similar
to how it works for other robots.

Axis 5 angleWrist center relative to lower
arm

Axis 2 anglecfx

PositiveIn front ofPositive0

NegativeIn front ofPositive1

PositiveBehindPositive2

NegativeBehindPositive3

PositiveIn front ofNegative4

NegativeIn front ofNegative5

PositiveBehindNegative6

NegativeBehindNegative7

Paint robots
All four configuration parameters are used. cf1, cf4, cf6 for joints 1, 4, and 6
respectively and cfx for joint 5.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1603
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.18 confdata - Robot configuration data

RobotWare - OS
Continued

IRB 5500
All four configuration parameters are used. cf1, cf4, cf6 for joints 1, 4, and 6
respectively. The cfx parameter contains a combination of the joint 5 quadrant
number and the four possible configurations for axes 2 and 3.
For more information see the Product Manual - IRB 5500.

IRB 5350
The robot have two rotation axes (arms 1 and 2) and one linear axis (arm 3).

• cf1 is used for the rotating axis 1
• cfx is used for the rotating axis 2
• cf4 and cf6 are not used

Components

cf1

Data type: num
Rotating axis:
The current quadrant of axis 1, expressed as a positive or negative integer.
Linear axis:
The current meter interval of axis 1, expressed as a positive or negative integer.

cf4

Data type: num
Rotating axis:
The current quadrant of axis 4, expressed as a positive or negative integer.
Linear axis:
The current meter interval of axis 4, expressed as a positive or negative integer.

cf6

Data type: num
Rotating axis:
The current quadrant of axis 6, expressed as a positive or negative integer.
Linear axis:
The current meter interval of axis 6, expressed as a positive or negative integer.

cfx

Data type: num
Rotating axis:
For serial link robots, the current robot configuration, expressed as an integer in
the range from 0 to 7.
For SCARA robots, the current robot configuration, expressed as an integer in the
range from 0 to 1, see SCARA robots on page 1603.
For 7-axis robots, the the current robot configuration, expressed as an integer in
the range from 0 to 7, see 7-axis robots on page 1603.

Continues on next page
1604 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.18 confdata - Robot configuration data
RobotWare - OS
Continued

For paint robots, the current quadrant of axis 5, expressed as a positive or negative
integer. For IRB 5500, see IRB 5500 on page 1604.
For other robots, using the current quadrant of axis 2, expressed as a positive or
negative integer.
Linear axis:
The current meter interval of axis 2, expressed as a positive or negative integer.

Basic examples
The following example illustrates the data type confdata:

Example 1
VAR confdata conf15 := [1, -1, 0, 0]

A robot configuration conf15 for a paint robot type is defined as follows:
• The axis configuration of the robot axis 1 is quadrant 1, i.e. 90-180º.
• The axis configuration of the robot axis 4 is quadrant -1, i.e. 0-(-90º).
• The axis configuration of the robot axis 6 is quadrant 0, i.e. 0 - 90º.
• The axis configuration of the robot axis 5 is quadrant 0, i.e. 0 - 90º.

Structure
< dataobject of confdata >

< cf1 of num >

< cf4 of num >

< cf6 of num >

< cfx of num >

Related information

SeeFor information about

Technical reference manual - RAPID OverviewCoordinate systems
Handling configuration data
Singularities

robtarget - Position data on page 1702Position data

Technical reference manual - RAPID Instructions, Functions and Data types 1605
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.18 confdata - Robot configuration data

RobotWare - OS
Continued

3.19 corrdescr - Correction generator descriptor

Usage
corrdescr (Correction generator descriptor) is used by correction generators. A
correction generator adds geometric offsets in the path coordinate system.

Description
Data of the type corrdescr contains a reference to a correction generator.
Connection to a correction generator is done by the instruction CorrCon and the
descriptor (the reference to the correction generator) can be used to deliver
geometric offsets in the path coordinate system with the instruction CorrWrite.
Offsets provided earlier can be removed by disconnecting a correction generator
with the instruction CorrDiscon. All connected correction generators can be
removed with the instruction CorrClear.
The function CorrRead returns the sum of all the delivered offsets so far (includes
all connected correction generators).

Basic examples
The following example illustrates the data type corrdescr:

Example 1
VAR corrdescr id;

VAR pos offset;

...

CorrCon id;

offset := [1, 2 ,3];

CorrWrite id, offset;

A correction generator is connected with the instruction CorrCon and referenced
by the descriptor id. Offsets are then delivered to the correction generator (with
reference id) using the instruction CorrWrite.

Characteristics
corrdescr is a non-value data type.

Related information

SeeFor information about

CorrCon - Connects to a correction generator
on page 162

Connects to a correction generator

CorrDiscon - Disconnects from a correction
generator on page 167

Disconnects from a correction generator

CorrWrite - Writes to a correction generator on
page 168

Writes to a correction generator

CorrRead - Reads the current total offsets on
page 1200

Reads the current total offsets

CorrClear - Removes all correction generators
on page 161

Removes all correction generators

Continues on next page
1606 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.19 corrdescr - Correction generator descriptor
Path Offset

SeeFor information about

Technical referencemanual - RAPID Overview,
section Basic characteristics - Data types

Characteristics of non-value data types

Technical reference manual - RAPID Instructions, Functions and Data types 1607
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.19 corrdescr - Correction generator descriptor

Path Offset
Continued

3.20 datapos - Enclosing block for a data object

Usage
datapos is the enclosing block to a data object (internal system data) retrieved
with the function GetNextSym.

Description
Data of the type datapos contains information of where a certain object is defined
in the system. It is used for instructions GetDataVal and SetDataVal.

Basic examples
The following example illustrates the data type datapos:

Example 1
VAR datapos block;

VAR string name;

VAR bool truevar:=TRUE;

...

SetDataSearch "bool" \Object:="my.*" \InMod:="mymod"\LocalSym;

WHILE GetNextSym(name,block) DO

SetDataVal name\Block:=block,truevar;

ENDWHILE

This session will set all local bool data objects that begin with my in the module
mymod to TRUE.

Characteristics
datapos is a non-value data type.

Related information

SeeFor information about

SetDataSearch - Define the symbol set in a
search sequence on page 688

Define a symbol set in a search session

GetNextSym - Get next matching symbol on
page 1275

Get next matching symbol

GetDataVal - Get the value of a data object on
page 254

Get the value of a data object

SetDataVal - Set the value of a data object on
page 692

Set the value of a data object

SetAllDataVal - Set a value to all data objects
in a defined set on page 684

Set the value of many object

Product specification - Controller software IRC5Advanced RAPID

1608 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.20 datapos - Enclosing block for a data object
RobotWare - OS

3.21 dionum - Digital values (0 - 1)

Usage
dionum(digital input output numeric) is used for digital values (0 or 1).
This data type is used in conjunction with instructions and functions that handle
digital input or output signals.

Description
Data of the type dionum represents a digital value 0 or 1.

Basic examples
The following example illustrates the data type dionum:

Example 1
CONST dionum close := 1;

SetDO grip1, close;

Definition of a constant close with a value equal to 1. The signal grip1 is then
set to close, i.e. 1.

Predefined data
The constants high, low, and edge are predefined in the system:
CONST dionum low:=0;

CONST dionum high:=1;

CONST dionum edge:=2;

The constants low and high are designed for I/O instructions.
Edge can be used together with the interrupt instructions ISignalDI and
ISignalDO.

Characteristics
dionum is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
sectionRAPID Summary - Input and output signals

Summary input/output instructions

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Overview,
section Basic Characteristics- Data types

Alias data types

Technical reference manual - RAPID Instructions, Functions and Data types 1609
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.21 dionum - Digital values (0 - 1)

RobotWare - OS

3.22 dir - File directory structure

Usage
dir (directory) is used to traverse directory structures.

Description
Data of the type dir contains a reference to a directory on disk or network. It can
be linked to the physical directory by means of the instruction OpenDir and then
used for reading.

Basic examples
The following example illustrates the data type dir:

Example 1
PROC lsdir(string dirname)

VAR dir directory;

VAR string filename;

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

TPWrite filename;

ENDWHILE

CloseDir directory;

ENDPROC

This example prints out the names of all files or subdirectories under the specified
directory.

Characteristics
dir is a non-value data type and cannot be used in value-oriented operations.

Related information

SeeFor information about

OpenDir - Open a directory on page 501Open a directory

MakeDir - Create a new directory on page 372Make a directory

ReadDir - Read next entry in a directory on page 1394Read a directory

CloseDir - Close a directory on page 140Close a directory

RemoveDir - Delete a directory on page 595Remove a directory

RemoveFile - Delete a file on page 597Remove a file

RenameFile - Rename a file on page 600Rename a file

IsFile - Check the type of a file on page 1314Check file type

Application manual - Controller software IRC5File and serial channel handling

1610 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.22 dir - File directory structure
RobotWare - OS

3.23 dnum - Double numeric values

Usage
dnum is used for numeric values, for example counters. It can handle larger integer
values than data type num but its characteristics and function is the same as for
num.

Description
The value of the dnum data type can be:

• An integer, for example -5
• A decimal number, for example 3.45

It can also be written exponentially, for example 2E3 (= 2*10^3 = 2000), 2.5E-2 (=
0.025).
Integers between -4503599627370496 and +4503599627370496 are always stored
as exact integers.

Basic examples
The following examples illustrate the data type dnum:

Example 1
VAR dnum reg1;

...

reg1:=1000000;

reg1 is assigned the value 1000000.

Example 2
VAR dnum hex;

Var dnum bin;

VAR dnum oct;

! Hexadecimal representation of decimal value 4294967295

hex := 0xFFFFFFFF;

! Binary representation of decimal value 255

bin := 0b11111111;

! Octal representation of decimal value 255

oct := 0o377;

Example 3
VAR dnum a:=0;

VAR dnum b:=0;

a := 10 DIV 3;

b := 10 MOD 3;

Integer division where a is assigned an integer (=3) and b is assigned the remainder
(=1).

Limitations
Literal values between -4503599627370496 to 4503599627370496 assigned to a
dnum variable are stored as exact integers.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1611
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.23 dnum - Double numeric values

RobotWare - OS

If a literal value that has been interpreted as a num is assigned/used as a dnum, it
is automatically converted to a dnum.

Related information

SeeFor information about

num - Numeric values on page 1666Numeric values using data type num

Technical reference manual - RAPID over-
view, section Basic RAPID programming

Numeric expressions

Technical reference manual - RAPID over-
view, section Basic RAPID programming

Operations using numeric values

1612 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.23 dnum - Double numeric values
RobotWare - OS
Continued

3.24 egmframetype - Defines frame types for EGM

Usage
egmframetype is used to define the frame types for corrections and sensor
measurements in EGM.

Description
egmframetype is intended to be used in the instructions EGMActJ and
EGMActPose.

Basic examples
CONST egm_minmax egm_minmax_lin1:=[-0.1,0.1];

CONST egm_minmax egm_minmax_rot1:=[-0.1,0.2];

EGMActPose egmID1\Tool:=tFroniusCMT\WObj:=wobj0, posecor,
EGM_FRAME_WOBJ, posesens, EGM_FRAME_TOOL \x:=egm_minmax_lin
\y:=egm_minmax_lin \z:=egm_minmax_lin \rx:=egm_minmax_rot
\ry:=egm_minmax_rot \rz:=egm_minmax_rot \LpFilter:=20;

Predefined values

DescriptionValue

The frame is defined relative to the base frame (pose mode).EGM_FRAME_BASE

The frame is defined relative to the used tool (pose mode).EGM_FRAME_TOOL

The frame is defined relative to the used work object (pose mode).EGM_FRAME_WOBJ

The frame is defined relative to the world frame (pose mode).EGM_FRAME_WORLD

The values are joint values (joint mode).EGM_FRAME_JOINT

Characteristics
egmframetype is an alias data type for num.

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

Technical reference manual - RAPID Instructions, Functions and Data types 1613
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.24 egmframetype - Defines frame types for EGM

Externally Guided Motion

3.25 egmident - Identifies a specific EGM process

Usage
egmident identifies a specific EGM process.

Description
An egmident is reserved using the instruction EGMGetId. It is then used to identify
and link together the instructions EGMSetupXX, EGMActX, EGMRunX, and EGMReset
to the same EGM operation.
An egmident is identified by its name, i.e. a second or third call of EGMGetId with
the same egmident will neither reserve a new process nor change its content.
Only EGMReset releases an egmident.

Basic examples
VAR egmident egmID1;

VAR egmstate egmSt1;

TASK PERS wobjdata wobj_EGM1:=[FALSE, TRUE, "", [[500,700,900],
[1,0,0,0]], [[0,0,0], [1,0,0,0]]];

CONST pose posecor:=[[1200,400,900], [0,0,1,0]];

CONST pose posesens:=[[12.3313,-0.108707,416.142],
[0.903899,-0.00320735,0.427666,0.00765917]];

CONST egm_minmax egm_minmax_lin1:=[-0.1,0.1];

CONST egm_minmax egm_minmax_rot1:=[-0.1,0.2];

CONST egm_minmax egm_minmax_joint1:=[-0.1,0.1];

PROC testAI()

EGMReset egmID1;

EGMGetId egmID1;

mvHome;

mvHome_EGMLinear;

egmSt1:=EGMGetState(egmID1);

TPWrite "EGM state 1: " \Num:=egmSt1;

IF egmSt1<=EGM_STATE_CONNECTED THEN

EGMSetupAI ROB_1, egmID1, "default" \Pose \aiR1x:=ai_MoveX
\aiR2y:=ai_MoveY \aiR3z:=ai_MoveZ \aiR5ry:=ai_RotY
\aiR6rz:=ai_RotZ;

ENDIF

EGMActPose egmID1 \Tool:=tFroniusCMT \WObj:=wobj0, posecor,
EGM_FRAME_WOBJ, posesens, EGM_FRAME_TOOL \x:=egm_minmax_lin1
\y:=egm_minmax_lin1 \z:=egm_minmax_lin1 \rx:=egm_minmax_rot1
\ry:=egm_minmax_rot1 \rz:=egm_minmax_rot1 \LpFilter:=20;

EGMRunPose egmID1, EGM_STOP_HOLD \x \y \z \rx \ry \rz
\RampInTime:=0.05;

egmSt1:=EGMGetState(egmID1);

IF egmSt1=EGM_STATE_CONNECTED THEN

TPWrite "Reset lin 1";

Continues on next page
1614 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.25 egmident - Identifies a specific EGM process
Externally Guided Motion

EGMReset egmID1;

ENDIF

ENDPROC

Limitations
There are up to 4 concurrent instances available for each RAPID task.

Characteristics
egmident is a non-value data type. It is set by calling EGMGetId.

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

Technical reference manual - RAPID Instructions, Functions and Data types 1615
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.25 egmident - Identifies a specific EGM process

Externally Guided Motion
Continued

3.26 egm_minmax - Convergence criteria for EGM

Usage
egm_minmax is used to define the convergence criteria for EGM to finish.

Description
egm_minmax is intended to be used in the instructions EGMActJ and EGMActPose.

Components

Min

Data type: num
Minimum deviation
Defines the minimum value of the position deviation. The default value is -0.5
degrees.

Max

Data type: num
Maximum deviation
Defines the maximum value of the position deviation. The default value is 0.5
degrees.

Basic examples
CONST egm_minmax egm_minmax_lin1:=[-0.1,0.1];

CONST egm_minmax egm_minmax_rot1:=[-0.1,0.2];

EGMActPose egmID1\Tool:=tFroniusCMT\WObj:=wobj0, posecor,
EGM_FRAME_WOBJ, posesens, EGM_FRAME_TOOL \x:=egm_minmax_lin1
\y:=egm_minmax_lin1 \z:=egm_minmax_lin1 \rx:=egm_minmax_rot1
\ry:=egm_minmax_rot1 \rz:=egm_minmax_rot1 \LpFilter:=20;

Characteristics
Egm_minmax has the following units:

• Millimeters for x, y and z in linear movement.
• Degrees for rx, ry, and rz in linear movement and for joint movement.

Structure
< dataobject of egm_minmax >

< min of num >

< max of num >

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

1616 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.26 egm_minmax - Convergence criteria for EGM
Externally Guided Motion

3.27 egmstate - Defines the state for EGM

Usage
egmstate is used to define the state for corrections and sensor measurements
in EGM.

Description
egmstate is the return value of the function EGMGetState.

Basic examples
VAR egmstate egmSt1;

VAR egmident egmID1;

EGMReset egmID1;

EGMGetId egmID1;

egmSt1:=EGMGetState(egmID1);

TPWrite "EGM state: "\Num:=egmSt1;

Predefined values

DescriptionValue

The EGM state of the specific process is undefined.EGM_STATE_DISCONNECTED

No setup is active.

The specified EGM process is not activated.EGM_STATE_CONNECTED

Setup has been made, but no EGM movement is active.

The specified EGM process is running.EGM_STATE_RUNNING

The EGM movement is active, i.e. the robot is moved.

Characteristics
egmstate is an alias data type for num.

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

Technical reference manual - RAPID Instructions, Functions and Data types 1617
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.27 egmstate - Defines the state for EGM

Externally Guided Motion

3.28 egmstopmode - Defines stop modes for EGM

Usage
egmstopmode is used to define the stop modes for corrections and sensor
measurements in EGM.

Description
egmstopmode is intended to be used in the instructionsEGMRunJoint, EGMRunPose
and EGMStop.

Basic examples
From the RAPID motion task:

VAR egmstate egmSt1;

VAR egmident egmID1;

EGMReset egmID1;

EGMGetId egmID1;

CONST egm_minmax egm_minmax_lin1:=[-0.1,0.1];

CONST egm_minmax egm_minmax_rot1:=[-0.1,0.2];

EGMActPose egmID1 \Tool:=tFroniusCMT \WObj:=wobj0, posecor,
EGM_FRAME_WOBJ, posesens, EGM_FRAME_TOOL \x:=egm_minmax_lin
\y:=egm_minmax_lin \z:=egm_minmax_lin \rx:=egm_minmax_rot
\ry:=egm_minmax_rot \rz:=egm_minmax_rot \LpFilter:=20;

EGMRunPose egmID1, EGM_STOP_HOLD \x \y \z \rx \ry \rz
\RampInTime:=0.05;

From a RAPID TRAP or background task:
EGMStop egmID1, EGM_STOP_RAMP_DOWN\RampOutTime:=5.0;

Predefined values

DescriptionValue

Keeps the EGM end position.EGM_STOP_HOLD

Returns from the EGM end position to the start position.EGM_STOP_RAMP_DOWN

Characteristics
egmstopmode is an alias data type for num.

Related information

SeeFor information about

Application manual - Controller software IRC5Externally Guided Motion

1618 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.28 egmstopmode - Defines stop modes for EGM
Externally Guided Motion

3.29 errdomain - Error domain

Usage
errdomain (error domain) is used to specify an error domain.

Description
Data of the type errdomain represents the domain where the error, warning, or
state changed is logged.

Basic examples
The following example illustrates the data type errdomain:

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error
number, and the error type are saved into appropriate variables.

Predefined data
The following predefined constants can be used to specify an error domain.

ValueError DomainName

0All error and state changed domainsCOMMON_ERR

1Operational state changeOP_STATE

2System errorsSYSTEM_ERR

3Hardware errorsHARDWARE_ERR

4Program errorsPROGRAM_ERR

5Motion errorsMOTION_ERR

6Operator errors - Obsolete, not used anymoreOPERATOR_ERR

7I/O and Communication errorsIO_COM_ERR

8User defined errors (raised by RAPID)USER_DEF_ERR

9Safety related eventsSAFETY_ERR

11Process errorsPROCESS_ERR

12Configuration errorCFG_ERR

Characteristics
errdomain is an alias data type for num and consequently inherits its
characteristics.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1619
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.29 errdomain - Error domain

RobotWare - OS

Related information

SeeFor information about

IError - Orders an interrupt on errors on page 278Ordering an interrupt on errors

Operating manual - Troubleshooting IRC5Error numbers

Technical referencemanual - RAPIDOverview, section
Basic characteristics - Data types

Alias data types

Product specification - Controller software IRC5Advanced RAPID

1620 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.29 errdomain - Error domain
RobotWare - OS
Continued

3.30 errnum - Error number

Usage
errnum is used to describe all recoverable (non fatal) errors that occur during
program execution, such as division by zero.

Description
If the robot detects an error during program execution, this can be dealt with in the
error handler of the routine. Examples of such errors are values that are too high
and division by zero. The system variable ERRNO, of type errnum, is thus assigned
different values depending on the nature of an error. The error handler may be
able to correct an error by reading this variable and then program execution can
continue in the correct way.
An error can also be created from within the program using the RAISE instruction.
This particular type of error can be detected in the error handler by specifying an
error number (within the range 1-90 or booked with instruction BookErrNo) as an
argument to RAISE.

Basic examples
The following examples illustrate the data type errnum:

Example 1
reg1 := reg2 / reg3;

...

ERROR

IF ERRNO = ERR_DIVZERO THEN

reg3 := 1;

RETRY;

ENDIF

If reg3 = 0, the robot detects an error when division is taking place. This error,
however, can be detected and corrected by assigning reg3 the value 1. Following
this, the division can be performed again and program execution can continue.

Example 2
CONST errnum machine_error := 1;

...

IF di1=0 RAISE machine_error;

...

ERROR

IF ERRNO=machine_error RAISE;

An error occurs in a machine (detected by means of the input signal di1). A jump
is made to the error handler in the routine which, in turn, calls the error handler of
the calling routine where the error may possibly be corrected. The constant,
machine_error, is used to let the error handler know exactly what type of error
has occurred.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1621
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.30 errnum - Error number

RobotWare - OS

Predefined data
The system variable ERRNO can be used to read the latest error that occurred. A
number of predefined constants can be used to determine the type of error that
has occurred.

Cause of errorName

Too low acceleration/deceleration specified in instruction
PathAccLim or WorldAccLim.

ERR_ACC_TOO_LOW

Error in the activated profile.ERR_ACTIV_PROF

The camera in argument CameraName or the cameradev
used in argument FromCamera is not defined in the system
parameter Communication configuration. Or the ToCamera
is not declared in the RAPID program or is already defined
in the system parameter Communication configuration.

ERR_ALIASCAM_DEF

The FromSignal is not defined in the I/O configuration or
the ToSignal is not declared in the RAPID program or is
defined in the I/O configuration. Instruction AliasIO.

ERR_ALIASIO_DEF

The signal types for the arguments FromSignal and
ToSignal is not the same (signalx). Instruction AliasIO.

ERR_ALIASIO_TYPE

The interrupt variable is already connected to a TRAP
routine.

ERR_ALRDYCNT

The robot is already moving when executing a StartMove
or StartMoveRetry instruction.

ERR_ALRDY_MOVING

Analog signal value outside limitERR_AO_LIM

More than one present conditional argument for the same
parameter

ERR_ARGDUPCND

Argument is an expression, not present, or of type switch
when executing ArgName.

ERR_ARGNAME

Argument is not a persistent reference.ERR_ARGNOTPER

Argument is not a variable reference.ERR_ARGNOTVAR

Argument value error.ERR_ARGVALERR

Axis is not active.ERR_AXIS_ACT

Axis is not independent.ERR_AXIS_IND

Axis is moving.ERR_AXIS_MOVING

Parameter axis in instruction or function is wrong.ERR_AXIS_PAR

An IOEnable is done, and the I/O network is in error state
or enter error state before the I/O device is activated.

ERR_BUSSTATE

Limit StepBwdPath.ERR_BWDLIMIT

StrDig negative calculation error.ERR_CALC_NEG

StrDig calculation overflow.ERR_CALC_OVERFLOW

StrDig division by zero.ERR_CALC_DIVZERO

Procedure call error (not procedure) at runtime (late bind-
ing).

ERR_CALLPROC

The camera is busy with some other request and cannot
perform the current order.

ERR_CAM_BUSY

Continues on next page
1622 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.30 errnum - Error number
RobotWare - OS
Continued

Cause of errorName

The communication towards the camera timed out. The
camera is not responding.

ERR_CAM_COM_TIMEOUT

The parameter fetched from the camera with instruction
CamGetParameter has the wrong data type.

ERR_CAM_GET_MISMATCH

Timeout when executing a CamLoadJob or a
CamGetResult instruction.

ERR_CAM_MAXTIME

No more vision results can be fetched.ERR_CAM_NO_MORE_DATA

The camera is not in program mode.ERR_CAM_NO_PROGMODE

The camera is not in running mode.ERR_CAM_NO_RUNMODE

The parameter written to the camera with instruction Cam-
SetParameter has the wrong data type, or the value is out
of range.

ERR_CAM_SET_MISMATCH

Not allowed to read or write internal parameter.ERR_CFG_INTERNAL

The cfgdomain used in instruction SaveCfgData is invalid
or not in use.

ERR_CFG_ILL_DOMAIN

Type mismatch - ReadCfgData, WriteCfgData.ERR_CFG_ILLTYPE

Data limit - WriteCfgData.ERR_CFG_LIMIT

Not found - ReadCfgData, WriteCfgData.ERR_CFG_NOTFND

If ListNo is -1 at input or bigger then number of available
instances - ReadCfgData, WriteCfgData.

ERR_CFG_OUTOFBOUNDS

The directory does not exist, or the FilePath and File
used is a directory, or some other problem regarding saving
the file when using instruction SaveCfgData.

ERR_CFG_WRITEFILE

CONNECT target is not a variable reference.ERR_CNTNOTVAR

The conveyor is not activated.ERR_CNV_NOT_ACT

The WaitWobj instruction is already active.ERR_CNV_CONNECT

The object that the instruction WaitWObj was waiting for
has been dropped.

ERR_CNV_DROPPED

Stop of the movement because of motion collision.ERR_COLL_STOP

The number of movement instructions in succession using
argument \Conc has been exceeded.

ERR_CONC_MAX

Communication interface could not be initialized.ERR_COMM_INIT

Timeout when executing a ReadBin, ReadNum, ReadStr,
ReadStrBin, ReadAnyBin, or a ReadRawBytes instruc-
tion.

ERR_DEV_MAXTIME

Too big DipLag in the instruction TriggSpeed connected
to current TriggL/TriggC/TriggJ/CapL/CapC.

ERR_DIPLAG_LIM

Division by zero.ERR_DIVZERO

An attempt was made to execute an instruction using a
place holder.

ERR_EXECPHR

A file is accessed incorrectly.ERR_FILEACC

A file already exists.ERR_FILEEXIST

A file cannot be opened.ERR_FILEOPEN

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1623
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.30 errnum - Error number

RobotWare - OS
Continued

Cause of errorName

File not found.ERR_FILNOTFND

No return value.ERR_FNCNORET

Unable to calculate new frame.ERR_FRAME

Digital group signal value outside limit.ERR_GO_LIM

Incorrect array dimension.ERR_ILLDIM

Attempt to use illegal orientation (quaternion) valve.ERR_ILLQUAT

Error number in RAISE out of range.ERR_ILLRAISE

An instruction requires execution of IndCnvInit before it
is executed.

ERR_INDCNV_ORDER

If trying to deactivate a safe interrupt temporarily with
ISleep.

ERR_INOISSAFE

No more interrupt numbers available.ERR_INOMAX

Not valid integer, decimal value.ERR_INT_NOTVAL

Not valid integer, too large or small value.ERR_INT_MAXVAL

Dimensions are not equal.ERR_INVDIM

Time-out when executing IODisable.ERR_IODISABLE

Time-out when executing IOEnable.ERR_IOENABLE

I/O Error from instruction Save, Load and WaitLoad.ERR_IOERROR

Reference error in the program task.ERR_LINKREF

The program module is already loaded.ERR_LOADED

Only internal use in LoadId and ManLoadIdProc.ERR_LOADID_FATAL

Only internal use in LoadId.ERR_LOADID_RETRY

The load session is in use in StartLoad.ERR_LOADNO_INUSE

The load session is not in use in CancelLoad.ERR_LOADNO_NOUSE

Incorrect module name in instruction Save and
EraseModule.

ERR_MODULE

The module does not exist, the symbol is not a module or
the name was to long for being a symbol. Error from func-
tion ModTimeDnum.

ERR_MOD_NOT_LOADED

The I/O device name does not exist.ERR_NAME_INVALID

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

The specified servo tool name is not a configured servo
tool.

ERR_NO_SGUN

Data is not an array.ERR_NOTARR

The array dimension used when calling the routine does
not coincide with its parameters.

ERR_NOTEQDIM

Not an integer value.ERR_NOTINTVAL

Continues on next page
1624 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.30 errnum - Error number
RobotWare - OS
Continued

Cause of errorName

A parameter is used, despite the fact that the corresponding
argument was not used at the routine call.

ERR_NOTPRES

Module has been changed since it was loaded into the
system.

ERR_NOTSAVED

Specified task is a non-motion task.ERR_NOT_MOVETASK

Value is above 3.40282347E+38 or below -3.40282347E+38.ERR_NUM_LIMIT

Wrong orientation value in NOrient function.ERR_ORIENT_VALUE

The array index is outside the permitted limits.ERR_OUTOFBND

Clock overflow.ERR_OVERFLOW

The position (robtarget) is outside the robot's working area
for function CalcJoinT.

ERR_OUTSIDE_REACH

Missing destination path in instruction Save.ERR_PATH

Too long regain distance for StartMove, StartMoveRetry
or SetLeadThrough instruction.

ERR_PATHDIST

Stop of the movement because of some process error.ERR_PATH_STOP

The persistent variable is already TRUE at the beginning
of the search process.

ERR_PERSSUPSEARCH

Only internal use in LoadId and ManLoadIdProc.ERR_PID_MOVESTOP

Error from ParIdRobValid, ParIdPosValid, LoadId or
ManLoadIdProc.

ERR_PID_RAISE_PP

Program memory full.ERR_PRGMEMFULL

Process signal is off.ERR_PROCSIGNAL_OFF

The robot is in program stop state when executing a
StartMove, StartMoveRetry or SetLeadThrough in-
struction.

ERR_PROGSTOP

Check sum error detected at data transfer with instruction
ReadAnyBin.

ERR_RANYBIN_CHK

End of file is detected before all bytes are read in instruction
ReadAnyBin or ReadRawBytes.

ERR_RANYBIN_EOF

An attempt was made to read non-numeric data with
ReadNum.

ERR_RCVDATA

Reference to entire unknown data object.ERR_REFUNKDAT

Reference to unknown function.ERR_REFUNKFUN

Reference to unknown procedure at linking time or at run
time (late binding).

ERR_REFUNKPRC

Reference to unknown trap.ERR_REFUNKTRP

Wrong dimensions, the dimensions of the given data are
not equal to the dimensions of the data in the message.

ERR_RMQ_DIM

Destination message queue is full.ERR_RMQ_FULL

Destination slot lost or invalid.ERR_RMQ_INVALID

Invalid message, likely sent from other client than a RAPID
task.

ERR_RMQ_INVMSG

Size of message is too big. Decrease message size.ERR_RMQ_MSGSIZE

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1625
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.30 errnum - Error number

RobotWare - OS
Continued

Cause of errorName

The given slot name is not valid or not found.ERR_RMQ_NAME

No message in queue, likely the results of power fail.ERR_RMQ_NOMSG

Time-out occurredwhile waiting for answer in RMQSendWait
or RMQReadWait.

ERR_RMQ_TIMEOUT

The value syntax does not match the data type.ERR_RMQ_VALUE

The position is reachable, but at least one axis is outside
the joint limits or limits exceeded for at least one coupled
joint (function CalcJoinT).

ERR_ROBLIMIT

Error when sending to external computer.ERR_SC_WRITE

Emergency stop during servo tool movement.ERR_SGUN_ESTOP

The instruction is invoked from a background task and the
system is in motors off state.

ERR_SGUN_MOTOFF

The argument PrePos is specified with a value less than
zero.

ERR_SGUN_NEGVAL

The servo tool mechanical unit is not activated.ERR_SGUN_NOTACT

The servo tool position is not initialized.ERR_SGUN_NOTINIT

The gun is not open when the instruction is invoked.ERR_SGUN_NOTOPEN

The servo tool tips are not synchronized.ERR_SGUN_NOTSYNC

The signal has already a positive value at the beginning of
the search process.

ERR_SIGSUPSEARCH

The I/O signal cannot be accessed. The reasons can be
that the I/O device is not running or an error in the config-
uration (only valid for ICI field bus).

ERR_SIG_NOT_VALID

The address and port is already in use and can not be used
again. Use a different port number or address in
SocketBind.

ERR_SOCK_ADDR_INUSE

The socket is closed, or is not created.ERR_SOCK_CLOSED

Network is unreachable or connection is lost after a socket
is opened.

ERR_SOCK_NET_UNREACH

The connection was not established within the time-out
time, or no data was received within the time out time.

ERR_SOCK_TIMEOUT

Override out of limit in SpeedRefresh.ERR_SPEED_REFRESH_LIM

The speed used in instructions SpeedLimAxis and
SpeedLimCheckPoint is too low.

ERR_SPEEDLIM_VALUE

The robot is in hold state when executing a StartMove,
StartMoveRetry or SetLeadThrough instruction.

ERR_STARTMOVE

Error in the stored profile.ERR_STORE_PROF

The string is too long.ERR_STRTOOLNG

Symbol read/write access error.ERR_SYM_ACCESS

The data object and the variable used in argument Value
is of different types. If using ALIAS datatypes, you will also
get this ERROR, eventhough the typesmight have the same
base data type. Instructions GetDataVal, SetDataVal
and SetAllDataVal.

ERR_SYMBOL_TYPE

Continues on next page
1626 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.30 errnum - Error number
RobotWare - OS
Continued

Cause of errorName

Time-out from SyncMoveOff.ERR_SYNCMOVEOFF

Time-out from SyncMoveOn.ERR_SYNCMOVEON

Syntax error in the loaded module.ERR_SYNTAX

Task name not found in the system.ERR_TASKNAME

A read instruction from FlexPendant was interrupted by a
digital input.

ERR_TP_DIBREAK

A read instruction from FlexPendant was interrupted by a
digital output.

ERR_TP_DOBREAK

Time-out when executing a read instruction from FlexPend-
ant.

ERR_TP_MAXTIME

No client to interact with when using a read instruction from
FlexPendant.

ERR_TP_NO_CLIENT

Not allowed to disable I/O device.ERR_TRUSTLEVEL

Wrong table or index in function TextGet.ERR_TXTNOEXIST

Communication timeout for the UdpUc device.ERR_UDPUC_COMM

Initial value error in function UINumEntry.ERR_UI_INITVALUE

Min value is greater then max value in function
UINumEntry, UIDnumEntry, UINumTune or UIDnumTune.

ERR_UI_MAXMIN

Value is not an integer when specified that an integer should
be used when using UINumEntry or UIDnumEntry.

ERR_UI_NOTINT

Other error thenERR_TP_NO_CLIENT orERR_UISHOW_FULL
in instruction UIShow.

ERR_UISHOW_FATAL

No space left on FlexPendant for another application when
using instruction UIShow.

ERR_UISHOW_FULL

Parameter Mech_unit in TestSignDefine is wrong.ERR_UNIT_PAR

Unknown interrupt number.ERR_UNKINO

Incorrect reference to the load session in instruction
WaitLoad.

ERR_UNKPROC

Unload error in instruction UnLoad or WaitLoad.ERR_UNLOAD

Error in the used profile.ERR_USE_PROF

Time-out from WaitSyncTask.ERR_WAITSYNCTASK

Time-out when executing a WaitDI, WaitDO, WaitAI,
WaitAO, WaitGI, WaitGO, WaitUntil, WaitSensor or
WaitWObj instruction.

ERR_WAIT_MAXTIME

No search stop.ERR_WHLSEARCH

The mechanical unit with work object is moving
CalcJointT.

ERR_WOBJ_MOVING

Characteristics
errnum is an alias data type for num and consequently inherits its characteristics.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1627
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.30 errnum - Error number

RobotWare - OS
Continued

Related information

SeeFor information about

Technical referencemanual - RAPID OverviewError recovery

Technical referencemanual - RAPID OverviewData types in general, alias data types

1628 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.30 errnum - Error number
RobotWare - OS
Continued

3.31 errstr - Error string

Usage
errstr is used to write text in error messages.

Basic examples
The following example illustrates the data type errstr:

Example 1
VAR errstr arg:= "This is an example";

ErrLog 5100, \W, ERRSTR_TASK, ERRSTR_CONTEXT, arg, ERRSTR_EMPTY,
ERRSTR_UNUSED;

Predefined data

DescriptionName

Argument is emptyERRSTR_EMPTY

Argument is not usedERRSTR_UNUSED

Name of current taskERRSTR_TASK

ContextERRSTR_CONTEXT

Characteristics
errstr is an alias data type for string and consequently inherits its
characteristics.

Related information

SeeFor information about

Technical referencemanual - RAPIDOverview,
section Basic characteristics - Data Types

Data types in general, alias data types

Technical reference manual - RAPID Instructions, Functions and Data types 1629
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.31 errstr - Error string

RobotWare - OS

3.32 errtype - Error type

Usage
errtype (error type) is used to specify an error type.

Description
Data of the type errtype represents the type (state change, warning, error) of
an error message.

Basic examples
The following example illustrates the data type errtype:

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error
number, and the error type are saved into appropriate variables.

Predefined data
The following predefined constants can be used to specify an error type.

ValueError TypeName

0Any type of error (state change, warning, error)TYPE_ALL

1State change (operational message)TYPE_STATE

2Warning (such as RAPID recoverable error)TYPE_WARN

3ErrorTYPE_ERR

Characteristics
errtype is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

IError - Orders an interrupt on errors on page 278Ordering an interrupt on errors

Operating manual - Troubleshooting IRC5Error numbers

Technical reference manual - RAPID Overview,
section Basic characteristics - Data types

Alias data types

Product specification - Controller software IRC5Advanced RAPID

1630 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.32 errtype - Error type
RobotWare - OS

3.33 event_type - Event routine type

Usage
event_type is used to represent the actual event routine type with a symbolic
constant.

Description
With the function EventType, it is possible to check if the actual RAPID code is
executed because of some specific system event or not.

Basic examples
The following example illustrates the data type event_type:

Example 1
VAR event_type my_type;

...

my_type := EventType();

The event routine type that is executed will be stored in the variable my_type.

Predefined data
Following constants of type event_type are predefined:

Type of event executedValueRAPID constant

No event is executed0EVENT_NONE

POWER_ON event1EVENT_POWERON

START event2EVENT_START

STOP event3EVENT_STOP

QSTOP event4EVENT_QSTOP

RESTART event5EVENT_RESTART

RESET event6EVENT_RESET

STEP event7EVENT_STEP

Characteristics
event_type is an alias data type for num and consequently inherits its
characteristics.

Related information

SeeFor information about

Technical reference manual - System paramet-
ers, section Controller - Event Routine

Event routines in general

EventType - Get current event type inside any
event routine on page 1246

Get event type

Technical referencemanual - RAPIDOverview,
section Basic characteristics - Data types

Data types in general, alias data types

Technical reference manual - RAPID Instructions, Functions and Data types 1631
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.33 event_type - Event routine type

RobotWare - OS

3.34 exec_level - Execution level

Usage
exec_level is used to specify program execution level.

Description
With the function ExecLevel, it is possible to get the actual execution level for
the RAPID code that currently is executed.

Predefined data
The following constants of type exec_level are predefined:

Execution levelValueRAPID constant

Execute on base level0LEVEL_NORMAL

Execute in TRAP routine1LEVEL_TRAP

Execute in service routine i2LEVEL_SERVICE

i With LEVEL_SERVICE means event routine, service routine (including Call Routine) and interrupt
routine from system input signal.

Characteristics
exec_level is an alias data type for num and consequently inherits its
characteristics.

Related information

SeeFor information about

ExecLevel - Get execution level on page1249Get current execution level

1632 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.34 exec_level - Execution level
RobotWare - OS

3.35 extjoint - Position of external joints

Usage
extjoint is used to define the axis positions of additional axes, positioners, or
workpiece manipulators.

Description
The robot can control up to six additional axes in addition to its six internal axes,
i.e. a total of twelve axes. The six additional axes are logically denoted: a, b, c, d,
e, f. Each such logical axis can be connected to a physical axis and, in this case,
the connection is defined in the system parameters.
Data of the type extjoint is used to hold position values for each of the logical
axes a - f.
For each logical axis connected to a physical axis, the position is defined as follows:

• For rotating axes– the position is defined as the rotation in degrees from the
calibration position.

• For linear axes – the position is defined as the distance in mm from the
calibration position.

If a logical axis is not connected to a physical one then the value 9E9 is used as
a position value, indicating that the axis is not connected. At the time of execution,
the position data of each axis is checked and it is checked whether or not the
corresponding axis is connected. If the stored position value does not comply with
the actual axis connection, the following applies:

• If the position is not defined in the position data (value is 9E9) then the value
will be ignored if the axis is connected and not activated. But if the axis is
activated, it will result in an error.

• If the position is defined in the position data, although the axis is not
connected, then the value will be ignored.

No movement is performed but no error is generated for an axis with valid position
data if the axis is not activated.
If an additional axis offset is used (instruction EOffsOn or EOffsSet) then the
positions are specified in the ExtOffs coordinate system.
If an additional axis is running in independent mode and a new movement shall
be performed by the robot and its additional axes, then the position data for the
additional axes in independentmodemust not be 9E9. The datamust be an arbitrary
value that is not used by the system.

Components

eax_a

external axis a
Data type: num
The position of the external logical axis“ a” expressed in degrees or mm (depending
on the type of axis).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1633
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.35 extjoint - Position of external joints

RobotWare - OS

...

eax_f

external axis f
Data type: num
The position of the external logical axis“ f” expressed in degrees or mm (depending
on the type of axis).

Basic examples
The following example illustrates the data type extjoint:

Example 1
VAR extjoint axpos10 := [11, 12.3, 9E9, 9E9, 9E9, 9E9] ;

The position of an external positioner, axpos10, is defined as follows:
• The position of the external logical axis “a” is set to 11, expressed in degrees

or mm (depending on the type of axis).
• The position of the external logical axis“ b” is set to 12.3, expressed in

degrees or mm (depending on the type of axis).
• Axes c to f are undefined.

Structure
< dataobject of extjoint >

< eax_a of num >

< eax_b of num >

< eax_c of num >

< eax_d of num >

< eax_e of num >

< eax_f of num >

Related information

SeeFor information about

robtarget - Position data on page 1702Position data
jointtarget - Joint position data on page 1647

EOffsOn - Activates an offset for additional axes
on page 223

ExtOffs coordinate system

1634 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.35 extjoint - Position of external joints
RobotWare - OS
Continued

3.36 flypointdata - Data for flying start/end

Usage
flypointdata is used to define all data of flying start or flying end for a CAP
process - it is part of capdata for both flying start and flying end.

Definitions
flypointdata defines data for both flying start and flying end:

• This functionality is only available for CAP.
• Flying start is triggered by the combination of first instruction = TRUE and

zone point.
• Flying end is triggered by the combination of last_instr = TRUE and zone

point.
• Weavestart will be ignored.
• If the starting point is a fine point, no flying start will be performed.
• If the end point is a fine point, no flying end will be performed.
• Motion delay will be ignored.
• Restart after an error will work in the same way as usual: there are no specific

features for flying start, scrape start is available, if the application process
was active, when the error occurred.

• If weaving is activated, the transition in the zone is made by ramping in the
weaving pattern starting at the entrance to the zone until the full pattern is
reached when the TCP leaves the zone.

• Supervision is active during START phase (with moving TCP), MAIN phase
and END_MAIN phase (with moving TCP).

• Backing on the path will be limited to backing to position 4 (see the following
figure).

• The user has to adapt distance and the approach and leaving angle to the
application process: for example, for arc welding at the point where the arc
shall be established (point 4 in the figure) has to be selected in such a way,
that it is possible to ignite.

• The distance between position 4 and 6 must not be = 0.
• The START process_dist must be equal to or shorter than START

distance.
• If program execution is stopped and the application process is active (between

positions 3 and 6), CAP will behave as usual, that is, backing on path (only
if pos. 4 had been passed), weave start, motion delay and movement start
timeout are available.

• If program execution is stopped between positions 1 and 3 or between
positions 7 and 10, the CapX instruction will behave like a TrigX instruction.

• The first CAP segment with flying start is recommended to be at least START
distance long.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1635
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.36 flypointdata - Data for flying start/end

Continuous Application Platform (CAP)

• If the first segment is shorter than START distance, but longer than START
process_dist, the positions 2 and 4 will be moved towards position 1.

• If the first segment is shorter than or equal START process_dist, positions
1 and 2 will coincide and position 4 will be at the end of the segment.

• The last CAP segment with flying end is recommended to be at least END
distance + END process_dist long.

• If the last segment is shorter than END distance + END process_dist,
but longer than END process_dist, the positions 7 and 9 will be moved
towards position 10.

• If the last segment is shorter than or equal END process_dist, positions
8 and 10 will coincide and position 6 will be at the start of the segment.

• The START phase timeout specified in capdata will only be used at restart
of the application process.

• If a process error occurs after the prefetch request from motion has arrived
at the last CAP instruction (after position 9), that is, PGM is released from
the CAP instruction and may continue with the next instruction, an error log
message is sent, the process is stopped, but the robot movement continues.

xx1200000180

Components

from_start
Data type: bool
Not used.

process_dist
Data type: num

Continues on next page
1636 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.36 flypointdata - Data for flying start/end
Continuous Application Platform (CAP)
Continued

The distance (in mm) within which the process is started (for flying start) or ended
(for flying end).

distance
Data type: num
Sets the start/end of the supervision of the CAP process as a distance (in mm)
from the start/end point.

Structure
< databases of flypointdata >

< from_start of bool >

< process_dist of num >

< distance of num >

Related information

Described in:

capdata - CAP data on page 1576capdata data type

Application manual - Continuous Application
Platform

Continuous Application Platform

Technical reference manual - RAPID Instructions, Functions and Data types 1637
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.36 flypointdata - Data for flying start/end

Continuous Application Platform (CAP)
Continued

3.37 handler_type - Type of execution handler

Usage
handler_type is used to specify type of execution handler in RAPID program
routine.

Description
With the function ExecHandler, it is possible to check if the actual RAPID code
is executed in some execution handler in RAPID program routine.

Basic examples
The following example illustrates the data type handler_type:

Example 1
VAR handler_type my_type;

...

my_type := ExecHandler();

The type of execution handler that the code is executed in, will be stored in the
variable my_type.

Predefined data
Following constants of type handler_type are predefined:

Type of execution handlerValueRAPID constant

Not executed in any handler0HANDLER_NONE

Executed in BACKWARD handler1HANDLER_BWD

Executed in ERROR handler2HANDLER_ERR

Executed in UNDO handler3HANDLER_UNDO

Characteristics
handler_type is an alias data type for num and consequently inherits its
characteristics.

Related information

SeeFor information about

ExecHandler - Get type of execution handler
on page 1248

Get type of execution handler

1638 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.37 handler_type - Type of execution handler
RobotWare - OS

3.38 icondata - Icon display data

Usage
icondata is used for representing standard icons on the User Device such as the
FlexPendant.

Description
An icondata enumeration constant may be passed to the Icon argument in the
instruction UIMsgBox and functions UIMessageBox, UINumEntry, UINumTune,
UIAlphaEntry, and UIListView.

Basic examples
The following example illustrates the data type icondata:

Example 1
VAR btnres answer;

UIMsgBox "More ?" \Buttons:=btnYesNo \Icon:=iconInfo \Result:=
answer;

IF answer= resYes THEN

...

ELSEIF answer =ResNo THEN

...

ENDIF

The standard button enumeration constant iconInfowill give an information icon
at the head of the message box on the user interface.

Predefined data
The following constants of the data type icondata are predefined in the system:

IconConstantValue

No iconiconNone0

Information iconiconInfo1

Warning iconiconWarning2

Error iconiconError3

Characteristics
icondata is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

UIMsgBox - User Message Dialog Box type ba-
sic on page 974

User Interaction Message Box

UIMessageBox - User Message Box type ad-
vanced on page 1531

User Interaction Message Box

UINumEntry - User Number Entry on page1539User Interaction Number Entry

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1639
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.38 icondata - Icon display data

RobotWare - OS

SeeFor information about

UINumTune - User Number Tune on page1546User Interaction Number Tune

UIAlphaEntry - User Alpha Entry on page 1501User Interaction Alpha Entry

UIListView - User List View on page 1523User Interaction List View

Technical referencemanual - RAPIDOverview,
section Basic Characteristics - Data Types

Data types in general, alias data types

1640 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.38 icondata - Icon display data
RobotWare - OS
Continued

3.39 identno - Identity for move instructions

Usage
identno (Identity Number) is used to control synchronizing of two or more
coordinated synchronized movements with each other.
The data type identno can only be used in a MultiMove system with option
Coordinated Robots and only in program tasks defined as Motion Task.

Description
Move instructions in a MultiMove system must be programmed with parameter
\ID of data type identno, if coordinated synchronized movement, and \ID is not
allowed in any other cases.
The specified \ID number must be the same in all cooperating program tasks. The
id number gives a guarantee that the movements are not mixed up at runtime.
In coordinated synchronized mode, there must be the same amount of executed
move instructions in all program tasks. The optional parameter \ID of data type
identnowill be used to check that associatedmove instructions are run in parallel
before the start of the movements. The \ID number must be the same in the move
instructions that are run in parallel.
The user does not have to declare any variable of type identno, but can use a
number directly in the instructions (see Basic examples).

Basic examples
The following example illustrates the data type identno:

Example 1
PERS tasks task_list{2} := [["T_ROB1"],["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

PROC proc1()

...

SyncMoveOn sync1, task_list;

MoveL *\ID:=10,v100,z50,mytool;

MoveL *\ID:=20,v100,fine,mytool;

SyncMoveOff sync2;

...

ENDPROC

Characteristics
identno is an alias data type for num and thus inherits its properties.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section Basic Characteristics - Data
types

Alias data types

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1641
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.39 identno - Identity for move instructions

MultiMove - Coordinated Robots

SeeFor information about

SyncMoveOn - Start coordinated synchronized
movements on page 832

Start coordinated synchronizedmovements

SyncMoveOff - End coordinated synchronized
movements on page 826

End coordinated synchronized movements

1642 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.39 identno - Identity for move instructions
MultiMove - Coordinated Robots
Continued

3.40 intnum - Interrupt identity

Usage
intnum (interrupt numeric) is used to identify an interrupt.

Description
When a variable of type intnum is connected to a trap routine, it is given a specific
value identifying the interrupt. This variable is then used in all dealings with the
interrupt, such as when ordering or disabling an interrupt.
More than one interrupt identity can be connected to the same trap routine. The
system variable INTNO can thus be used in a trap routine to determine the type of
interrupt that occurs.
A variable of the type intnum must always be declared global in the module.

Basic examples
The following examples illustrate the data type intnum:

Example 1
VAR intnum feeder_error;

...

PROC main()

CONNECT feeder_error WITH correct_feeder;

ISignalDI di1, 1, feeder_error;

An interrupt is generated when the input di1 is set to 1. When this happens, a call
is made to the correct_feeder trap routine.

Example 2
VAR intnum feeder1_error;

VAR intnum feeder2_error;

...

PROC init_interrupt()

...

CONNECT feeder1_error WITH correct_feeder;

ISignalDI di1, 1, feeder1_error;

CONNECT feeder2_error WITH correct_feeder;

ISignalDI di2, 1, feeder2_error;

...

ENDPROC

...

TRAP correct_feeder

IF INTNO=feeder1_error THEN

...

ELSE

...

ENDIF

...

ENDTRAP

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1643
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.40 intnum - Interrupt identity

RobotWare - OS

An interrupt is generated when either of the inputs di1 or di2 is set to 1. A call is
then made to the correct_feeder trap routine. The system variable INTNO is
used in the trap routine to find out which type of interrupt has occurred.

Limitations
Themaximum number of active variables of type intnum at any one time (between
CONNECT and IDelete) is limited to 100.The maximum number of interrupts, in
the queue for execution of TRAP routine at any one time, is limited to 30.

Characteristics
Intnum is an alias data type for num and thus inherits its properties.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID Summary - Interrupts

Summary of interrupts

Technical reference manual - RAPID Overview,
section Basic Characteristics - Data Types

Alias data types

CONNECT - Connects an interrupt to a trap routine
on page 148

Connecting interrupts

1644 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.40 intnum - Interrupt identity
RobotWare - OS
Continued

3.41 iodev - Serial channels and files

Usage
iodev (I/O device) is used for serial channels, such as printers and files.

Description
Data of the type iodev contains a reference to a file or serial channel. It can be
linked to the physical unit by means of the instruction Open and then used for
reading and writing.

Basic examples
The following example illustrates the data type iodev:

Example 1
VAR iodev file;

...

Open "HOME:/LOGDIR/INFILE.DOC", file\Read;

input := ReadNum(file);

The file INFILE.DOC is opened for reading. When reading from the file, file is
used as a reference instead of the file name.

Characteristics
iodev is a non-value data type.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
sectionRAPID Summary - Communication

Communication via serial channels

Technical referencemanual - System parametersConfiguration of serial channels

Technical reference manual - RAPID Overview,
sectionBasic Characteristics - Data Types

Characteristics of non-value data types

Application manual - Controller software IRC5File and serial channel handling

Technical reference manual - RAPID Instructions, Functions and Data types 1645
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.41 iodev - Serial channels and files

RobotWare - OS

3.42 iounit_state - State of I/O device

Usage
iounit_state is used to mirror which state an I/O device is currently in.

Description
An iounit_state constant is intended to be used when checking the return value
from the function IOUnitState.

Basic examples
The following example illustrates the data type iounit_state:

Example 1
IF (IOUnitState ("UNIT1" \Phys) = IOUNIT_PHYS_STATE_RUNNING) THEN

! Possible to access some signal on the I/O unit

ELSE

! Read/Write some signal on the I/O unit result in error

ENDIF

Test is done if the I/O device UNIT1 is up and running.

Predefined data
The predefined symbolic constants of the data type iounit_state is found in
function IOUnitState.

Characteristics
iounit_state is an alias data type for num and consequently inherits its
characteristics.

Related information

SeeFor information about

IOUnitState - Get current state of I/O device on
page 1307

Get current state of I/O device

Technical reference manual - RAPID Overview, sec-
tion RAPID Summary - Input and Output Signals

Input/Output instructions

Technical reference manual - RAPID Overview, sec-
tion Motion and I/O Principles - I/O Principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

1646 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.42 iounit_state - State of I/O device
RobotWare - OS

3.43 jointtarget - Joint position data

Usage
jointtarget is used to define the position that the robot and the external axes
will move to with the instruction MoveAbsJ.

Description
jointtarget defines each individual axis position, for both the robot and the
external axes.

Components

robax

robot axes
Data type: robjoint
Axis positions of the robot axes in degrees.
Axis position is defined as the rotation in degrees for the respective axis (arm) in
a positive or negative direction from the axis calibration position.

extax

external axes
Data type: extjoint
The position of the external axes.
The position is defined as follows for each individual axis (eax_a, eax_b ...
eax_f):

• For rotating axes, the position is defined as the rotation in degrees from the
calibration position.

• For linear axes, the position is defined as the distance in mm from the
calibration position.

External axes eax_a ... are logical axes. How the logical axis number and the
physical axis number are related to each other is defined in the system parameters.
The value 9E9 is defined for axes which are not connected. If the axes defined in
the position data differ from the axes that are actually connected on program
execution, the following applies:

• If the position is not defined in the position data (value 9E9) the value will be
ignored, if the axis is connected and not activated. But if the axis is activated
it will result in error.

• If the position is defined in the position data, although the axis is not
connected, the value is ignored.

No movement is performed but no error is generated for an axis with valid position
data, if the axis isn’t activated.
If some external axis is running in independent mode and some new movement
shall be performed by the robot and its external axes then the position data for the
external axis in independent mode must not be 9E9 but some arbitrary value (not
used but the system).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1647
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.43 jointtarget - Joint position data

RobotWare - OS

Basic examples
The following example illustrates the data type jointtarget:

Example 1
CONST jointtarget calib_pos := [[0, 0, 0, 0, 0, 0], [0, 9E9,

9E9, 9E9, 9E9, 9E9]];

The normal calibration position for IRB2400 is defined in calib_pos by the data
type jointtarget. The normal calibration position 0 (degrees or mm) is also
defined for the external logical axis a. The external axes b to f are undefined.

Structure
< dataobject of jointtarget >

< robax of robjoint >

< rax_1 of num >

< rax_2 of num >

< rax_3 of num >

< rax_4 of num >

< rax_5 of num >

< rax_6 of num >

< extax of extjoint >

< eax_a of num >

< eax_b of num >

< eax_c of num >

< eax_d of num >

< eax_e of num >

< eax_f of num >

Related information

SeeFor information about

MoveAbsJ - Moves the robot to an absolute joint
position on page 395

Move to joint position

MoveExtJ - Move one or several mechanical units
without TCP on page 430

Technical reference manual - RAPID Overview,
section RAPID summary - Motion

Positioning instructions

Application manual - Additional axes and stand
alone controller

Configuration of external axes

1648 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.43 jointtarget - Joint position data
RobotWare - OS
Continued

3.44 listitem - List item data structure

Usage
listitem is used to define menu lines that include text with optional small icons
on the User Device such as the FlexPendant.

Description
Data of the type listitem allows the user to define menu lines for the function
UIListView.

Basic example
The following example illustrates the data type listitem :

Example 1
CONST listitem list {3}:=[[stEmpty, "Item1"], [stEmpty, "Item2"],

[stEmpty, "Item3"]];

A menu list with Item1....Item3 to use in function UIListView.

Components
The data type has the following components:

image

Data type: string
The path including file name for the icon image to display (not implemented in this
software release).
Use empty string "" or stEmpty if no icon to display.

text

Data type: string
The text for the menu line to display.

Structure
<dataobject of listitem>

<image of string>

<text of string>

Related information

SeeFor information about

UIListView - User List View on page 1523User Interaction ListView

Technical reference manual - RAPID Instructions, Functions and Data types 1649
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.44 listitem - List item data structure

RobotWare - OS

3.45 loaddata - Load data

Usage
loaddata is used to describe loads attached to the mechanical interface of the
robot (the robot’s mounting flange).
Load data usually defines the payload or grip load (set up by the instruction
GripLoad or MechUnitLoad for positioners) of the robot, that is, the load held in
the robot gripper. loaddata is also used as part of tooldata to describe the tool
load.

Description
Specified loads are used to set up a dynamic model of the robot so that the robot
movements is controlled in the best possible way.

WARNING

It is important to always define the actual tool load and, when used, the payload
of the robot (for example a gripped part). Incorrect definitions of load data can
result in overloading of the robot mechanical structure.
When incorrect load data is specified, it can often lead to the following
consequences:
• The robot will not be used to its maximum capacity
• Impaired path accuracy including a risk of overshooting
• Risk of overloading the mechanical structure

The controller continuously monitors the load and writes an event log if the load
is higher than expected. This event log is saved and logged in the controller
memory.

Components

Note

In this description, loaddata is only described as used for payload. As used for
tool load, see tooldata - Tool data on page 1743.

mass

Data type: num
The mass (weight) of the load in kg.

cog

center of gravity
Data type: pos
The center of gravity of the payload expressed in mm in the tool coordinate system
if the robot is holding the tool. If a stationary tool is used then the center of gravity
for the payload held by the gripper is expressed in the object frame of the work
object coordinate system moved by the robot.

Continues on next page
1650 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.45 loaddata - Load data
RobotWare - OS

aom

axes of moment
Data type: orient
The orientation of the axes of moment. These are the principal axes of the payload
moment of inertia with origin in cog. If the robot is holding the tool, the axes of
moment are expressed in the tool coordinate system.
The figure shows the center of gravity and inertial axes of the payload.

X
Y
Z

wrist coordinate
system

gripper

tool coordinate
system andTCP

payload
payload coordinate system,
center of gravity (cog) and
inertial axes of payload (aom)

X'

X''

Z'

Z''

Y'

Y''

xx1100000515

Figure 3.1: Robot held tool

Note

If PayloadsInWristCoords is used, the axes of moment for the payload for the
robot held tool are expressed in the wrist coordinate system. Formore information
see Technical reference manual - System parameters, section
PayloadsInWristCoords, topic Controller, type General Rapid.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1651
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.45 loaddata - Load data

RobotWare - OS
Continued

The axes of moment are expressed in the object coordinate system if a stationary
tool is used.

wrist coordinate
system

gripper
X

YZ

work object
coordinate system

payloadX' Y'Z'
Z'' X''Y''

stationary tool

payload coordinate system,
center of gravity (cog) and
inertial axes of payload (aom)

xx1100000516

Figure 3.2: Stationary tool

Note

IfPayloadsInWristCoords orStationaryPayLoadMode is used, the axes ofmoment
for the payload for the stationary tool are expressed in the wrist coordinate
system. For more information see Technical reference manual - System
parameters, section PayloadsInWristCoords and StationaryPayLoadMode, topic
Controller, type General Rapid.

ix

inertia x
Data type: num
Themoment of inertia of the load around the x-axis of moment expressed in kgm2 .
Correct definition of the moments of inertia will allow optimal utilization of the path
planner and axes control. This may be of special importance when handling large
sheets of metal, and so on. All moments of inertia ix, iy, and iz equal to 0 kgm2

imply a point mass.

Continues on next page
1652 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.45 loaddata - Load data
RobotWare - OS
Continued

Normally, the moments of inertia must only be defined when the distance from the
mounting flange to the center of gravity is less than the maximal dimension of the
load (see the following figure).

xx0500002372

iy

inertia y
Data type: num
The moment of inertia of the load around the y-axis, expressed in kgm2 .
For more information, see ix.

iz

inertia z
Data type: num
The moment of inertia of the load around the z-axis, expressed in kgm2 .
For more information, see ix.

Basic examples
The following examples illustrate the data type loaddata:

Example 1
PERS loaddata piece1 := [5, [50, 0, 50], [1, 0, 0, 0], 0, 0, 0];

The payload moved by a robot held tool in the figure Robot held tool on page 1651
is described using the following values:

• Weight 5 kg.
• The center of gravity is x = 50, y = 0 and z = 50 mm in the tool coordinate

system
• The payload is a point mass

Example 2
Set gripper;

WaitTime 0.3;

GripLoad piece1;

Connection of the payload, piece1, specified at the same time as the robot grips
the load.

Example 3
Reset gripper;

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1653
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.45 loaddata - Load data

RobotWare - OS
Continued

WaitTime 0.3;

GripLoad load0;

Disconnection of the payload, specified at the same time as the robot releases a
payload.

Example 4
PERS loaddata piece2 := [5, [50, 50, 50], [0, 0, 1, 0], 0, 0, 0];

PERS wobjdata wobj2 :=[TRUE, TRUE, "", [[0, 0, 0], [1, 0, 0 ,0]
], [[50, -50, 200], [0.5, 0, -0.866 ,0]]];

The payload moved according to the stationary tool in the figure Stationary tool
on page 1652 is described using the following values for the loaddata:

• Weight 5 kg
• The center of gravity is x = 50, y = 50 and z = 50mm in the object coordinate

system for work object wobj2
• The payload coordinate system/axes of moments are rotated 180° around

Y'' according to the object coordinate system
• The payload is a point mass

The following values are used for the wobjdata:
• The robot is holding the work object
• The fixed user coordinate system is used, that is, the user coordinate system

is the same as wrist coordinate system
• The object coordinate system is rotated -120° around Y and the coordinates

of its origin are x = 50, y = -50 and z = 200mm in the user coordinate system

Limitations
The payload should only be defined as a persistent variable (PERS) and not within
a routine. Current values are then saved when saving the program and are retrieved
on loading.
Arguments of the type loaddata in the GripLoad and MechUnitLoad instruction
should only be an entire persistent (not array element or record component).

Predefined data
The load load0 defines a payload, with the mass equal to 0 kg, that is, no load at
all. This load is used as the argument in the instructions GripLoad and
MechUnitLoad to disconnect the payload.
The load load0 can always be accessed from the program, but cannot be changed
(it is stored in the system module BASE).

PERS loaddata load0 := [0.001, [0, 0, 0.001], [1, 0, 0, 0], 0, 0
, 0];

Structure
< dataobject of loaddata >

< mass of num >

< cog of pos >

< x of num >

< y of num >

< z of num >

Continues on next page
1654 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.45 loaddata - Load data
RobotWare - OS
Continued

< aom of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< ix of num >

< iy of num >

< iz of num >

Related information

SeeFor information about

Technical reference manual - RAPID OverviewCoordinate systems

tooldata - Tool data on page 1743Definition of tool loads

GripLoad - Defines the payload for a robot on
page 266

Define payload for robots

MechUnitLoad - Defines a payload for a mechanical
unit on page 385

Define payload for mechanical units

Operating manual - IRC5 with FlexPendantLoad identification of tool load, pay-
load or arm load

Technical reference manual - System parameters,
section Topic Motion - Workflows - How to define
arm loads

Definition of arm loads

wobjdata - Work object data on page 1770Definition of work object data

Technical reference manual - System parameters,
topic Controller, type General Rapid.

PayloadsInWristCoords and
StationaryPayLoadMode

Technical reference manual - RAPID Instructions, Functions and Data types 1655
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.45 loaddata - Load data

RobotWare - OS
Continued

3.46 loadidnum - Type of load identification

Usage
loadidnum is used to represent an integer with a symbolic constant.

Description
A loadidnum constant is intended to be used for load identification of tool or
payload as arguments in instruction LoadId. See the following example.

Basic examples
The following example illustrates the data type loadidnum:

Example 1
! Load modules into the system

Load \Dynamic, "RELEASE:/system/mockit.sys";

Load \Dynamic, "RELEASE:/system/mockit1.sys";

%"LoadId"% TOOL_LOAD_ID, MASS_WITH_AX3, gun1;

Load identification of tool gun1with identification of mass with movements of robot
axis 3 with use of predefined constant MASS_WITH_AX3 of data type loadidnum.

Predefined data
The following symbolic constants of the data type loadidnum are predefined and
is used as arguments in instruction LoadId.

CommentSymbolic constantValue

Known mass in tool or payload respectively.MASS_KNOWN1

Unknown mass in tool or payload. Identification of mass
will be done with movements of axis 3

MASS_WITH_AX32

Characteristics
loadidnum is an alias data type for num and consequently inherits its
characteristics.

Related information

SeeFor information about

Operating manual - IRC5 with FlexPendant,
section Programming and testing - Service
routines- LoadIdentify, load identification and
service routines

Predefined program Load Identify

ParIdRobValid - Valid robot type for parameter
identification on page 1364

Valid robot type

ParIdPosValid - Valid robot position for paramet-
er identification on page 1361

Valid robot position

LoadId - Load identification of tool or payload
on page 366

Load identification with complete example

1656 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.46 loadidnum - Type of load identification
RobotWare - OS

3.47 loadsession - Program load session

Usage
loadsession is used to define different load sessions of RAPID programmodules.

Description
Data of the type loadsession is used in the instructions StartLoad and
WaitLoad to identify the load session. loadsession only contains a reference
to the load session.

Characteristics
loadsession is a non-value data type and cannot be used in value-oriented
operations.

Related information

SeeFor information about

StartLoad - Load a program module during
execution on page 777

Loading programmodules during execution

WaitLoad - Connect the loaded module to the
task on page 1035

Technical reference manual - RAPID Over-
view, section Basic characteristics - Data
types

Characteristics of non-value data types

Technical reference manual - RAPID Instructions, Functions and Data types 1657
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.47 loadsession - Program load session

RobotWare - OS

3.48 mecunit - Mechanical unit

Usage
mecunit is used to define the different mechanical units which can be controlled
and accessed from the program.
The names of the mechanical units are defined in the system parameters and,
consequently, must not be defined in the program.

Description
Data of the type mecunit only contains a reference to the mechanical unit.

Limitations
Data of the type mecunitmust not be defined in the program. However, if it is then
an error message will be displayed as soon as an instruction or function that refers
to this mecunit is executed. The data type can, on the other hand, be used as a
parameter when declaring a routine.

Predefined data
All the mechanical units defined in the system parameters are predefined in every
program task. But only the mechanical units that are controlled by the actual
program task (defined in system parameters Controller/Task/Use Mechanical Unit
Group) is used to do any control operations.
Besides that, the predefined variable ROB_ID of data type mecunit is available in
every program task. If an actual program task controls a robot then the alias variable
ROB_ID contains a reference to one of robot ROB_1 to ROB_6, which can be used
to do control operation on the robot. The variable ROB_ID is invalid if the actual
program task does not control any robot.

Basic examples
The following example illustrates the data type mecunit:

Example 1
IF TaskRunRob() THEN

IndReset ROB_ID, 6;

ENDIF

If actual program task controls a robot, reset axis 6 for the robot.

Characteristics
mecunit is a non-value data type. This means that data of this type does not permit
value-oriented operations.

Related information

SeeFor information about

TaskRunRob - Check if task controls some robot on
page 1473

Check if task run some robot

Continues on next page
1658 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.48 mecunit - Mechanical unit
RobotWare - OS

SeeFor information about

TaskRunMec - Check if task controls any mechanical
unit on page 1472

Check if task run some mechanical
unit

GetNextMechUnit - Get name and data for mechanical
units on page 1272

Get the name of mechanical units in
the system

ActUnit - Activates a mechanical unit on page 26Activating/Deactivating mechanical
units DeactUnit - Deactivates amechanical unit on page172

Technical reference manual - System parametersConfiguration of mechanical units

Technical reference manual - RAPID Overview, sec-
tion Basic characteristics - Data types

Characteristics of non-value data
types

Technical reference manual - RAPID Instructions, Functions and Data types 1659
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.48 mecunit - Mechanical unit

RobotWare - OS
Continued

3.49 motsetdata - Motion settings data

Usage
motsetdata is used to define a number of motion settings that affect all movement
instructions in the program:

• Max. velocity and velocity override
• Acceleration data
• Behavior around singular points
• Management of different robot configurations
• Override of path resolution
• Motion supervision
• Limitation of acceleration/deceleration
• Tool reorientation during circle path
• Activation and deactivation of event buffer

This data type does not normally have to be used since these settings can only be
set using the instructions VelSet, AccSet, SingArea, ConfJ, ConfL, PathResol,
MotionSup, PathAccLim, CirPathMode, WorldAccLim, ActEventBuffer,
DeactEventBuffer and CornerPathWarning.
The current values of these motion settings is accessed using the system variable
C_MOTSET.

Description
The current motion settings (stored in the system variable C_MOTSET) affect all
movements.

Components

Note

Some components are prepared for in the structure but are currently not
implemented in the corresponding instructions.

vel.oride

Data type: veldata/num
Velocity override as a percentage of the programmed value.

vel.max

Data type: veldata/num
Maximum velocity in mm/s.

acc.acc

Data type: accdata/num
Acceleration and deceleration as a percentage of the normal values.

acc.ramp

Data type: accdata/num

Continues on next page
1660 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.49 motsetdata - Motion settings data
RobotWare - OS

The rate by which acceleration and deceleration increases as a percentage of the
normal values.

acc.finepramp

Data type: accdata/num
The rate at which deceleration decreases as a percentage of the normal values
when the robot decelerates towards a finepoint.

sing.wrist

Data type: singdata/bool
The orientation of the tool is allowed to deviate somewhat in order to prevent wrist
singularity.

sing.lockaxis4

Data type: singdata/bool
Lock axis 4 on a six-axis robot to 0 or ±180 degrees to avoid singularity problems
when axis 5 is close to 0.

sing.arm

Data type: singdata/bool
The orientation of the tool is allowed to deviate somewhat in order to prevent arm
singularity (not implemented).

sing.base

Data type: singdata/bool
The orientation of the tool is not allowed to deviate.

conf.jsup

Data type: confsupdata/bool
During joint movement the robot will reach the programmed robot configuration.

conf.lsup

Data type: confsupdata/bool
Supervision of joint configuration is active during linear and circular movement.

conf.ax1

Data type: confsupdata/num
Maximum permitted deviation in degrees for axis 1 (not implemented).

conf.ax4

Data type: confsupdata/num
Maximum permitted deviation in degrees for axis 4 (not implemented).

conf.ax6

Data type: confsupdata/num
Maximum permitted deviation in degrees for axis 6 (not implemented).

pathresol

Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1661
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.49 motsetdata - Motion settings data

RobotWare - OS
Continued

Current override in percentage of the configured path resolution.

motionsup

Data type: bool
Mirror RAPID status (TRUE = On and FALSE = Off) of motion supervision function.

tunevalue

Data type: num
Current RAPID override as a percentage of the configured tunevalue for the motion
supervision function.

backoffaftercoll

Data type: bool
Mirror RAPID status of back up to remove any residual forces at motion collision:
TRUE = Back up to remove residual forces at motion collision
FALSE = No back off at motion collision

acclim

Data type: bool
Limitation of tool acceleration along the path. (TRUE = limitation and FALSE = no
limitation).

accmax

Data type: num
TCP acceleration limitation in m/s2 . If acclim is FALSE, the value is always set to
-1.

decellim

Data type: bool
Limitation of tool deceleration along the path. (TRUE = limitation and FALSE = no
limitation).

decelmax

Data type: num
TCP deceleration limitation in m/s2 . If decellim is FALSE, the value is always set
to -1.

cirpathreori

Data type: num
Tool reorientation during circle path:
0 = Standard method with interpolation in path frame
1 = Modified method with interpolation in object frame
2 = Modified method with programmed tool orientation in CirPoint

worldacclim

Data type: bool

Continues on next page
1662 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.49 motsetdata - Motion settings data
RobotWare - OS
Continued

Limitation of acceleration in world coordinate system. (TRUE = limitation and FALSE
= no limitation).

worldaccmax

Data type: num
Limitation of acceleration in world coordinate system in m/s2 . If worldacclim is
FALSE, the value is always set to -1.

evtbufferact

Data type: bool
Event buffer active or not active. (TRUE = event buffer active and FALSE = event
buffer not active).

corner_path_warn_suppress

Data type: bool
Corner path warning will be reported or not. TRUE = corner path warning is
suppressed, FALSE = corner path warning is not suppressed.

Limitations
One and only one of the components sing.wrist, sing.arm or sing.base may
have a value equal to TRUE.

Basic examples
The following example illustrates the data type motsetdata:

Example 1
IF C_MOTSET.vel.oride > 50 THEN

...

ELSE

...

ENDIF

Different parts of the program are executed depending on the current velocity
override.

Predefined data
C_MOTSET describes the current motion settings of the robot and can always be
accessed from the program. On the other hand, C_MOTSET can only be changed
using a number of instructions, not by assignment.
The following default values for motion parameters are set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1663
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.49 motsetdata - Motion settings data

RobotWare - OS
Continued

VAR motsetdata C_MOTSET := [

[100, 5000],-> veldata

[100, 100, 100],-> accdata

[FALSE, FALSE, FALSE, TRUE],-> singdata

[TRUE, TRUE, 30, 45, 90]-> confsupdata

100,-> path resolution

TRUE,-> motionsup

100,-> tunevalue

TRUE,-> backoffaftercoll

FALSE,-> acclim

-1,-> accmax

FALSE,-> decellim

-1,-> decelmax

0,-> cirpathreori

FALSE,-> worldacclim

-1,-> worldaccmax

TRUE,-> evtbufferact

FALSE];-> corner_path_warn_suppress

Note

The maximum TCP speed for the used robot type can be changed in the Motion
configuration system parameters, type Motion Planner and attribute Linear Max
Speed. The RAPID function MaxRobSpeed returns the same value.

Structure
<dataobject of motsetdata>

Affected by instruction VelSet<vel of veldata>

<oride of num>

<max of num>

Affected by instruction AccSet<acc of accdata>

<acc of num>

<ramp of num>

<finepramp of num>

Affected by instruction SingArea<sing of singdata>

<wrist of bool>

<lockaxis4 of bool>

<arm of bool>

<base of bool>

Affected by instructions ConfJ and ConfL<conf of confsupdata>

<jsup of bool>

<lsup of bool>

<ax1 of num>

<ax4 of num>

<ax6 of num>

Affected by instruction PathResol<pathresol of num>

Affected by instruction MotionSup<motionsup of bool>

Affected by instruction MotionSup<tunevalue of num>

Continues on next page
1664 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.49 motsetdata - Motion settings data
RobotWare - OS
Continued

Affected by instruction MotionSup<backoffaftercoll of bool>

Affected by instruction PathAccLim<acclim of bool>

Affected by instruction PathAccLim<accmax of num>

Affected by instruction PathAccLim<decellim of bool>

Affected by instruction PathAccLim<decelmax of num>

Affected by instruction CirPathMode<cirpathreori of num>

Affected by instruction WorldAccLim<worldacclim of bool>

Affected by instruction WorldAccLim<worldaccmax of num>

Affected by instructions ActEventBuffer
and DeactEventBuffer

<evtbufferact of bool>

Affected by instruction CornerPathWarning<corner_path_warn_suppress of
bool>

Related information

SeeFor information about

AccSet - Reduces the acceleration on page21Reduction of acceleration

ActEventBuffer - Activation of event buffer on
page 24

Activation of event buffer

CirPathMode - Tool reorientation during circle
path on page 120

Tool reorientation during circle path

ConfJ - Controls the configuration during joint
movement on page 143

Robot configuration during joint movement

ConfL - Monitors the configuration during lin-
ear movement on page 145

Robot configuration during linearmovement

CornerPathWarning - Show or hide corner path
warnings on page 159

Suppressing corner path warnings

DeactEventBuffer - Deactivation of event buffer
on page 170

Deactivation of event buffer

MotionSup - Deactivates/Activatesmotion su-
pervision on page 392

Deactivate or activate the motion supervi-
sion function

PathAccLim - Reduce TCP acceleration along
the path on page 510

Limitation of acceleration along the path

PathResol - Override path resolution on
page 529

Override the configured geometric path
sample time

SingArea - Defines interpolation around singu-
lar points on page 719

Define interpolation around singular points

VelSet - Changes the programmed velocity on
page 999

Defining maximum velocity

WorldAccLim - Control acceleration in world
coordinate system on page 1066

Control acceleration in world coordinate
system

Technical reference manual - RAPID Over-
view, section RAPID summary - Motion set-
tings

Instructions for setting motion parameters

Technical reference manual - RAPID Instructions, Functions and Data types 1665
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.49 motsetdata - Motion settings data

RobotWare - OS
Continued

3.50 num - Numeric values

Usage
Num is used for numeric values; e.g. counters.

Description
The value of the num data type may be

• an integer; e.g. -5,
• a decimal number; e.g. 3.45.

It may also be written exponentially; e.g.2E3 (= 2*10^3 = 2000), 2.5E-2 (= 0.025).
Integers between -8388607 and +8388608 are always stored as exact integers.
Decimal numbers are only approximate numbers and therefore should not be used
in is equal to or is not equal to comparisons. In the case of divisions and operations
using decimal numbers, the result will also be a decimal number; that is, not an
exact integer. For example:

a := 10;

b := 5;

IF a/b=2 THEN

...

As the result of a/b is not an integer, this condition is not necessarily satisfied.

Basic examples
The following examples illustrate the data type num:

Example 1
VAR num reg1;

...

reg1 := 3;

reg1 is assigned the value 3.

Example 2
a := 10 DIV 3;

b := 10 MOD 3;

Integer division where a is assigned an integer (=3) and b is assigned the remainder
(=1).

Predefined data
There is some predefined data in the system. For example the constant pi (π) is
defined.
CONST num pi := 3.1415926;

Limitations
Literal values between -8388607 to 8388608 assigned to a num variable are stored
as exact integers.

Continues on next page
1666 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.50 num - Numeric values
RobotWare - OS

If a literal that has been interpreted as a dnum is assigned/used as a num, it is
automatically converted to a num.

Related information

SeeFor information about

dnum - Double numeric values on page 1611Numeric values using datatype dnum

Technical reference manual - RAPID Over-
view, section Basic RAPID programming -
Expressions

Numeric expressions

Technical reference manual - RAPID Over-
view, section Basic RAPID programming -
Expressions

Operations using numeric values

Technical reference manual - RAPID Instructions, Functions and Data types 1667
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.50 num - Numeric values

RobotWare - OS
Continued

3.51 opcalc - Arithmetic Operator

Usage
opcalc is used to represent an arithmetic operator in arguments to RAPID functions
or instructions.

Description
An opcalc constant is intended to be used to define the type of arithmetic
operation.

Examples
The following example illustrates the data type opcalc:

Example 1
res := StrDigCalc(str1, OpAdd, str2);

res is assigned the result of the addition operation on the values represented by
the strings str1 and str2. OpAdd is of datatype opcalc.

Predefined data
The following symbolic constants of the data type opcalc are predefined and is
used to define the type of arithmetic operation used, for instance, in function
StrDigCalc.

CommentValueConstant

Addition (+)1OpAdd

Substraction (-)2OpSub

Multiplication (*)3OpMult

Division (/)4OpDiv

Modulus(%l)5OpMod

Characteristics
opcalc is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

Technical reference manual - RA]PID over-
view, section Basic characteristics - Data-
types

Data types in general, alias data types

StrDigCalc - Arithmetic operations with data-
type stringdig on page 1448

Arithmetic operations on digital strings.

1668 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.51 opcalc - Arithmetic Operator
RobotWare - OS

3.52 opnum - Comparison operator

Usage
opnum is used to represent an operator for comparisons in arguments to RAPID
functions or instructions.

Description
An opnum constant is intended to be used to define the type of comparison when
checking values in generic instructions.

Basic examples
The following example illustrates the data type opnum:

Example 1
TriggCheckIO checkgrip, 100, airok, EQ, 1, intno1;

Predefined data
The following symbolic constants of the data type opnum are predefined and is
used to define the type of comparison used, for instance, in instruction
TriggCheckIO.

CommentSymbolic constantValue

Less thanLT1

Less than or equal toLTEQ2

Equal toEQ3

Not equal toNOTEQ4

Greater than or equal toGTEQ5

Greater thanGT6

Characteristics
opnum is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section Basic characteristics - Data
types

Data types in general, alias data types

TriggCheckIO - Defines I/O check at a fixed
position on page 882

Define I/O check at a fixed position

Technical reference manual - RAPID Instructions, Functions and Data types 1669
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.52 opnum - Comparison operator

RobotWare - OS

3.53 orient - Orientation

Usage
orient is used for orientations (such as the orientation of a tool) and rotations
(such as the rotation of a coordinate system).

Description
The orientation is described in the form of a quaternion which consists of four
components: q1, q2, q3, and q4.

Components
The data type orient has the following components:

q1

Data type: num
Quaternion 1.

q2

Data type: num
Quaternion 2.

q3

Data type: num
Quaternion 3.

q4

Data type: num
Quaternion 4.

Basic examples
The following example illustrates the data type orient:

Example 1
VAR orient orient1;

.

orient1 := [1, 0, 0, 0];

The orient1 orientation is assigned the value q1=1, q2-q4=0; this corresponds
to no rotation.

Limitations
The orientation must be normalized; that is, the sum of the squares must equal 1:

Continues on next page
1670 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.53 orient - Orientation
RobotWare - OS

What is a Quaternion?
The orientation of a coordinate system (such as that of a tool) is described by a
rotational matrix that describes the direction of the axes of the coordinate system
in relation to a reference system (see the following figure).

xx0500002376

The rotated coordinate systems axes (x, y, z) are vectors which can be expressed
in the reference coordinate system as follows:
x = (x1, x2, x3)
y = (y1, y2, y3)
z = (z1, z2, z3)
This means that the x-component of the x-vector in the reference coordinate system
will be x1, the y-component will be x2, and so on.
These three vectors can be put together in a matrix (a rotational matrix) where
each of the vectors form one of the columns:

xx0500002381

A quaternion is just a more concise way to describe this rotational matrix; the
quaternions are calculated based on the elements of the rotational matrix:

q1 =

sign q2 = sign (y3-z2)
q2 =

sign q3 = sign (z1-x3)
q3 =

sign q4 = sign (x2-y1)
q4 =

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1671
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.53 orient - Orientation

RobotWare - OS
Continued

Example 1
A tool is orientated so that its Z’-axis points straight ahead (in the same direction
as the X-axis of the base coordinate system). The Y’-axis of the tool corresponds
to the Y-axis of the base coordinate system (see the following figure). How is the
orientation of the tool defined in the position data (robtarget)?
The orientation of the tool in a programmed position is normally related to the
coordinate system of the work object used. In this example, no work object is used
and the base coordinate system is equal to the world coordinate system. Thus,
the orientation is related to the base coordinate system.

xx0500002377

The axes will then be related as follows:
x’ = -z = (0, 0, -1)
y’ = y = (0, 1, 0)
z’ = x = (1, 0, 0)
Which corresponds to the following rotational matrix:

xx0500002388

The rotational matrix provides a corresponding quaternion:

q1 = = = 0.707

q2 = = 0

sign q3 = sign (1+1) = +
q3 = = = 0.707

q4 = = 0

Continues on next page
1672 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.53 orient - Orientation
RobotWare - OS
Continued

Example 2
The direction of the tool is rotated 30° about the X’- and Z’-axes in relation to the
wrist coordinate system (see the following figure). How is the orientation of the
tool defined in the tool data?

xx0500002378

The axes will then be related as follows:
x’ = (cos30°, 0, -sin30°)
y’ = (0, 1, 0)
z’ = (sin30°, 0, cos30°)
Which corresponds to the following rotational matrix:

xx0500002393

The rotational matrix provides a corresponding quaternion:

q1 = = 0.965926

q2 = = 0

sign q3 = sign (sin30°+sin30°) = +
q3 = = 0.258819

q4 = = 0

Structure
< dataobject of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1673
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.53 orient - Orientation

RobotWare - OS
Continued

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section Basic Characteristics - Expres-
sions

Operations on orientations

1674 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.53 orient - Orientation
RobotWare - OS
Continued

3.54 paridnum - Type of parameter identification

Usage
paridnum is used to represent an integer with a symbolic constant.

Description
A paridnum constant is intended to be used for parameter identification such as
load identification of tool or payload or external manipulator load.

Basic examples
The following example illustrates the data type paridnum:

Example 1
TEST ParIdRobValid (TOOL_LOAD_ID)

CASE ROB_LOAD_VAL:

! Possible to do load identification of tool in actual robot type

...

CASE ROB_LM1_LOAD_VAL:

! Only possible to do load identification of tool with

! IRB 6400FHD if actual load < 200 kg

...

CASE ROB_NOT_LOAD_VAL:

! Not possible to do load identification of tool in actual robot
type

...

ENDTEST

Use of predefined constant TOOL_LOAD_ID of data type paridnum.

Predefined data
The following symbolic constants of the data type paridnum are predefined and
is used as arguments in the following instructions, ParIdRobValid,
ParIdPosValid,LoadId, and ManLoadIdProc.

CommentSymbolic constantValue

Identify tool loadTOOL_LOAD_ID1

Identify payload (Ref. instruction GripLoad)PAY_LOAD_ID2

Identify External Manipulator IRBP K loadIRBP_K3

Identify External Manipulator IRBP L loadIRBP_L4

Identify External Manipulator IRBP C loadIRBP_C4

Identify External Manipulator IRBP C_INDEX loadIRBP_C_INDEX4

Identify External Manipulator IRBP T loadIRBP_T4

Identify External Manipulator IRBP R loadIRBP_R5

Identify External Manipulator IRBP A loadIRBP_A6

Identify External Manipulator IRBP B loadIRBP_B6

Identify External Manipulator IRBP D loadIRBP_D6

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1675
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.54 paridnum - Type of parameter identification

RobotWare - OS

Note

Only TOOL_LOAD_ID and PAY_LOAD_ID is used in user defined RAPID Programs
for load identification of the tool respectively the pay load for the robot.

Characteristics
paridnum is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

Operating manual - IRC5 with FlexPendant,
section Programming and testing - Service
routines- LoadIdentify, load identification and
service routines

Predefined program Load Identify

ParIdRobValid - Valid robot type for parameter
identification on page 1364

Valid robot type

ParIdPosValid - Valid robot position for para-
meter identification on page 1361

Valid robot position

LoadId - Load identification of tool or payload
on page 366

Load identification with complete example

ManLoadIdProc - Load identification of IRBP
manipulators on page 373

Load identification of external manipulators

1676 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.54 paridnum - Type of parameter identification
RobotWare - OS
Continued

3.55 paridvalidnum - Result of ParIdRobValid

Usage
paridvalidnum is used to represent an integer with a symbolic constant.

Description
A paridvalidnum constant is intended to be used for parameter identification,
such as load identification of tool or payload, when checking the return value from
function ParIdRobValid.

Basic examples
The following examples illustrate the data type paridvalidnum:

TEST ParIdRobValid (PAY_LOAD_ID)

CASE ROB_LOAD_VAL:

! Possible to do load identification of payload in actual robot

! type

...

CASE ROB_LM1_LOAD_VAL:

! Only possible to do load identification of payload

! with IRB 6400FHD if actual load < 200 kg

...

CASE ROB_NOT_LOAD_VAL:

! Not possible to do load identification of payload

! in actual robot type

...

ENDTEST

Use of predefined constants ROB_LOAD_VAL, ROB_LM1_LOAD_VAL and
ROB_NOT_LOAD_VAL of data type paridvalidnum.

Predefined data
The following symbolic constants of the data type paridvalidnum are predefined
and is used for checking the return value from function ParIdRobValid.

CommentSymbolic constantValue

Valid robot type for the current parameter identi-
fication

ROB_LOAD_VAL10

Not valid robot type for the current parameter
identification

ROB_NOT_LOAD_VAL11

Valid robot type IRB 6400FHD for the current
parameter identification if actual load < 200kg

ROB_LM1_LOAD_VAL12

Characteristics
paridvalidnum is an alias data type for num and inherits its characteristics.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1677
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.55 paridvalidnum - Result of ParIdRobValid

RobotWare - OS

Related information

SeeFor information about

Operating manual - IRC5 with FlexPendant, section
Programming and testing - Service routines- LoadIdenti-
fy, load identification and service routines

Predefined program Load Identify

ParIdRobValid - Valid robot type for parameter identi-
fication on page 1364

Valid robot type

ParIdPosValid - Valid robot position for parameter
identification on page 1361

Valid robot position

LoadId - Load identification of tool or payload on
page 366

Load identification with complete
example

1678 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.55 paridvalidnum - Result of ParIdRobValid
RobotWare - OS
Continued

3.56 pathrecid - Path recorder identifier

Usage
pathrecid is used to identify a breakpoint for the path recorder.

Description
The path recorder is a system function for recording the robots executed path.
Data of the type pathrecid can be linked to a specific path location by means of
the instruction PathRecStart. The user can then order the recorder to perform
a movement back to the path identifier by using the instruction PathRecMoveBwd.

Basic examples
The following example illustrates the data type pathrecid:

Example 1
VAR pathrecid start_id;

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

PathRecStart start_id;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1

MoveL p3, vmax, z50, tool1;

IF(PathRecValidBwd (\ID := start_id)) THEN

StorePath;

PathRecMoveBwd \ID:=start_id;

...

ENDIF

pathrecid_Ex

The preceding example will start the path recorder and the starting point will be
tagged with the path identifier start_id. Thereafter, the robot will move forward
with traditional move instructions and then move back to the start position again
using the recorded path. To be able to run PathRecorder move instructions, the
path level has to be changed with StorePath.

Characteristics
pathrecid is an non-value data type.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1679
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.56 pathrecid - Path recorder identifier

Path Recovery

Related information

SeeFor information about

PathRecStart - Start the path recorder on
page 523

Start - stop the path recorder

PathRecStop - Stop the path recorder on
page 526

PathRecValidBwd - Is there a valid backward
path recorded on page 1369

Check for valid recorded path

PathRecValidFwd - Is there a valid forward path
recorded on page 1372

PathRecMoveBwd - Move path recorder back-
wards on page 514

Play the path recorder backward

PathRecMoveFwd - Move path recorder for-
ward on page 520

Play the path recorder forward

Technical referencemanual - RAPIDOverview,
section Basic characteristics - Data types

Characteristics of non-value data types

1680 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.56 pathrecid - Path recorder identifier
Path Recovery
Continued

3.57 pnpdata - Configure pick and place paths

Usage
pnpdata is used to configure pick and place paths.

xx1700001194

Description
Data of the type pnpdata describes the heights of the vertical movements as a
percentage of the total path height, and the zones of the generated corner paths.

Components
The data type has the following components:

smooth_start

Data type: num
Percentage of the PnPHeight to describe the height of the vertical motion above
the start point.
A lower value can significantly speed up the cycle time.
The default value is 100.

smooth_end

Data type: num
Percentage of the PnPHeight to describe the height of the vertical motion above
the end point.
A lower value can significantly speed up the cycle time.
The default value is 100.

z_above_start

Data type: zonedata
Zone data for the movement. z_above_start describes the size of the generated
corner path at the end of the vertical motion above the start point.
The default value is z100.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1681
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.57 pnpdata - Configure pick and place paths

SCARA robots

z_above_end

Data type: zonedata
Zone data for the movement. z_above_end describes the size of the generated
corner path at the beginning of the vertical motion above the end point.
The default value is z100.

Basic examples
See MovePnP - Moves the robot along a pick and place path on page 481.

Structure
< dataobject of pnpdata >

< smooth_start of num >

< smooth_end of num >

< z_above_start of zonedata >

< z_above_end of zonedata >

Related information

SeeFor information about

MovePnP - Moves the robot along a pick and
place path on page 481

Moving the robot along a pick and place
path

Technical reference manual - RAPID Overview

1682 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.57 pnpdata - Configure pick and place paths
SCARA robots
Continued

3.58 pos - Positions (only X, Y and Z)

Usage
pos is used for positions (only X, Y, and Z).
The robtarget data type is used for the robot’s position including the orientation
of the tool and the configuration of the axes.

Description
Data of the type pos describes the coordinates of a position: X, Y, and Z.

Components
The data type pos has the following components:

x

Data type: num
The X-value of the position.

y

Data type: num
The Y-value of the position.

z

Data type: num
The Z-value of the position.

Basic examples
The following examples illustrate the data type pos:

Example 1
VAR pos pos1;

...

pos1 := [500, 0, 940];

The pos1 position is assigned the value: X=500 mm, Y=0 mm, Z=940 mm.

Example 2
pos1.x := pos1.x + 50;

The pos1 position is shifted 50 mm in the X-direction.

Structure
< dataobject of pos >

< x of num >

< y of num >

< z of num >

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1683
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.58 pos - Positions (only X, Y and Z)

RobotWare - OS

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section Basic Characteristics - Expres-
sions

Operations on positions

robtarget - Position data on page 1702Robot position including orientation

1684 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.58 pos - Positions (only X, Y and Z)
RobotWare - OS
Continued

3.59 pose - Coordinate transformations

Usage
pose is used to change from one coordinate system to another.

Description
Data of the type pose describes how a coordinate system is displaced and rotated
around another coordinate system. The data can, for example, describe how the
tool coordinate system is located and oriented in relation to the wrist coordinate
system.

Components
The data type has the following components:

trans
translation
Data type: pos
The displacement in position (x, y, and z) of the coordinate system.

rot

rotation
Data type: orient
The rotation of the coordinate system.

Basic examples
The following examples illustrate the data type pose:

VAR pose frame1;

...

frame1.trans := [50, 0, 40];

frame1.rot := [1, 0, 0, 0];

The frame1 coordinate transformation is assigned a value that corresponds to a
displacement in position, where X=50mm, Y=0mm, Z=40mm; there is, however,
no rotation.

Structure
< dataobject of pose >

< trans of pos >

< rot of orient >

Related information

SeeFor information about

orient - Orientation on page 1670What is a Quaternion?

Technical reference manual - RAPID Instructions, Functions and Data types 1685
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.59 pose - Coordinate transformations

RobotWare - OS

3.60 processtimes - process times

Usage
processtimes is used to define the duration times for all status supervision
phases in CAP, except phase MAIN, which is defined by the robot movement (see
section Supervision in Application manual - Continuous Application Platform).
processtimes is a component of capdata and defines the timeout times for the
following status supervision phases in CAP:

• PRE_START
• POST1
• POST2

The specified timeout time has to be larger than zero, if supervision should be
used during the corresponding status supervision phase in CAP (see section
Supervision and process phases in Application manual - Continuous Application
Platform).

Components

pre
Data type: num
Defines the duration of the phase PRE_START in seconds. During that time all
conditions defined for that phase have to be fulfilled.

post1
Data type: num
Defines the duration of the phase POST1 in seconds. During that time all conditions
defined for that phase have to be fulfilled.

post2
Data type: num
Defines the duration of the phase POST2 in seconds. During that time all conditions
defined for that phase have to be fulfilled.

Syntax
< data object of processtimes >

< pre of num >

< post1 of num >

< post2 of num >

Related information

Described in:

capdata - CAP data on page 1576capdata data type

Application manual - Continuous Application
Platform

Continuous Application Platform

1686 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.60 processtimes - process times
Continuous Application Platform (CAP)

3.61 progdisp - Program displacement

Usage
progdisp is used to store the current program displacement of the robot and the
external axes.
This data type does not normally have to be used since the data is set using the
instructions PDispSet, PDispOn, PDispOff, EOffsSet, EOffsOn, and EOffsOff.
It is only used to temporarily store the current value for later use.

Description
The current values for program displacement can be accessed using the system
variable C_PROGDISP.
For more information, see the instructions PDispSet, PDispOn, EOffsSet, and
EOffsOn.

Components

pdisp

program displacement
Data type: pose
The program displacement for the robot, expressed using a translation and an
orientation. The translation is expressed in mm.

eoffs

external offset
Data type: extjoint
The offset for each of the external axes. If the axis is linear, the value is expressed
in mm; if it is rotating, the value is expressed in degrees.

Basic examples
The following example illustrates the data type progdisp:

Example 1
VAR progdisp progdisp1;

...

SearchL sen1, psearch, p10, v100, tool1;

PDispOn \ExeP:=psearch, *, tool1;

EOffsOn \ExeP:=psearch, *;

...

progdisp1:=C_PROGDISP;

PDispOff;

EOffsOff;

...

PDispSet progdisp1.pdisp;

EOffsSet progdisp1.eoffs;

First, a program displacement is activated from a searched position. Then, the
current program displacement values are temporararily stored in the variable

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1687
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.61 progdisp - Program displacement

RobotWare - OS

progdisp1 and the program displacement is deactivated. Later on, re-activation
is done using the instructions PDispSet and EOffsSet.

Predefined data
The system variableC_PROGDISP describes the current program displacement of
the robot and external axes, and can always be accessed from the program. On
the other hand, it can only be changed using a number of instructions, not by
assignment.
The following default values for program displacement are set

• when using the restart mode Reset RAPID
• when loading a new program or a new module
• when starting program execution from the beginning
• when moving the program pointer to main
• when moving the program pointer to a routine
• when moving the program pointer in such a way that the execution order is

lost.
VAR progdisp C_PROGDISP :=

[[[0, 0, 0], [1, 0, 0, 0]],-> posedata

[0, 0, 0, 0, 0, 0]];-> extjointdata

Structure
< dataobject of progdisp >

< pdisp of pose >

< trans of pos >

< x of num >

< y of num >

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< eoffs of extjoint >

< eax_a of num >

< eax_b of num >

< eax_c of num >

< eax_d of num >

< eax_e of num >

< eax_f of num >

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section RAPID summary - Motion set-
tings

Instructions for defining programdisplacement

Technical reference manual - RAPID Over-
view, section Motion and I/O principles -
Coordinate systems

Coordinate systems

1688 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.61 progdisp - Program displacement
RobotWare - OS
Continued

3.62 rawbytes - Raw data

Usage
rawbytes is used as a general data container. It can be used for communication
with I/O devices.

Description
rawbytes data can be filled with any type of data - num, byte, string - by means
of support instructions/functions. In any variable of rawbytes, the system also
stores the current length of valid bytes.

Basic examples
The following example illustrates the data type rawbytes:

Example 1
VAR rawbytes raw_data;

VAR num integer := 8;

VAR num float := 13.4;

ClearRawBytes raw_data;

PackRawBytes integer, raw_data, 1 \IntX := INT;

PackRawBytes float, raw_data, (RawBytesLen(raw_data)+1) \Float4;

In this example the variable raw_data of type rawbytes is first cleared, that is,
all bytes set to 0 (same as default at declaration). Then in the first 2 bytes the value
of integer is placed and in the next 4 bytes the value of float.

Limitations
A rawbytes variable may contain 0 to 1024 bytes.

Structure
rawbytes is a non-value data type.
At declaration of rawbytes variable, all bytes in rawbytes are set to 0 and the
current length of valid bytes in the variable is set to 0.

Related information

SeeFor information about

RawBytesLen - Get the length of rawbytes
data on page 1390

Get the length of rawbytes data

ClearRawBytes - Clear the contents of raw-
bytes data on page 133

Clear the contents of rawbytes data

CopyRawBytes - Copy the contents of raw-
bytes data on page 157

Copy the contents of rawbytes data

PackDNHeader - Pack DeviceNet Header into
rawbytes data on page 503

Pack DeviceNet header into rawbytes data

PackRawBytes - Pack data into rawbytes data
on page 506

Pack data into rawbytes data

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1689
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.62 rawbytes - Raw data

RobotWare - OS

SeeFor information about

WriteRawBytes - Write rawbytes data on
page 1082

Write rawbytes data

ReadRawBytes - Read rawbytes data on
page 586

Read rawbytes data

UnpackRawBytes - Unpack data from raw-
bytes data on page 995

Unpack data from rawbytes data

Applicationmanual - Controller software IRC5File and serial channel handling

1690 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.62 rawbytes - Raw data
RobotWare - OS
Continued

3.63 restartblkdata - blockdata for restart

Usage
restartblkdata is used to define the behavior of a CAP process at restart.
restartblkdata is a component of capdata and defines the following for a CAP
process at restart, if:

• The robot should execute/block weaving stationary during process restart
(weave_start).

• Robot movement restart should be delayed or not relative process restart
(motion_delay).

• PRE phase and PRE_START phase should be executed/blocked
(pre_phase).

• A velocity different from main velocity should be used or not during start of
the process (startspeed_phase).

• START_POST1 phase and POST1 phase should be executed/blocked
(post1_phase).

• START_POST2 phase and POST2 phase should be executed/blocked
(post2_phase).

Components

weave_start
Data type: bool

DescriptionValue

Stationary weaving at restart until the process has startedFALSE

No stationary weaving at restart until the process has startedTRUE

motion_delay
Data type: bool

DescriptionValue

Delay of robot movement at restart after the process has startedFALSE

No delay of robot movement at restart after the process has startedTRUE

pre_phase
Data type: bool

DescriptionValue

Execute PRE phase and PRE_START phase at restartFALSE

Do NOT execute PRE phase and PRE_START phase at restartTRUE

startspeed_phase
Data type: bool

DescriptionValue

Move the robot with start speed in the beginning of a restartFALSE

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1691
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.63 restartblkdata - blockdata for restart
Continuous Application Platform (CAP)

DescriptionValue

DoNOTmove the robot with start speed in the beginning of a restart,
use main speed directly

TRUE

post1_phase
Data type: bool

DescriptionValue

Execute START_POST1 phase and POST1 phase at restartFALSE

DoNOT execute START_POST1 phase and POST1 phase at restartTRUE

post2_phase
Data type: bool

DescriptionValue

Execute START_POST2 phase and POST2 phase at restartFALSE

DoNOT execute START_POST2 phase and POST2 phase at restartTRUE

Syntax
< data object of restartblkdata >

< weave_start of bool >

< motion_delay of bool >

< pre_phase of bool >

< startspeed_phase of bool >

< post1_phase of bool >

< post2_phase of bool >

Related information

Described in:

capdata - CAP data on page 1576capdata data type

Application manual - Continuous Application
Platform

Continuous Application Platform

1692 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.63 restartblkdata - blockdata for restart
Continuous Application Platform (CAP)
Continued

3.64 restartdata - Restart data for trigg signals

Usage
restartdata mirrors the pre- and postvalues of specified I/O signals (process
signals) at the stop sequence of the robot movements. The I/O signals to supervise
are specified in the instruction TriggStopProc.
TriggStopProc and restartdata are intended to be used for restart after
program stop (STOP) or emergency stop (QSTOP) of own process instructions
defined in RAPID (NOSTEPIN routines).

Definition
The table shows the definition of the time point for reading the pre- and postvalues
for the I/O signals.

Read time for I/O signal postvalueRead time for I/O signal pre-
value

Type of stop

About 400 ms after the pretimeWhen all robot axes are standing
still

STOP on path

About 400 ms after the pretimeAs soon as possibleQSTOP off path

Description
restartdata mirrors the following data after program execution is stopped:

• valid restart data
• robot stopped on path or not
• prevalue of the I/O signals
• postvalue of the I/O signals
• number of flanks between pretime and posttime of the shadow signal for the

ongoing process

Components

restartstop

valid restartdata after stop
Data type: bool
TRUE = Mirror last STOP or QSTOP
FALSE = Invalid restart data. All I/O signals values are set to -1.

stoponpath

stop on path
Data type: bool
TRUE = The robot is stopped on the path (STOP)
FALSE = The robot is stopped but not on the path (QSTOP)

predo1val

pre do1 value
Data type: dionum

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1693
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.64 restartdata - Restart data for trigg signals

RobotWare - OS

The prevalue of the digital signal “do1” specified in the argument DO1 in instruction
TriggStopProc.

postdo1val

post do1 value
Data type: dionum
The postvalue of the digital signal “do1” specified in the argument DO1 in instruction
TriggStopProc.

prego1val

pre go1 value
Data type: num
The prevalue of the digital group signal“ go1” specified in the argument GO1 in
instruction TriggStopProc.

postgo1val

post go1 value
Data type: num
The postvalue of the digital group signal“ go1” specified in the argument GO1 in
instruction TriggStopProc.

prego2val

pre go2 value
Data type: num
The prevalue of the digital group signal“ go2” specified in the argument GO2 in
instruction TriggStopProc.

postgo2val

post go2 value
Data type: num
The postvalue of the digital group signal“ go2” specified in the argument GO2 in
instruction TriggStopProc.

prego3val

pre go3 value
Data type: num
The prevalue of the digital group signal“ go3” specified in the argument GO3 in
instruction TriggStopProc.

postgo3val

post go3 value
Data type: num
The postvalue of the digital group signal“ go3” specified in the argument GO3 in
instruction TriggStopProc.

prego4val

pre go4 value

Continues on next page
1694 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.64 restartdata - Restart data for trigg signals
RobotWare - OS
Continued

Data type: num
The prevalue of the digital group signal“ go4” specified in the argument GO4 in
instruction TriggStopProc.

postgo4val

post go4 value
Data type: num
The postvalue of the digital group signal“ go4” specified in the argument GO4 in
instruction TriggStopProc.

preshadowval

pre shadow value
Data type: dionum
The prevalue of the digital signal “shadow” specified in the argument ShadowDO
in instruction TriggStopProc.

shadowflanks

number of shadow flanks
Data type: num
The number of value transitions (flanks) of the digital signal “shadow” between the
pretime and the posttime. The signal “shadow” is specified in the argument
ShadowDO in instruction TriggStopProc.

postshadowval

post shadow value
Data type: dionum
The postvalue of the digital signal “shadow” specified in the argument ShadowDO
in instruction TriggStopProc.

Structure
< dataobject of restartdata >

< restartstop of bool >

< stoponpath of bool >

< predo1val of dionum >

< postdo1val of dionum >

< prego1val of num >

< postgo1val of num >

< prego2val of num >

< postgo2val of num >

< prego3val of num >

< postgo3val of num >

< prego4val of num >

< postgo4val of num >

< preshadowval of dionum >

< shadowflanks of dionum >

< postshadowval of dionum >

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1695
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.64 restartdata - Restart data for trigg signals

RobotWare - OS
Continued

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Predefined process instructions

TriggC - Circular robot movement with events on
page 873

TriggStopProc - Generate restart data for trigg
signals at stop on page 957

Setup mirror of restart data

StepBwdPath - Move backwards one step on path
on page 794

Move backwards on path

Product specification - Controller software IRC5Advanced RAPID

1696 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.64 restartdata - Restart data for trigg signals
RobotWare - OS
Continued

3.65 rmqheader - RAPID Message Queue Message header

Usage
rmqheader (RAPIDMessage Queue Header) is used for reading the data structure
of the data in a message of type rmqmessage.

Description
The header part of a non-value data type rmqmessage converted to the value data
type rmqheader.

Components

datatype

Data type: string
The name of the data type used, e.g num, string or some other value data type.

ndim

Number of Dimensions
Data type: num
Number of array dimensions.

dim1

Size of first dimension
Data type: num
The size of the first dimension. 0 if not used.

dim2

Size of second dimension
Data type: num
The size of the second dimension. 0 if not used.

dim3

Size of third dimension
Data type: num
The size of the third dimension. 0 if not used.

Examples
Basic examples of the data type rmqheader are illustrated below.

Example 1
VAR rmqmessage message;

VAR rmqheader header;

...

RMQGetMessage message;

RMQGetMsgHeader message \Header:=header;

Copy and convert the rmqheader information from an rmqmessage message.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1697
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.65 rmqheader - RAPID Message Queue Message header

FlexPendant Interface, PC Interface, or Multitasking

Structure
<dataobject of rmqheader>

<datatype of string>

<ndim of num>

<dim1 of num>

<dim2 of num>

<dim3 of num>

Related information

SeeFor information about

Application manual - Controller software IRC5,
section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

RMQGetMsgHeader - Get header information
from an RMQ message on page 626

Extract the header data from an
rmqmessage

rmqmessage - RAPID Message Queue mes-
sage on page 1699

RMQ Message

1698 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.65 rmqheader - RAPID Message Queue Message header
FlexPendant Interface, PC Interface, or Multitasking
Continued

3.66 rmqmessage - RAPID Message Queue message

Usage
rmqmessage (RAPID Message Queue Message) is used for temporary storage of
communication data.

Description
The data type rmqmessage is the message used to store data in while
communicating between different RAPID tasks or Robot Application Builder clients
with RMQ functionality. It contains information about the type of data sent. the
dimensions of the data, the identity of the sender and the actual data.
An rmqmessage is a big data type (about 3000 bytes big), and it is recommended
that the variable is reused to save RAPID memory.

Basic examples
The following example illustrates the data type rmqmessage:

Example 1
VAR rmqmessage rmqmessage1;

VAR string myrecdata;

...

RMQGetMsgData rmqmessage1, myrecdata;

The variable rmqmessage1 is defined and can be used in an RMQ (RAPIDMessage
Queue) command. In this example, the data part within the rmqmessage1 is copied
to the variable myrecdata.

Characteristics
rmqmessage is a non-value data type and cannot be used in value-oriented
operations.

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

rmqheader - RAPID Message Queue Mes-
sage header on page 1697

RMQ Header

RMQGetMsgHeader - Get header information
from an RMQ message on page 626

Extract the header data from an rmqmessage

IRMQMessage - Orders RMQ interrupts for
a data type on page 322

Order and enable interrupts for a specific
data type

RMQGetMessage - Get an RMQmessage on
page 620

Get the first message from a RAPIDMessage
Queue.

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636

Send data to the queue of a RAPID task or
Robot Application Builder client, and wait for
an answer from the client.

RMQGetMsgData - Get the data part from an
RMQ message on page 623

Extract the data from an rmqmessage

Technical reference manual - RAPID Instructions, Functions and Data types 1699
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.66 rmqmessage - RAPID Message Queue message
FlexPendant Interface, PC Interface, or Multitasking

3.67 rmqslot - Identity number of an RMQ client

Usage
rmqslot (RAPIDMessageQueue Slot) is used when communicating with an RMQ
or a Robot Application Builder client.

Description
The rmqslot is an identity number of a RAPID Message Queue configured for a
RAPID task or the identity number of a Robot Application Builder client.

Basic examples
The following example illustrates the data type rmqslot:

Example 1
VAR rmqslot rmqslot1;

RMQFindSlot rmqslot1, "RMQ_T_ROB1";

...

The variable rmqslot1 is defined and can be used in the instruction RMQFindSlot
to get the identity number of the RAPIDMessage Queue "RMQ_T_ROB1" configured
for the RAPID task "T_ROB1".

Characteristics
rmqslot is a non-value data type and cannot be used in value-oriented operations.

Related information

SeeFor information about

Application manual - Controller software
IRC5, section RAPID Message Queue.

Description of the RAPID Message Queue
functionality

RMQFindSlot - Find a slot identity from the
slot name on page 618

Find the identity number of a RAPIDMessage
Queue task or Robot Application Builder cli-
ent.

RMQSendMessage - Send an RMQ data
message on page 632

Send data to the queue of a RAPID task or
Robot Application Builder client.

RMQSendWait - Send anRMQdatamessage
and wait for a response on page 636

Send data to a client, and wait for an answer
from the client.

RMQGetSlotName - Get the name of an RMQ
client on page 1413

Get the slot name from a specified slot iden-
tity

1700 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.67 rmqslot - Identity number of an RMQ client
FlexPendant Interface, PC Interface, or Multitasking

3.68 robjoint - Joint position of robot axes

Usage
robjoint is used to define the position in degrees of the robot axes.

Description
Data of the type robjoint is used to store axis positions in degrees of the robot
axis 1 to 6. Axis position is defined as the rotation in degrees for the respective
axis (arm) in a positive or negative direction from the axis calibration position.

Components

rax_1

robot axis 1
Data type: num
The position of robot axis 1 in degrees from the calibration position.

...

rax_6

robot axis 6
Data type: num
The position of robot axis 6 in degrees from the calibration position.

Structure
< dataobject of robjoint >

< rax_1 of num >

< rax_2 of num >

< rax_3 of num >

< rax_4 of num >

< rax_5 of num >

< rax_6 of num >

Related information

SeeFor information about

jointtarget - Joint position data on page 1647Joint position data

MoveAbsJ - Moves the robot to an absolute joint posi-
tion on page 395

Move to joint position

Technical reference manual - RAPID Instructions, Functions and Data types 1701
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.68 robjoint - Joint position of robot axes

RobotWare - OS

3.69 robtarget - Position data

Usage
robtarget (robot target) is used to define the position of the robot and additional
axes.

Description
Position data is used to define the position in the move instructions to which the
robot and additional axes are to move.
As the robot is able to achieve the same position in several different ways, the axis
configuration is also specified. This defines the axis values, if these are in any way
ambiguous, for example:

• if the robot is in a forward or backward position,
• if axis 4 points downwards or upwards,
• if axis 6 has a negative or positive revolution.

WARNING

The position is defined based on the coordinate system of the work object,
including any program displacement. If the position is programmed with some
other work object than the one used in the instruction, the robot will not move in
the expected way. Make sure that you use the same work object as the one used
when programming move instructions. Incorrect use can injure someone or
damage the robot or other equipment.

Components

trans

translation
Data type: pos
The position (x, y, and z) of the tool center point expressed in mm.
The position is specified in relation to the current object coordinate system,
including program displacement. If no work object is specified then this is the world
coordinate system.

rot

rotation
Data type: orient
The orientation of the tool, expressed in the form of a quaternion (q1, q2, q3, and
q4).
The orientation is specified in relation to the current object coordinate system
including program displacement. If no work object is specified then this is the world
coordinate system.

robconf

robot configuration

Continues on next page
1702 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.69 robtarget - Position data
RobotWare - OS

Data type: confdata
The axis configuration of the robot (cf1, cf4, cf6, and cfx). This is defined in the
form of the current quarter revolution of axis 1, axis 4, and axis 6. The first positive
quarter revolution 0 to 90° is defined as 0. The meaning of the component cfx is
dependent on robot type.
For more information, see data type confdata.

extax

external axes
Data type: extjoint
The position of the additional axes.
The position is defined as follows for each individual axis (eax_a,
eax_b...eax_f):

• For rotating axes, the position is defined as the rotation in degrees from the
calibration position.

• For linear axes, the position is defined as the distance in mm from the
calibration position.

Additional axes eax_a ... are logical axes. How the logical axis number and the
physical axis number are related to each other is defined in the system parameters.
The value 9E9 is defined for axes which are not connected. If the axes defined in
the position data differ from the axes that are actually connected at program
execution then the following applies:

• If the position is not defined in the position data (value 9E9) then the value
will be ignored if the axis is connected and not activated. But if the axis is
activated then it will result in an error.

• If the position is defined in the position data although the axis is not connected
then the value is ignored.

No movement is performed but no error is generated for an axis with valid position
data if the axis is not activated.
If an additional axis is running in independent mode and a new movement shall
be performed by the robot and its additional axes, then the position data for the
additional axes in independentmodemust not be 9E9. The datamust be an arbitrary
value that is not used by the system.

Basic examples
The following examples illustrate the data type robtarget:

Example 1
CONST robtarget p15 := [[600, 500, 225.3], [1, 0, 0, 0], [1, 1,

0, 0], [11, 12.3, 9E9, 9E9, 9E9, 9E9]];

A position p15 is defined as follows:
• The position of the robot: x = 600, y = 500 and z = 225.3 mm in the object

coordinate system.
• The orientation of the tool in the same direction as the object coordinate

system.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1703
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.69 robtarget - Position data

RobotWare - OS
Continued

• The axis configuration of the robot: axes 1 and 4 in position 90-180°, axis 6
in position 0-90°.

• The position of the additonal logical axes, a and b, expressed in degrees or
mm (depending on the type of axis). Axes c to f are undefined.

Example 2
VAR robtarget p20;

...

p20 := CRobT(\Tool:=tool\wobj:=wobjØ);

p20 := Offs(p20,10,0,0);

The position p20 is set to the same position as the current position of the robot
by calling the function CRobT. The position is thenmoved 10mm in the x-direction.

Structure
< dataobject of robtarget >

< trans of pos >

< x of num >

< y of num >

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< robconf of confdata >

< cf1 of num >

< cf4 of num >

< cf6 of num >

< cfx of num >

< extax of extjoint >

< eax_a of num >

< eax_b of num >

< eax_c of num >

< eax_d of num >

< eax_e of num >

< eax_f of num >

Related information

SeeFor information about

Technical reference manual - RAPID Overview, section
RAPID Summary - Motion

Move instructions

Technical reference manual - RAPID Overview, section
Motion and I/O Principles - Coordinate Systems

Coordinate systems

Technical reference manual - RAPID Overview, section
Motion and I/O Principles - Robot configuration

Handling configuration data

Application manual - Additional axes and stand alone
controller

Configuration of additional axes

orient - Orientation on page 1670What is a quaternion?

1704 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.69 robtarget - Position data
RobotWare - OS
Continued

3.70 sensor - External device descriptor

Usage
sensor is a descriptor to the external device to connect to.

Description
The descriptor for a device on the RAPID level is encapsulated in the record data
type sensor. It holds information about the sensor device such as id, error code
and sensor communication state.

Components

id

Data type: num
The internal identifier of the device, which will be set on the first operation with the
device from RAPID level. (Not implemented yet).

error

Data type: num
The error parameter is set when parameter state is set to STATE_ERROR. When
state goes from STATE_ERROR to STATE_CONNECTED parameter error is set to
0.

ErrorError number

No error.0

Communication interface initialization failed.112600

Communication interface error.112602

state

Data type: sensorstate
Reflects the actual communication state of the device.

Examples
Example of the data type sensor is shown below.

Example 1
PERS sensor AnyDevice;

PERS robdata DataOut := [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

PERS sensdata DataIn :=
["No",[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

VAR num SampleRate:=64;

...

! Setup Interface Procedure

PROC RRI_Open()

SiConnect AnyDevice;

! Send and receive data cyclic with 64 ms rate

SiGetCyclic AnyDevice, DataIn, SampleRate;

SiSetCyclic AnyDevice, DataOut, SampleRate;

ENDPROC

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1705
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.70 sensor - External device descriptor

Robor Reference Interface

When calling routine RRI_Open, first a connection to the device AnyDevice is
opened. Then, cyclic transmission is started at rate SampleRate.

Structure
<dataobject of sensor>

<id of num>

<error of num>

<state of sensorstate>

Related information

SeeFor information about

SiConnect - Sensor Interface Connect on
page 712.

Establish a connection to an external system.

SiClose - Sensor Interface Close on page715.Close connection to an external system.

SiSetCyclic - Sensor Interface Set Cyclic on
page 722.

Register data for cyclic transmission.

SiGetCyclic - Sensor Interface Get Cyclic on
page 717

Subscribe on cyclic data transmission.

sensorstate - Communication state of the
device on page 1707.

Communication state of a device.

Applicationmanual - Controller software IRC5Robot Reference Interface

1706 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.70 sensor - External device descriptor
Robor Reference Interface
Continued

3.71 sensorstate - Communication state of the device

Usage
sensorstate is used to represent an actual communication state of a device.

Description
A sensorstate constant is used to reflect the actual communication state of a
device. It can be used from RAPID to evaluate the state of the connection with the
sensor.

Predefined data
The following symbolic constants of the data type sensorstate are predefined
and can be used to evaluate what communication state the device is in.

ValueConstant

-1STATE_ERROR

0STATE_UNDEFINED

1STATE_CONNECTED

2STATE_OPERATING

3STATE_CLOSED

Characteristics
sensorstate is an alias data type for num and consequently inherits its
characteristics.

Related information

SeeFor information about

SiConnect - Sensor Interface Connect on
page 712.

Establish a connection to an external system.

SiClose - Sensor Interface Close on page715.Close connection to an external system.

SiSetCyclic - Sensor Interface Set Cyclic on
page 722.

Register data for cyclic transmission.

SiGetCyclic - Sensor Interface Get Cyclic on
page 717

Subscribe on cyclic data transmission.

sensor - External device descriptor on
page 1705.

Descriptor to the external device.

Applicationmanual - Controller software IRC5Robot Reference Interface

Technical reference manual - RAPID Instructions, Functions and Data types 1707
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.71 sensorstate - Communication state of the device

Robor Reference Interface

3.72 sensorvardata - Multiple variable setup data for sensor interface

Usage
sensorvardata is used to setup the needed information for the different data
points that is handled by the ReadVarArr and WriteVarArr commands.

Components
The data type has the following components:

varnumber

Data type: num
Defines the variable number to be read/written.

sensordatatype

Data type: num
The datatype the value is represented by. The value will be converted to the given
type before it is sent or after it is received over the sensor communication link.
Valid values are:

DescriptionValue

INT160

UINT161

DOUBLE2

When using a sensor from ServoRobot® over EtherNet link the sensordatatype
2 (double) will always be used. For all other types of sensors and communication
senordatatype 0 or 1 must be used

raw

Data type: bool
If this flag is true no internal modification of the data is done before or after it is
sent over the protocol to/from the device. The value sent/received will have the
same bit representation as it had on the communication link.
raw is not available for sensordatatype 2.

scale

Data type: num
Set the scale factor used for scaling data values. Valid values are 1, 10 or 100. A
value sent to a device via WriteVarArrwill be multiplied by the scale factor before
it is sent and a value read from a device via ReadVarArr will be divided by the
scale factor before it is returned.
scale is not available for sensordatatype 2.

value

Data type: dnum
The value that shall be read/written to/from the device.

Continues on next page
1708 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.72 sensorvardata - Multiple variable setup data for sensor interface
Sensor Interface

Structure
< data object of sensorvardata >

< varnumber of num >

< sensordatatype of num >

< raw of bool >

< scale of num >

< value of dnum >

Related information

SeeFor information about

ReadVarArr - Read multiple variables from a
sensor device on page 589

Read multiple variables from a device

WriteVarArr - Write multiple variables to a
sensor device on page 1089

Write multiple variables to a device

Technical reference manual - RAPID OverviewConfiguration of sensor communication

Technical reference manual - System paramet-
ers

Configuration of sensor communication

Technical reference manual - RAPID Instructions, Functions and Data types 1709
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.72 sensorvardata - Multiple variable setup data for sensor interface

Sensor Interface
Continued

3.73 shapedata - World zone shape data

Usage
shapedata is used to describe the geometry of a world zone.

Description
World zones can be defined in 4 different geometrical shapes:

• a straight box, with all sides parallel to the world coordinate system and
defined by a WZBoxDef instruction

• a sphere, defined by a WZSphDef instruction
• a cylinder, parallel to the z axis of the world coordinate system and defined

by a WZCylDef instruction
• a joint space area for robot and/or external axes, defined by the instruction

WZHomeJointDef or WZLimJointDef
The geometry of a world zone is defined by one of the previous instructions and
the action of a world zone is defined by the instruction WZLimSup or WZDOSet.

Basic examples
The following example illustrates the data type shapedata:

Example 1
VAR wzstationary pole;

VAR wzstationary conveyor;

...

PROC ...

VAR shapedata volume;

...

WZBoxDef \Inside, volume, p_corner1, p_corner2;

WZLimSup \Stat, conveyor, volume;

WZCylDef \Inside, volume, p_center, 200, 2500;

WZLimSup \Stat, pole, volume;

ENDPROC

A conveyor is defined as a box and the supervision for this area is activated. A
pole is defined as a cylinder and the supervision of this zone is also activated. If
the robot reaches one of these areas, the motion is stopped.

Characteristics
shapedata is a non-value data type.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID summary - Motion settings

World Zones

WZBoxDef - Define a box-shaped world zone on
page 1091

Define box-shaped world zone

Continues on next page
1710 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.73 shapedata - World zone shape data
World Zones

SeeFor information about

WZSphDef - Define a sphere-shaped world zone on
page 1116

Define sphere-shaped world zone

WZCylDef - Define a cylinder-shaped world zone
on page 1093

Define cylinder-shaped world zone

WZHomeJointDef - Define a world zone for home
joints on page 1106

Define a world zone for home joints

WZLimJointDef - Define a world zone for limitation
in joints on page 1109

Define a world zone for limit joints

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital output
on page 1098

Activate world zone digital output set

Technical reference manual - RAPID Instructions, Functions and Data types 1711
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.73 shapedata - World zone shape data

World Zones
Continued

3.74 signalorigin - Describes the I/O signal origin

Usage
signalorigin is used to represent an integer with a symbolic constant.

Description
The predefined symbolic constants of type signalorigin can be used to check
the origin of an I/O signal. It is intended to be used when checking the return value
from the function GetSignalOrigin.

Basic examples
The following example illustrates the data type signalorigin:

Example 1
VAR signalorigin sigorig;

VAR string signalname;

...

sigorig := GetSignalOrigin(mydo, signalname);

IF sigorig = SIGORIG_NONE THEN

TPWrite "The signal named "+ArgName(mydo)+" can not be used";

Stop;

ELSEIF (sigorig = SIGORIG_CFG) OR (sigorig = SIGORIG_ALIAS) THEN

SetDO mydo, 1;

...

ELSE

TPWrite "Unknown origin "+ValToStr(sigorig);

Stop;

ENDIF

The signal origin will be stored in the variable sigorig.

Predefined data
Following constants of type signalorigin are predefined:

CommentSymbolic constantReturn
value

The I/O signal variable is declared in RAPID and
has no alias coupling.

SIGORIG_NONE0

The signal is configured in I/O configuration.SIGORIG_CFG1

The I/O signal variable is declared in RAPID and
has an alias coupling to an I/O signal configured in
I/O configuration.

SIGORIG_ALIAS2

Characteristics
signalorigin is an alias data type for num and thus inherits its properties.

Continues on next page
1712 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.74 signalorigin - Describes the I/O signal origin
RobotWare - OS

Related information

SeeFor information about

GetSignalOrigin - Get information about the origin
of an I/O signal on page 1280

Getting information about the origin of
an I/O signal

Technical reference manual - RAPID Instructions, Functions and Data types 1713
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.74 signalorigin - Describes the I/O signal origin

RobotWare - OS
Continued

3.75 signalxx - Digital and analog signals

Usage
Data types within signalxx are used for digital and analog input and output signals.
The names of the signals are defined in the system parameters and are
consequently not to be defined in the program.

Description

Used forData type

analog input signalssignalai

analog output signalssignalao

digital input signalssignaldi

digital output signalssignaldo

groups of digital input signalssignalgi

groups of digital output signalssignalgo

Variables of the type signalxo only contain a reference to the signal. The value
is set using an instruction, e.g. DOutput.
Variables of the type signalxi contain a reference to a signal as well as the
possibility to retrieve the value directly in the program, if used in value context.
The value of an input signal can be read directly in the program, e.g.:

! Digital input

IF di1 = 1 THEN ...

! Digital group input

IF gi1 = 5 THEN ...

! Analog input

IF ai1 > 5.2 THEN ...

It can also be used in assignments, e.g.:
VAR num current_value;

! Digital input

current_value := di1;

! Digital group input

current_value := gi1;

! Analog input

current_value := ai1;

Limitations
Data of the data type signalxx must not be defined in the program. However, if
this is in fact done then an error message will be displayed as soon as an instruction
or function that refers to this signal is executed. The data type can, on the other
hand, be used as a parameter when declaring a routine.

Continues on next page
1714 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.75 signalxx - Digital and analog signals
RobotWare - OS

Predefined data
The signals defined in the system parameters can always be accessed from the
program by using the predefined signal variables (installed data). However, it
should be noted that if other data with the same name is defined then these signals
cannot be used.

Characteristics
signalxx is a semi-value data type that permits value oriented operations.

Error handling
The following recoverable errors are generated and can be handled in an error
handler. The system variable ERRNO will be set to:

Cause of errorName

The signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O con-
figuration with instruction AliasIO.

ERR_NO_ALIASIO_DEF

There is no contact with the I/O device.ERR_NORUNUNIT

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
sectionRAPID Summary - Input and output signals

Summary input/output instructions

Technical reference manual - RAPID Overview,
section Motion and I/O Principles - I/O principles

Input/Output functionality in general

Technical reference manual - System parametersConfiguration of I/O

Technical reference manual - RAPID Overview,
section Basic Characteristics - Data types

Characteristics of non-value data types

Technical reference manual - RAPID Instructions, Functions and Data types 1715
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.75 signalxx - Digital and analog signals

RobotWare - OS
Continued

3.76 socketdev - Socket device

Usage
socketdev (socket device) is used to communicate with other computers on a
network or between RAPID task.

Description
The socket device is a handle to a communication link to another computer on a
network.

Basic examples
The following example illustrates the data type socketdev:

Example 1
VAR socketdev socket1;

The variable socket1 is defined and can be used in a socket command, e.g.
SocketCreate.

Limitations
Any number of sockets can be declared but it is only possible to use 32 sockets
at the same time.

Characteristics
socketdev is a non-value data type.

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

SocketCreate - Create a new socket on page 735Create a new socket

Technical reference manual - RAPID Overview,
section Basic Characteristics - Data Types

Characteristics of non-value data types

1716 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.76 socketdev - Socket device
Socket Messaging

3.77 socketstatus - Socket communication status

Usage
socketstatus is used for representing status of the socket communication.

Description
Socket status is fetched with the function SocketGetStatus and can be used for
program flow control or debugging purposes.

Basic examples
The following example illustrates the data type socketstatus:

Example 1
VAR socketdev socket1;

VAR socketstatus state;

...

SocketCreate socket1;

state := SocketGetStatus(socket1);

The socket status SOCKET_CREATED will be stored in the variable state.

Predefined data
Following constants of type socketstatus are predefined:

The socket is ...ValueRAPID constant

Created1SOCKET_CREATED

Client connected to a remote host2SOCKET_CONNECTED

Server bounded to a local address and port3SOCKET_BOUND

Server listening for incoming connections4SOCKET_LISTENING

Closed5SOCKET_CLOSED

Characteristics
socketstatus is an alias data type for num and consequently inherits its
characteristics.

Related information

SeeFor information about

Application manual - Controller software IRC5Socket communication in general

SocketGetStatus - Get current socket state on
page 1430

Get socket status

Technical referencemanual - RAPIDOverview,
section Basic Characteristics - Data Types

Data types in general, alias data types

Technical reference manual - RAPID Instructions, Functions and Data types 1717
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.77 socketstatus - Socket communication status

Socket Messaging

3.78 speeddata - Speed data

Usage
speeddata is used to specify the velocity at which both the robot and the external
axes move.

Description
Speed data defines the velocity:

• at which the tool center point moves,
• the reorientation speed of the tool,
• at which linear or rotating external axes move.

When several different types of movement are combined, one of the velocities
often limits all movements. The velocity of the other movements will be reduced
in such a way that all movements will finish executing at the same time.
The velocity is also restricted by the performance of the robot. This differs,
depending on the type of robot and the path of movement.

Components

v_tcp

velocity tcp
Data type:num
The velocity of the tool center point (TCP) in mm/s.
If a stationary tool or coordinated external axes are used, the velocity is specified
relative to the work object.

v_ori

velocity orientation
Data type: num
The reorientation velocity of the TCP expressed in degrees/s.
If a stationary tool or coordinated external axes are used, the velocity is specified
relative to the work object.

v_leax

velocity linear external axes
Data type: num
The velocity of linear external axes in mm/s.

v_reax

velocity rotational external axes
Data type: num
The velocity of rotating external axes in degrees/s.

Continues on next page
1718 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.78 speeddata - Speed data
RobotWare - OS

Basic examples
The following example illustrates the data type speeddata:

Example 1
VAR speeddata vmedium := [1000, 30, 200, 15];

The speed data vmedium is defined with the following velocities:
• 1000 mm/s for the TCP.
• 30 degrees/s for reorientation of the tool.
• 200 mm/s for linear external axes.
• 15 degrees/s for rotating external axes.
vmedium.v_tcp := 900;

The velocity of the TCP is changed to 900 mm/s.

Limitations
At very slowmotion eachmovement should be short enough to give an interpolation
time less than 240 seconds.

Predefined data
A number of speed data are already defined in the system.
Predefined speed data to be used for moving the robot and the external axes:

Rotating ext.axisLinear ext.axisOrientationTCP speedName

1000°/s5000 mm/s500°/s5 mm/sv5

1000°/s5000 mm/s500°/s10 mm/sv10

1000°/s5000 mm/s500°/s20 mm/sv20

1000°/s5000 mm/s500°/s30 mm/sv30

1000°/s5000 mm/s500°/s40 mm/sv40

1000°/s5000 mm/s500°/s50 mm/sv50

1000°/s5000 mm/s500°/s60 mm/sv60

1000°/s5000 mm/s500°/s80 mm/sv80

1000°/s5000 mm/s500°/s100 mm/sv100

1000°/s5000 mm/s500°/s150 mm/sv150

1000°/s5000 mm/s500°/s200 mm/sv200

1000°/s5000 mm/s500°/s300 mm/sv300

1000°/s5000 mm/s500°/s400 mm/sv400

1000°/s5000 mm/s500°/s500 mm/sv500

1000°/s5000 mm/s500°/s600 mm/sv600

1000°/s5000 mm/s500°/s800 mm/sv800

1000°/s5000 mm/s500°/s1000 mm/sv1000

1000°/s5000 mm/s500°/s1500 mm/sv1500

1000°/s5000 mm/s500°/s2000 mm/sv2000

1000°/s5000 mm/s500°/s2500 mm/sv2500

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1719
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.78 speeddata - Speed data

RobotWare - OS
Continued

Rotating ext.axisLinear ext.axisOrientationTCP speedName

1000°/s5000 mm/s500°/s3000 mm/sv3000

1000°/s5000 mm/s500°/s4000 mm/sv4000

1000°/s5000 mm/s500°/s5000 mm/sv5000

1000°/s5000 mm/s500°/s6000 mm/sv6000

1000°/s5000 mm/s500°/s7000 mm/sv7000
iviiiiiivmax

i Max. TCP speed for the used robot type and normal practical TCP values, specified by the system
parameter TCP Linear Max Speed (m/s). The RAPID function MaxRobSpeed returns this value. If
extremely large TCP values are used in the tool frame, you can create your own speeddata with
bigger TCP speed than returned by MaxRobSpeed and use VelSet to allow larger speed.

ii Max. reorientation speed for the used robot type, specified by the system parameter TCP Reorient
Max Speed (deg/s). The RAPID function MaxRobReorientSpeed returns this value.

iii Max. linear speed for additional axes, specified by the system parameter Ext. Axis Linear Max
Speed (m/s). The RAPID function MaxExtLinearSpeed returns this value.

iv Max. rotational speed for additional axes, specified by the system parameter Ext. Axis Rotational
Max Speed (deg/s). The RAPID function MaxExtReorientSpeed returns this value.

Predefined speeddata to be used for moving rotating external axes with instruction
MoveExtJ.

Rotating ext.axisLinear ext.axisOrientationTCP speedName

1°/s0 mm/s0°/s0 mm/svrot1

2°/s0 mm/s0°/s0 mm/svrot2

5°/s0 mm/s0°/s0 mm/svrot5

10°/s0 mm/s0°/s0 mm/svrot10

20°/s0 mm/s0°/s0 mm/svrot20

50°/s0 mm/s0°/s0 mm/svrot50

100°/s0 mm/s0°/s0 mm/svrot100

Predefined speed data to be used for moving linear external axes with instruction
MoveExtJ.

Rotating ext.axisLinear ext.axisOrientationTCP speedName

0°/s10 mm/s0°/s0 mm/svlin10

0°/s20 mm/s0°/s0 mm/svlin20

0°/s50 mm/s0°/s0 mm/svlin50

0°/s100 mm/s0°/s0 mm/svlin100

0°/s200 mm/s0°/s0 mm/svlin200

0°/s500 mm/s0°/s0 mm/svlin500

0°/s1000 mm/s0°/s0 mm/svlin1000

Structure
< dataobject of speeddata >

< v_tcp of num >

< v_ori of num >

< v_leax of num >

< v_reax of num >

Continues on next page
1720 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.78 speeddata - Speed data
RobotWare - OS
Continued

Related information

SeeFor information about

Technical reference manual - RAPID Overview, section
RAPID Summary - Motion

Positioning instructions

Technical reference manual - RAPID Overview, section
Motionand I/O principles - Positioning during program exe-
cution

Motion/Speed in general

VelSet - Changes the programmed velocity on page 999Defining maximum velocity

MaxRobSpeed - Maximum robot speed on page 1335Max. TCP speed for this robot

Technical reference manual - RAPID Instructions, Functions and Data types 1721
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.78 speeddata - Speed data

RobotWare - OS
Continued

3.79 stoppointdata - Stop point data

Usage
stoppointdata is used to specify how a position is to be terminated, i.e. how
close to the programmed position the axes must be before moving towards the
next position.

Description
A position can be terminated either in the form of a fly-by point or a stop point.
A fly-by point means that the programmed position is never reached. A zone is
specified in the instruction for the movement, defining a corner path. Instead of
heading for the programmed position, the direction of the motion is formed into
the corner path before the position is reached. See data type zonedata.
A stop point means that the robot and external axes must reach the specified
position before the robot/external axes continues with the next movement. The
robot is considered to have reached a stop point when the convergence criteria of
the point are satisfied. The convergence criteria are speed and position. It is also
possible to specify timing criteria. For stop point fine, see also data type
zonedata.
Three types of stop points can be defined by the stoppointdata.

• The in position type of stop point is defined as a percentage of the
convergence criteria (position and speed) for the predefined stop point fine.
The in-position type also uses a minimum and a maximum time. The robot
waits for at least the minimum time, and at most the maximum time, for the
position and speed criteria to be satisfied.

• The stop time type of stop point always waits in the stop point for the given
time.

• The follow time type of stop point is a special type of stop point used to
coordinate the robot movement with a conveyor.

The stoppointdata also determines how the movement shall be synchronized
with the RAPID execution. If the movement is synchronized, the RAPID execution
waits for a “in pos” event when the robot is in position. If the movement is not
synchronized, the RAPID execution gets a “prefetch” event almost a half second
before the physical robot reaches the programmed position. When the program
execution gets an “in pos” or a “prefetch” event, it continues with the next
instruction. When the “prefetch” event arrives, the robot still has a long way to
move. When the“ in pos” event arrives the robot is close to the programmed
position.
For the type stop time and follow time, the next instruction starts its execution at
the same time as the stop time and follow time, respectively, start to count down.
But for the type in position, the next instruction is started when the convergence
criteria is fulfilled.

Continues on next page
1722 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.79 stoppointdata - Stop point data
RobotWare - OS

If use of move instructions with argument \Conc, no synchronization at all is done,
so the actual move instruction execution will be ready at once.

xx0500002374

In the figure above, the termination of the stop points is described. The robot’s
speed does not decrease linearly. The robot servo is always ahead of the physical
robot. It is shown as the constant lag in the figure above. The constant lag is about
0.1 seconds. The timing elements of stoppointdata use the reference speed as
trigger. When the reference speed is zero the time measurement starts. Therefore
the time in the timing elements always include the constant lag. Consequently
there is no sense in using values less than the constant lag.

Components

type

type of stop point
Data type: stoppoint
The following table defines the type of stoppoint.

The movement terminates as an in-position type of stop
point. Enables the inpos element in stoppointdata. The
zone data in the instruction is not used, use fine or z0.

1 (inpos)

The movement terminates as a stop-time type of stop point.
Enables the stoptime element in stoppointdata. The
zone data in the instruction is not used, use fine or z0.

2 (stoptime)

The movement terminates as a conveyor follow-time type
of fine point. The zone data in the instruction is used when
the robot leaves the conveyor. Enables the followtime
element in stoppointdata.

3 (followtime)

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1723
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.79 stoppointdata - Stop point data

RobotWare - OS
Continued

Data type stoppoint is an alias data type for num. It is used to choose the type
of stop point and which data elements to use in the stoppointdata. Predefined
constants are:

CommentSymbolic constantValue

In position type numberinpos1

Stop time type numberstoptime2

Follow time type numberfllwtime3

progsynch

program synchronization
Data type: bool
Synchronization with RAPID program execution.

• TRUE: The movement is synchronized with RAPID execution. The program
does not start to execute the next instruction until the stop point has been
reached.

• FALSE: The movement is not synchronized with RAPID execution. The
program starts the execution of the next instruction before the stop point has
been reached.

If use of move instructions with argument \Conc, no synchronization at all is done
independent of the data in progsynch, so the actual move instruction will always
be ready at once.

inpos.position

position condition for TCP
Data type: num
The position condition (the radius) for the TCP in percent of a normal fine stop
point.

inpos.speed

speed condition for TCP
Data type: num
The speed condition for the TCP in percent of a normal fine stop point.

inpos.mintime

minimum wait time
Data type: num
The minimum wait time in seconds before in position. Used to make the robot wait
at least the specified time in the point. Maximum value is 20.0 seconds.

inpos.maxtime

maximum wait time
Data type: num
The maximum wait time in seconds for convergence criteria to be satisfied. Used
to assure that the robot does not get stuck in the point if the speed and position
conditions are set too tight. Maximum value is 20.0 seconds.

Continues on next page
1724 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.79 stoppointdata - Stop point data
RobotWare - OS
Continued

stoptime

stop time
Data type: num
The time in seconds, the TCP stands still in position before starting the next
movement. Valid range 0 - 20 s, resolution 0.001 s.

followtime

follow time
Data type: num
The time in seconds the TCP follows the conveyor. Valid range 0 - 20 s, resolution
0.001 s.

signal

Data type: string
Reserved for future use.

relation

Data type: opnum
Reserved for future use.

checkvalue

Data type: num
Reserved for future use.

Basic examples
The following examples illustrate the data type stoppointdata:

Inpos
VAR stoppointdata my_inpos := [inpos, TRUE, [25, 40, 0.1, 5], 0,

0, "", 0, 0];

MoveL *, v1000, fine \Inpos:=my_inpos, grip4;

The stop point data my_inpos is defined by means of the following characteristics:
• The type of stop point is in-position type, inpos.
• The stop point will be synchronized with the RAPID program execution, TRUE.
• The stop point distance criteria is 25% of the distance defined for the stop

point fine, 25.
• The stop point speed criteria is 40% of the speed defined for the stop point

fine, 40.
• The minimum time to wait before convergence is 0.1 s, 0.1.
• The maximum time to wait on convergence is 5 s, 5.

The robot moves towards the programmed position until one of the criteria position
or speeds are satisfied.

my_inpos.inpos.position := 40;

MoveL *, v1000, fine \Inpos:=my_inpos, grip4;

The stop point distance criteria is adjusted to 40%.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1725
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.79 stoppointdata - Stop point data

RobotWare - OS
Continued

Stoptime
VAR stoppointdata my_stoptime := [stoptime, FALSE, [0, 0, 0, 0],

1.45, 0, "", 0, 0];

MoveL *, v1000, fine \Inpos:=my_stoptime, grip4;

The stop point data my_stoptime is defined by means of the following
characteristics:

• The type of stop point is stop-time type, stoptime.
• The stop point will not be synchronized with the RAPID program execution,

FALSE.
• The wait time in position is 1.45 s.

The robot moves towards the programmed position until the prefetch event arrives.
The next RAPID instruction executes. If it is a move-instruction then the robot stops
for 1.45 seconds before the next movement starts.

my_stoptime.stoptime := 6.66;

MoveL *, v1000, fine \Inpos:=my_stoptime, grip4;

The stop point stop time is adjusted to 6.66 seconds. If the next RAPID instruction
is a move-instruction, the robot stops for 6.66 s.

Followtime
VAR stoppointdata my_followtime := [fllwtime, TRUE, [0, 0, 0,

0], 0, 0.5, "", 0, 0];

MoveL *, v1000, z10 \Inpos:=my_followtime, grip6\wobj:=conveyor1;

The stop point data my_followtime is defined by means of the following
characteristics:

• The type of stop point is follow-time type, fllwtime.
• The stop point will be synchronized with the RAPID program execution, TRUE.
• The stop point follow time is 0.5 s, 0.5.

The robot will follow the conveyor for 0.5 s before leaving it with the zone 10 mm,
z10.

my_followtime.followtime := 0.4;

The stop point follow time is adjusted to 0.4 s.

Predefined data
A number of stop point data are already defined in the system.

In position stop points

Follow-
time

Stop-
time

MaxtimeMintimeSpeedPositionProgsynchName

--2 s0 s20%20%TRUEinpos20

--2 s0 s50%50%TRUEinpos50

--2 s0 s100%100%TRUEinpos100

(inpos100 has same convergence criteria as stop point fine)

Continues on next page
1726 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.79 stoppointdata - Stop point data
RobotWare - OS
Continued

Stop time stop points

Follow-
time

Stop-
time

MaxtimeMintimeSpeedPositionProgsynchName

-0.5 s----FALSEstoptime0_5

-1.0 s----FALSEstoptime1_0

-1.5 s----FALSEstoptime1_5

Follow time stop points

Follow-
time

Stop-
time

MaxtimeMintimeSpeedPositionProgsynchName

0.5 s-----TRUEfllwtime0_5

1.0 s-----TRUEfllwtime1_0

1.5 s-----TRUEfllwtime1_5

Structure
< data object of stoppointdata >

< type of stoppoint >

< progsynch of bool >

< inpos of inposdata >

< position of num >

< speed of num >

< mintime of num >

< maxtime of num >

< stoptime of num >

< followtime of num >

< signal of string >

< relation of opnum >

< checkvalue of num >

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID summary - Motion

Positioning instructions

Technical reference manual - RAPID Overview,
section Motion and I/O principles - Positioning
during program execution

Movements/Paths in general

zonedata - Zone data on page 1778Stop or fly-by points

Technical reference manual - RAPID Instructions, Functions and Data types 1727
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.79 stoppointdata - Stop point data

RobotWare - OS
Continued

3.80 string - Strings

Usage
string is used for character strings.

Description
A character string consists of a number of characters (a maximum of 80) enclosed
by quotation marks (""), e.g. "This is a character string".
If the quotation marks are to be included in the string, they must be written twice,
e.g. "This string contains a ""character".
If the back slashes are to be included in the string, it must be written twice, e.g.
"This string contains a \\ character".

Basic examples
The following example illustrates the data type string:

Example 1
VAR string text;

...

text := "start welding pipe 1";

TPWrite text;

The text start welding pipe 1 is written on the FlexPendant.

Limitations
A string may have 0 to 80 characters; inclusive of extra quotation marks or back
slashes.
A string may contain any of the characters specified by ISO 8859-1 (Latin-1) as
well as control characters (non-ISO 8859-1 (Latin-1) characters with a numeric
code between 0-255).

Predefined data
A number of predefined string constants are available in the system and can be
used together with string functions. See for example StrMemb.

Character setName

<digit> ::=STR_DIGIT

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<upper case letter> ::=STR_UPPER

A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í
| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3)

Continues on next page
1728 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.80 string - Strings
RobotWare - OS

Character setName

<lower case letter> ::=STR_LOWER

a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | à | á | â | ã
| ä | å | æ | ç | è | é | ê | ë | ì | í
| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø
| ù | ú | û | ü | 2) | 3) | ß | ÿ-

<blank character> ::=STR_WHITE

1) Icelandic letter eth.
2) Letter Y with acute accent.
3) Icelandic letter thorn.
The following constants are already defined in the system:

CONST string diskhome := "HOME:";

! For old programs from S4C system

CONST string ram1disk := "HOME:";

CONST string disktemp := "TEMP:";

CONST string flp1 := "flp1:";

CONST string stSpace := " ";

CONST string stEmpty := "";

Related information

SeeFor information about

Technical referencemanual - RAPIDOverview, section
Basic characteristics - Expressions

Operations using strings

Technical referencemanual - RAPIDOverview, section
Basic characteristics - Basic elements

String values

StrMemb - Checks if a character belongs to a set on
page 1460

Instruction using character set

Technical reference manual - RAPID Instructions, Functions and Data types 1729
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.80 string - Strings

RobotWare - OS
Continued

3.81 stringdig - String with only digits

Usage
stringdig is used to represent big positive integers in a string with only digits.
This data type is introduced because the data type num cannot handle positive
integers above 8 388 608 with exact representation.

Description
A stringdig can only consist of a number of digits 0 ... 9 enclosed by quotation
marks (""), e.g. "0123456789".
The data type stringdig can handle positive integers up to 4 294 967 295.

Basic examples
The following example illustrates the data type stringdig:

Example 1
VAR stringdig digits1;

VAR stringdig digits2;

VAR bool flag1;

...

digits1 ="09000000";

digits2 = "9000001";

flag1 := StrDigCmp (digits1, LT, digits2);

The data flag1 will be set to TRUE because 09000000 is less than 9000001.

Characteristics
stringdig is an alias data type of string and consequently inherits most of its
characteristics.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section Basic characteristics - Basic
elements

String values

string - Strings on page 1728Strings

num - Numeric values on page 1666Numeric values

opnum - Comparison operator on
page1669StrDigCmp-Compare twostringswith
only digits on page 1451

Comparison operator

StrDigCmp - Compare two strings with only
digits on page 1451

Compare strings with only digits

1730 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.81 stringdig - String with only digits
RobotWare - OS

3.82 supervtimeouts - Handshake supervision time outs

Usage
supervtimeouts is used to define timeout times for handshake supervision in
CAP.
supervtimeouts is a component of capdata and defines the timeout times for
the following handshake supervision phases in CAP:

• PRE
• END_PRE and START
• END MAIN and START_POST1
• END_POST1 and START_POST2
• END_POST2

If the parameter is set to 0, there is no timeout.

Components

pre_cond
Data type: num
Timeout time (in seconds) for the PRE phase conditions to be fulfilled.

start_cond
Data type: num
Timeout time (in seconds) for the END_PRE and START phase conditions to be
fulfilled.

end_main_cond
Data type: num
Timeout time (in seconds) for the END_MAIN and START_POST1 phase conditions
to be fulfilled.

end_post1_cond
Data type: num
Timeout time (in seconds) for the END_POST1 andSTART_POST2 phase conditions
to be fulfilled.

end_post2_cond
Data type: num
Timeout time (in seconds) for the END_POST2 phase conditions to be fulfilled.

Syntax
< data object of supervtimeouts >

< pre_cond of num >

< start_cond of num >

< end_main_cond of num >

< end_post1_cond of num >

< end_post2_cond of num >

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1731
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.82 supervtimeouts - Handshake supervision time outs

Continuous Application Platform (CAP)

Related information

Described in:

capdata - CAP data on page 1576capdata data type

Application manual - Continuous Application
Platform

Continuous Application Platform

1732 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.82 supervtimeouts - Handshake supervision time outs
Continuous Application Platform (CAP)
Continued

3.83 switch - Optional parameters

Usage
switch is used for optional parameters.

Description
The special type, switch may (only) be assigned to optional parameters and
provides a means to use switch arguments, i.e. arguments that are only specified
by names (not values). A value can not be transmitted to a switch parameter. The
only way to use a switch parameter is to check for its presence using the predefined
function Present.

Basic examples
The following example illustrates the data type switch:

Example 1
PROC my_routine(\switch on | \switch off)

....

IF Present (off) THEN

....

ENDIF

ENDPROC

Depending on what arguments the caller of my_routine uses, the program flow
can be controlled.

Characteristics
switch is a non-value data type and can not be used in value-orientated operations.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, sectionBasic characteristics - Routines.

Parameters

Present - Tests if an optional parameter is
used on page 1386

How to check if an optional parameter is
present

Technical reference manual - RAPID Instructions, Functions and Data types 1733
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.83 switch - Optional parameters

RobotWare - OS

3.84 symnum - Symbolic number

Usage
symnum (Symbolic Number) is used to represent an integer with a symbolic constant.

Description
A symnum constant is intended to be used when checking the return value from
the functions OpMode and RunMode.

Basic examples
The following example illustrates the data type symnum:

Example 1
IF RunMode() = RUN_CONT_CYCLE THEN

..

ELSE

..

ENDIF

Predefined data
The following symbolic constants of the data type symnum are predefined and can
be used when checking return values from the functions OpMode and RunMode.

CommentSymbolic constantValue

Undefined running modeRUN_UNDEF0

Continuous or cycle running modeRUN_CONT_CYCLE1

Instruction forward running modeRUN_INSTR_FWD2

Instruction backward running modeRUN_INSTR_BWD3

Simulated running modeRUN_SIM4

Move instructions in forward runningmode and logic-
al instructions in continuous running mode

RUN_STEP_MOVE5

CommentSymbolic constantValue

Undefined operating modeOP_UNDEF0

Automatic operating modeOP_AUTO1

Manual operating mode max. 250 mm/sOP_MAN_PROG2

Manual operating mode full speed, 100%OP_MAN_TEST3

Characteristics
Symnum is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section Basic characteristics - Data types

Data types in general, alias data types

1734 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.84 symnum - Symbolic number
RobotWare - OS

3.85 syncident - Identity for synchronization point

Usage
syncident (synchronization identity) is used to specify the name of a
synchronization point. The name of the synchronization point will be the name
(identity) of the declared data of type syncident.

Description
syncident is used to identify a point in the program where the actual program
task will wait for cooperate program tasks to reach the same synchronization point.
The data name (identity) of the type syncidentmust be the same in all cooperative
program tasks.
Data type syncident is used in the instructions WaitSyncTask, SyncMoveOn, and
SyncMoveOff.

Basic examples
The following example illustrates the data type syncident:

Example 1
Program example in program task ROB1

PERS tasks task_list{3} := [["STN1"], ["ROB1"], ["ROB2"]];

VAR syncident sync1;

WaitSyncTask sync1, task_list;

At execution of instruction WaitSyncTask in the program task ROB1, the execution
in that program task will wait until the other program tasks STN1 and ROB2 have
reached their corresponding WaitSyncTask with the same synchronization
(meeting) point sync1.

Structure
syncident is a non-value data type.

Related information

SeeFor information about

tasks - RAPID program tasks on page 1739Specify cooperated program tasks

WaitSyncTask -Wait at synchronization point
for other program tasks on page 1044

Wait for synchronization point with other
tasks

SyncMoveOn - Start coordinated synchron-
ized movements on page 832

Start coordinated synchronized movements

SyncMoveOff - End coordinated synchronized
movements on page 826

End coordinated synchronized movements

Technical reference manual - RAPID Instructions, Functions and Data types 1735
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.85 syncident - Identity for synchronization point

Multitasking

3.86 System data - Current RAPID system data settings

Usage
System data mirrors the current settings of RAPID system data such as current
model motion settings, current error recovery number ERRNO, current interrupt
number INTNO, etc.
These data can be accessed and read by the program. It can be used to read the
current status, e.g. the current program displacement.

C_MOTSET

The variable C_MOTSET of data type motsetdata mirrors the current motion
settings:

See System data - Current RAPID
system data settings on page1736.

Changed byData typeDescription

motsetdata - Motion settings data
on page 1660

InstructionsmotsetdataCurrent motion set-
tings, i.e.:

VelSet - Changes the programmed
velocity on page 999

VelSetVelocity override and
max velocity

AccSet - Reduces the acceleration
on page 21

AccSetAcceleration override

SingArea - Defines interpolation
around singular points on page719

SingAreaMovements around
singular points

ConfL - Monitors the configuration
during linearmovement on page145

ConfL

ConfJ

Linear configuration
control
Joint configuration
control

ConfJ - Controls the configuration
during joint movement on page143

PathResol - Override path resolu-
tion on page 529

PathResolPath resolution

MotionSup - Deactivates/Activates
motion supervision on page 392

MotionSupTuningmotion supervi-
sion

PathAccLim - Reduce TCP acceler-
ation along the path on page 510

PathAccLimReduction of TCP ac-
celeration/deceleration
along the movement
path

CirPathMode - Tool reorientation
during circle path on page 120

CirPathModeModification of the tool
orientation during
circle interpolation

WorldAccLim - Control acceleration
in world coordinate system on
page 1066

WorldAccLimReduction of payload
acceleration in world
coordinate system

C_PROGDISP

The variable C_PROGDISP of data type progdisp mirrors the current program
displacement and external axes offset:

See System data - Current RAPID
system data settings on page1736.

Changed byData typeDescription

progdisp - Program displacement
on page 1687

Instructions:progdispCurrent program dis-
placement for robot
axes

Continues on next page
1736 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.86 System data - Current RAPID system data settings
RobotWare - OS

See System data - Current RAPID
system data settings on page1736.

Changed byData typeDescription

PDispSet - Activates program dis-
placement using known frame on
page 537

PDispSet

PDispOn - Activates program dis-
placement on page 532

PDispOn

PDispOff - Deactivates program
displacement on page 531

PDispOff

EOffsSet - Activates an offset for
additional axes using known values
on page 225

EOffsSetCurrent external axes
offset

EOffsOn - Activates an offset for
additional axes on page 223

EOffsOn

EOffsOff - Deactivates an offset for
additional axes on page 222

EOffsOff

ERRNO

The variable ERRNO of data type errnummirrors the current error recovery number:

See System data - Current RAPID
system data settings on page 1736.

Changed byData typeDescription

Technical reference manual - RAP-
ID Overview, section RAPID sum-
mary - Error recovery

The systemerrnumThe latest error that
occurred

intnum - Interrupt identity on
page 1643

INTNO

The variable INTNO of data type intnum mirrors the current interrupt number:

See System data - Current RAPID
system data settings on page1736.

Changed byData typeDescription

Technical reference manual -
RAPID Overview, section RAPID
summary - Interrupts

The systemintnumThe latest interrupt
that occurred

intnum - Interrupt identity on
page 1643

ROB_ID

The variable ROB_ID of data type mecunit contains a reference to the TCP-robot
(if any) in the actual program task.

See System data - Current RAPID
system data settings on page 1736.

Changed byData typeDescription

mecunit - Mechanical unit on
page 1658

The systemmecunitReference to the robot
(if any) in the actual
program task. Always
check before use with
TaskRunRob ()

Technical reference manual - RAPID Instructions, Functions and Data types 1737
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.86 System data - Current RAPID system data settings

RobotWare - OS
Continued

3.87 taskid - Task identification

Usage
taskid is used to identify available program tasks in the system.
The names of the program tasks are defined in the system parameters and,
consequently, must not be defined in the program.

Description
Data of the type taskid only contains a reference to the program task.

Limitations
Data of the type taskid must not be defined in the program. The data type can,
on the other hand, be used as a parameter when declaring a routine.

Predefined data
The program tasks defined in the system parameters can always be accessed from
the program (installed data).
For all program tasks in the system, predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1
task the variable identity will be T_ROB1Id, T_ROB2 - T_ROB2Id etc.

Characteristics
taskid is a non-value data type. This means that data of this type does not permit
value-oriented operations.

Related information

SeeFor information about

Save - Save a program module on page 642Saving program modules

Technical referencemanual - Systemparamet-
ers

Configuration of program tasks

Technical reference manual - RAPID Over-
view, sectionBasic characteristics - Data types

Characteristics of non-value data types

1738 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.87 taskid - Task identification
Multitasking

3.88 tasks - RAPID program tasks

Usage
tasks is used to specify several RAPID program tasks.

Description
To specify several RAPID program tasks, the name of each task can be given as
a string. An array of data type tasks can then hold all the task names.
This task list can then be used in the instructions WaitSyncTask and SyncMoveOn.

Note

The instructions above demand that the data is defined as system global PERS
variables available in all the cooperated tasks.

Components
The data type has the following components.

taskname

Data type: string
The name of a RAPID program task specified in a string.

Basic examples
The following example illustrates the data type tasks:

Example 1
Program example in program task T_ROB1

PERS tasks task_list{3} := [["T_STN1"], ["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

WaitSyncTask sync1, task_list;

At execution of instruction WaitSyncTask in the program task T_ROB1, the
execution in that program task will wait until all the other program tasks T_STN1
and T_ROB2 have reached their corresponding WaitSyncTask with the same
synchronization (meeting) point sync1.

Structure
<dataobject of tasks>

<taskname of string>

Related information

SeeFor information about

syncident - Identity for synchronization point on page1735Identity for synchronization point

WaitSyncTask - Wait at synchronization point for other
program tasks on page 1044

Wait for synchronization point with
other tasks

SyncMoveOn - Start coordinated synchronized move-
ments on page 832

Start coordinated synchronized
movements

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1739
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.88 tasks - RAPID program tasks

Multitasking

SeeFor information about

SyncMoveOff - End coordinated synchronized move-
ments on page 826

End coordinated synchronized
movements

1740 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.88 tasks - RAPID program tasks
Multitasking
Continued

3.89 testsignal - Test signal

Usage
The data type testsignal is used when a test of the robot motion system is
performed.

Description
A number of predefined test signals are available in the robot system. The
testsignal data type is available in order to simplify programming of instruction
TestSignDefine.

Basic examples
The following examples illustrate the data type testsignal:

Example 1
TestSignDefine 2, speed, Orbit, 2, 0;

The predefined constant speed is used to read the actual speed of axis 2 on the
manipulator orbit.

Example 2
TestSignDefine 4, 4001, ROB_1, 2, 0;

The test signal speed is used to read the actual speed of axis 2 on the robot.

Predefined data
The following test signals are available for additional axes and are predefined in
the system. All data is in SI units and measured on the motor side of the axis.

UnitValueSymbolic constant

rad/s6speed

Nm9torque_ref

rad1resolver_angle

rad/s4speed_ref

0 or 1102dig_input1

0 or 1103dig_input2

The following test signals are available for both robot and additional axes and are
predefined in the system. All data is measured on the arm side of the axis.

UnitValueTest signal

degrees or mm i4000Position

degrees/second or mm/s i4001Speed

Nm4002Torque

Nm4003External torque ii

i The unit depends on if the axis is rotational or linear.
ii Returns an estimated externally applied torque (by contact with the environment). On an additional

axis External torque might not be valid.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1741
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.89 testsignal - Test signal

RobotWare - OS

Characteristics
testsignal is an alias data type for num and consequently inherits its
characteristics.

Related information

SeeFor information about

TestSignDefine - Define test signal on page 850Define test signal

TestSignRead - Read test signal value on page 1485Read test signal

TestSignReset - Reset all test signal definitions on
page 852

Reset test signals

1742 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.89 testsignal - Test signal
RobotWare - OS
Continued

3.90 tooldata - Tool data

Usage
tooldata is used to describe the characteristics of a tool, for example, a welding
gun or a gripper. These characteristics are position and orientation of the tool
center point (TCP) and the physical characteristics of the tool load.
If the tool is fixed in space (a stationary tool), the tool data firstly defines position
and orientation of this very tool in space, TCP. Then it describes the load of the
gripper moved by the robot.

Description
Tool data affects robot movements in the following ways:

• The tool center point (TCP) refers to a point that will satisfy the specified
path and velocity performance. If the tool is reorientated or if coordinated
external axes are used, only this point will follow the desired path at the
programmed velocity.

• If a stationary tool is used, the programmed speed and path will relate to the
work object held by the robot.

• Programmed positions refer to the position of the current TCP and the
orientation in relation to the tool coordinate system. This means that if, for
example, a tool is replaced because it is damaged, the old program can still
be used if the tool coordinate system is redefined.

Tool data is also used when jogging the robot to:
• Define the TCP which is not moving when the tool is reorientated.
• Define the tool coordinate system in order to facilitate moving in or rotating

in the tool coordinate directions.

WARNING

It is important to always define the actual tool load and, when used, the payload
of the robot (for example a gripped part). Incorrect definitions of load data can
result in overloading of the robot mechanical structure.
When incorrect load data is specified, it can often lead to the following
consequences:
• The robot will not be used to its maximum capacity
• Impaired path accuracy including a risk of overshooting
• Risk of overloading the mechanical structure

The controller continuously monitors the load and writes an event log if the load
is higher than expected. This event log is saved and logged in the controller
memory.

Components

robhold

robot hold

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1743
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.90 tooldata - Tool data

RobotWare - OS

Data type: bool
Defines whether or not the robot is holding the tool:

• TRUE: The robot is holding the tool.
• FALSE: The robot is not holding the tool, that is, a stationary tool.

tframe

tool frame
Data type: pose
The tool coordinate system, that is:

• The position of the TCP (x, y and z) in mm, expressed in the wrist coordinate
system (tool0) (see figure below).

• The orientation of the tool coordinate system, expressed in the wrist
coordinate system (see figure below).

X
Y

Z

wrist coordinate
system tool coordinate

system andTCP

X' Z'
Y'

xx1100000517

Figure 3.3: Robot held tool

Continues on next page
1744 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.90 tooldata - Tool data
RobotWare - OS
Continued

Note

If a stationary tool is used, the tool frame is defined in relation to the world
coordinate system.

tool coordinate
system andTCP

world coordinate
system

Z'
Y'X'

xx1100000518

Figure 3.4: Stationary tool

tload

tool load
Data type: loaddata

Note

This data is used both for robot held tool and for stationary tool. For a robot held
tool the data describes the tool load. For a stationary tool the data describes the
load of the robot held gripper.

Robot held tool:
The load of the tool, that is:

• The mass (weight) of the tool in kg.
• The center of gravity of the tool load (x, y and z) in mm, expressed in the

wrist coordinate system
• The orientation of the principal inertial axes of moment of the tool expressed

in the wrist coordinate system
• The moments of inertia around inertial axes of moment in kgm2 . If all inertial

components are defined as being 0 kgm2 , the tool is handled as a point
mass.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1745
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.90 tooldata - Tool data

RobotWare - OS
Continued

wrist coordinate
system

X
YZ

tool load coordinate system,
center of gravity (cog) and

inertial axes of tool load (aom)
IY
IZIX

xx1100000519

Stationary tool:
The load of the gripper holding the work object:

• The mass (weight) of the moved gripper in kg
• The center of gravity of moved gripper (x, y and z) in mm, expressed in the

wrist coordinate system
• The orientation of the principal inertial axes of moment of the moved gripper

expressed in the wrist coordinate system
• The moments of inertia around inertial axes of moment in kgm2 . If all inertial

components are defined as being 0 kgm2 , the gripper is handled as a point
mass.

X
YZ

IX IZIY

wrist coordinate
system

tool load coordinate system,
center of gravity (cog) and

inertial axes of tool load (aom)

stationary tool

gripper

xx1100000520

Continues on next page
1746 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.90 tooldata - Tool data
RobotWare - OS
Continued

Note

Only the load of the tool/gripper is to be specified in tooldata. The payload
handled by a gripper is connected and disconnected by the instruction GripLoad
and defined with a loaddata.

Instead of using the instruction GripLoad it is possible to define and use different
tooldata for gripper with gripped workpiece and gripper without workpiece.

Summary
Position and orientation of TCP in tooldata are defined in the wrist coordinate
system for a robot held tool.
Position and orientation of TCP in tooldata are defined in the world coordinate
system for a stationary tool.
The loaddata part in tooldata is in all cases related to the wrist coordinate
system, regardless of the fact whether a robot held tool (to describe the tool) or a
stationary tool (to describe the gripper) is used.

Basic examples
The following examples illustrate the data type tooldata:

Example 1
PERS tooldata gripper := [TRUE, [[97.4, 0, 223.1], [0.924, 0,

0.383 ,0]], [5, [23, 0, 75], [1, 0, 0, 0], 0, 0, 0]];

The tool is described using the following values:
• The robot is holding the tool.
• The TCP is located at a point 223.1 mm straight out from themounting flange

and 97.4 mm along the X-axis of the wrist coordinate system.
• The X' and Z' directions of the tool are rotated 45° in relation to Y direction

in the wrist coordinate system.
• The tool mass is 5 kg.
• The center of gravity is located at a point 75 mm straight out from mounting

flange and 23 mm along the X-axis of the wrist coordinate system.
• The load can be considered a point mass, that is, without any moment of

inertia.

Example 2
gripper.tframe.trans.z := 225.2;

The TCP of the tool, gripper, is adjusted to 225.2 in the z-direction.

Limitations
The tool data should be defined as a persistent variable (PERS) and should not be
defined within a routine. The current values are then saved when the program is
saved and are retrieved on loading.
Arguments of the type tool data in any motion instruction should only be an entire
persistent (not array element or record component).

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1747
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.90 tooldata - Tool data

RobotWare - OS
Continued

Predefined data
The tool tool0 defines the wrist coordinate system, with the origin being the center
of the mounting flange. tool0 can always be accessed from the program, but can
never be changed (it is stored in system module BASE).

PERS tooldata tool0 := [TRUE, [[0, 0, 0], [1, 0, 0 ,0]], [0.001,
[0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]];

Structure
< dataobject of tooldata >

< robhold of bool >

< tframe of pose >

< trans of pos >

< x of num >

< y of num >

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< tload of loaddata >

< mass of num >

< cog of pos >

< x of num >

< y of num >

< z of num >

< aom of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< ix of num >

< iy of num >

< iz of num >

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID summary - Motion

Positioning instructions

Technical reference manual - RAPID Overview,
section Motion and I/O Principles - Coordinate sys-
tems

Coordinate systems

GripLoad - Defines the payload for a robot on
page 266

Define payload for robots

loaddata - Load data on page 1650Definition of load data

wobjdata - Work object data on page 1770Definition of work object data

1748 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.90 tooldata - Tool data
RobotWare - OS
Continued

3.91 tpnum - FlexPendant window number

Usage
tpnum is used to represent the FlexPendant window number with a symbolic
constant.

Description
A tpnum constant is intended to be used in instruction TPShow.

Basic examples
The following example illustrates the data type tpnum:

Example 1
TPShow TP_LATEST;

The last used FlexPendant Window before the current FlexPendant window will
be active after execution of this instruction.

Predefined data
The following symbolic constant of the data type tpnum is predefined and can be
used in instruction TPShow:

CommentSymbolic constantValue

Latest used FlexPendant windowTP_LATEST2

Characteristics
tpnum is an alias data type for num and consequently inherits its characteristics.

Related information

SeeInformation about

Technical reference manual - RAPID Over-
view, section Basic Characteristics - Data
Types

Data types in general, alias data types

Technical reference manual - RAPID Over-
view, section RAPID Summary - Communica-
tion

Communicating using the FlexPendant

TPShow - Switch window on the FlexPendant
on page 869

Switch window on the FlexPendant

Technical reference manual - RAPID Instructions, Functions and Data types 1749
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.91 tpnum - FlexPendant window number

RobotWare - OS

3.92 trapdata - Interrupt data for current TRAP

Usage
trapdata (trap data) is used to contain the interrupt data that caused the current
TRAP routine to be executed.
To be used in TRAP routines generated by instruction IError, before use of the
instruction ReadErrData.

Description
Data of the type trapdata represents internal information related to the interrupt
that caused the current trap routine to be executed. Its content depends on the
type of interrupt.

Basic examples
The following example illustrates the data type trapdata:

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error
number, and the error type are saved into appropriate non-value variables of type
trapdata.

Characteristics
trapdata is a non-value data type.

Related information

SeeFor information about

Technical reference manual - RAPID Over-
view, section RAPID summary - Interrupts

Summary of interrupts

Technical reference manual - RAPID Over-
view, sectionBasic characteristics - Interrupts

More information on interrupt management

Technical reference manual - RAPID Over-
view, section Basic characteristics - Data
types

Non value data types

IError - Orders an interrupt on errors on
page 278

Orders an interrupt on errors

GetTrapData - Get interrupt data for current
TRAP on page 262

Get interrupt data for current TRAP

Continues on next page
1750 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.92 trapdata - Interrupt data for current TRAP
RobotWare - OS

SeeFor information about

ReadErrData - Gets information about an error
on page 583

Gets information about an error

Product specification - Controller software
IRC5

Advanced RAPID

Technical reference manual - RAPID Instructions, Functions and Data types 1751
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.92 trapdata - Interrupt data for current TRAP

RobotWare - OS
Continued

3.93 triggdata - Positioning events, trigg

Usage
triggdata is used to store data about a positioning event during a robot
movement.
A positioning event can take the form of setting an output signal or running an
interrupt routine at a specific position along the movement path of the robot.

Description
To define the conditions for the respective measures at a positioning event,
variables of the type triggdata are used. The data contents of the variable are
formed in the program using one of the instructions TriggIO, TriggEquip,
TriggCheckIO, TriggInt, TriggSpeed or TriggRampAO and are used by one
of the instructions TriggL, TriggC or TriggJ.

Basic examples
The following example illustrates the data type triggdata :

Example 1
VAR triggdata gunoff;

TriggIO gunoff, 0,5 \DOp:=gun, 0;

TriggL p1, v500, gunoff, fine, gun1;

The digital output signal gun is set to the value 0 when the TCP is at a position
0,5 mm before the point p1.

Characteristics
triggdata is a non-value data type.

Related information

SeeFor information about

TriggIO - Define a fixed position or time I/O event
near a stop point on page 903

Definition of triggs

TriggEquip - Define a fixed position and time I/O
event on the path on page 892
TriggCheckIO - Defines I/O check at a fixed po-
sition on page 882
TriggInt - Defines a position related interrupt on
page 898

TriggL - Linear robot movements with events on
page 917

Use of triggs

TriggC - Circular robot movement with events
on page 873
TriggJ - Axis-wise robot movements with events
on page 909

Technical referencemanual - RAPID Overview,
section Basic characteristics - Data types

Characteristics of non-value data types

1752 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.93 triggdata - Positioning events, trigg
RobotWare - OS

3.94 triggios - Positioning events, trigg

Usage
triggiosis used to store data about a positioning event during a robot movement.
When the positioning event is distributed at a specific position on the path, an
output signal is set to a specified value.

Description
triggios is used to define conditions and actions for setting a digital output
signal, a group of digital output signals or an analog output signal at a fixed position
along the robot’s movement path.

Components

used

Data type: bool
Defines whether or not the array element should be used or not.

distance

Data type: num
Defines the position on the path where the I/O event shall occur. Specified as the
distance in mm (positive value) from the end point of the movement path if
component start is set to FALSE.

start

Data type: bool
Set to TRUE when the distance starts at the movement start point instead of the
end point.

equiplag

Equipment Lag
Data type: num
Specify the lag for the external equipment in s.
For compensation of external equipment lag, use a positive argument value. Positive
valuemeans that the I/O signal is set by the robot system at a specified time before
the TCP physically reaches the specified distance in relation to themovement start
or end point.
Negative value means that the I/O signal is set by the robot system at a specified
time after that the TCP has physically passed the specified distance in relation to
the movement start or end point.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1753
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.94 triggios - Positioning events, trigg

RobotWare - OS

The figure shows use of component equiplag.

xx0800000173

signalname

Data type: string
The name of the signal that shall be changed. It have to be a digital output signal,
group of digital output signals or an analog output signal.

setvalue

Data type: num
Desired value of output signal (within the allowed range for the current signal).

xxx

Data type: num
Component is not used right now. Added to be able to add functionality in future
releases, and still be able to be compatible.

Examples
The following example illustrates the data type triggios:

Example 1
VAR triggios gunon{1};

gunon{1}.used:=TRUE;

gunon{1}.distance:=3;

gunon{1}.start:=TRUE;

gunon{1}.signalname:="gun";

gunon{1}.equiplag:=0;

gunon{1}.setvalue:=1;

MoveJ p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData1:=gunon, z50, gun1;

MoveL p3, v500, z50, gun1;

The signal gun is set when the TCP is 3 mm after point p1.

Structure
<dataobject of triggios>

<used of bool>

Continues on next page
1754 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.94 triggios - Positioning events, trigg
RobotWare - OS
Continued

<distance of num>

<start of bool>

<equiplag of num>

<signalname of string>

<setvalue of num>

<xxx of num>

Related information

SeeFor information about

triggiosdnum - Positioning events, trigg on
page 1756

Positioning events, trigg

TriggLIOs - Linear robot movements with I/O
events on page 932

Linear robot movements with I/O events

Technical reference manual - RAPID Instructions, Functions and Data types 1755
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.94 triggios - Positioning events, trigg

RobotWare - OS
Continued

3.95 triggiosdnum - Positioning events, trigg

Usage
triggiosdnum is used to store data about a positioning event during a robot
movement. When the positioning event is distributed at a specific position on the
path, an output signal is set to a specified value.

Description
triggiosdnum is used to define conditions and actions for setting a digital output
signal, a group of digital output signals or an analog output signal at a fixed position
along the robot’s movement path.

Components

used

Data type: bool
Defines whether or not the array element should be used or not.

distance

Data type: num
Defines the position on the path where the I/O event shall occur. Specified as the
distance in mm (positive value) from the end point of the movement path if
component start is set to FALSE.

start

Data type: bool
Set to TRUE when the distance starts at the movement start point instead of the
end point.

equiplag

Equipment Lag
Data type: num
Specifies the lag for the external equipment in s.
For compensation of external equipment lag, use a positive argument value. Positive
valuemeans that the I/O signal is set by the robot system at a specified time before
the TCP physically reaches the specified distance in relation to themovement start
or end point.
Negative value means that the I/O signal is set by the robot system at a specified
time after the TCP has physically passed the specified distance in relation to the
movement start or end point.

signalname

Data type: string
The name of the signal that shall be changed. It has to be a digital output signal,
group of digital output signals or an analog output signal.

Continues on next page
1756 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.95 triggiosdnum - Positioning events, trigg
RobotWare - OS

setvalue

Data type: dnum
Desired value of output signal (within the allowed range for the current signal).

xxx

Data type: num
Component is not used right now. Added to be able to add functionality in future
releases, and still be able to be compatible.

Examples
The following example illustrates the data type triggiosdnum:

Example 1
VAR triggiosdnum gunon{1};

gunon{1}.used:=TRUE;

gunon{1}.distance:=3;

gunon{1}.start:=TRUE;

gunon{1}.signalname:="go_gun";

gunon{1}.equiplag:=0;

gunon{1}.setvalue:=123456789;

MoveJ p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData3:=gunon, z50, gun1;

MoveL p3, v500, z50, gun1;

The signal go_gun is set when the TCP is 3 mm after point p1.

Structure
<dataobject of triggiosdnum>

<used of bool>

<distance of num>

<start of bool>

<equiplag of num>

<signalname of string>

<setvalue of dnum>

<xxx of num>

Related information

SeeFor information about

triggios - Positioningevents, trigg onpage1753Positioning events, trigg

TriggLIOs - Linear robot movements with I/O
events on page 932

Linear robot movements with I/O events

Technical reference manual - RAPID Instructions, Functions and Data types 1757
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.95 triggiosdnum - Positioning events, trigg

RobotWare - OS
Continued

3.96 triggmode - Trigg action mode

Usage
triggmode is used to specify different action modes when defining triggers.

Description
A triggmode constant is intended to be used to define the mode for instructions
used for definition of triggers.

Basic examples
The following examples illustrate the data type triggmode:

Example 1
CONNECT intno1 WITH trap1;

TriggInt trigg1, Distance:=17, intno1 \Inhib:=inhibit
\Mode:=TRIGG_MODE1;

TriggL p1, v500, trigg1, z50, gun1;

The interrupt routine trap1 is run when the TCP is at a position 17 mm before the
point p1 if persistent variable inhibit flag is TRUE (mode TRIGG_MODE1 invert
the value read from inhibit flag).

Example 2
TriggEquip trigg1, 17, 0 \GOp:=go1, SetValue:=5 \Inhib:=inhibit

\Mode:=TRIGG_MODE2;

TriggL p1, v500, trigg1, z50, gun1;

If the persistent flag inhibit is FALSEwhen the TCP is at a position 17mmbefore
the point p1, the I/O signal go1 is set to the value specified in SetValue. If
persistent variable inhibit is TRUE, no action at all is performed (keep value of
I/O signal go1).

Example 3
TriggEquip trigg1, 17, 0 \GOp:=go1, SetValue:=0 \Inhib:=inhibit

\InhibSetValue:=setDnum \Mode:=TRIGG_MODE3;

TriggL p1, v500, trigg1, z50, gun1;

If the persistent flag inhibit is TRUE when the TCP is at a position 17 mm before
the point p1, the I/O signal go1 is set to the value read from the dnum persistent
variable setDnum. If inhibit is FALSE, no action at all is performed (keep value
of I/O signal go1).

Example 4
TriggEquip trigg1, 17, 0 \GOp:=go1, SetValue:=5 \Inhib:=inhibit

\Mode:=TRIGG_MODE3;

TriggL p1, v500, trigg1, z50, gun1;

If the persistent flag inhibit is TRUE when the TCP is at a position 17 mm before
the point p1, the I/O signal go1 is set to the value specified in SetValue (5 in this
example). If inhibit is FALSE, no action at all is performed (keep value of I/O
signal go1).

Continues on next page
1758 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.96 triggmode - Trigg action mode
RobotWare - OS

Predefined data
The following symbolic constants of the data type triggmode are predefined and
can be used to specify different action modes when defining triggers.

CommentSymbolic constantValue

Can be used by instructions
TriggCheckIO, TriggEquip,
TriggIO, TriggInt,
TriggSpeed, and TriggRampAO.

TRIGG_MODE11

Invert the value read from persist-
ent variable used in optional argu-
ment Inhib.

Can be used by instructions
TriggEquip, TriggIO,
TriggSpeed, and TriggRampAO
if using optional argument Inhib.

TRIGG_MODE22

If the actual value of the specified
flag used in Inhib is TRUE at the
position-time for setting the I/O
signal, then the specified I/O sig-
nal will not be updated (no action).

Mode can only be used together
with optional argument Inhib in
instructions TriggEquip and
TriggIO.

TRIGG_MODE33

If the actual value of the specified
flag used in Inhib is FALSE, the
I/O signal is not updated (no ac-
tion).
If used only with Inhib and the
specified flag used in Inhib is
TRUE at the position, the I/O signal
is set to the value specified in ar-
gument SetValue or
SetDvalue.
If used with both Inhib and
InhibSetValue: The arguments
SetValue and SetDvalue are
not considered at all. If the actual
value of the specified flag used in
Inhib is TRUE, then the I/O signal
is set to the value that the persist-
ent variable used in optional argu-
ment InhibSetValue has at the
position.

Characteristics
triggmode is an alias data type for num and consequently inherits its
characteristics.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1759
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.96 triggmode - Trigg action mode

RobotWare - OS
Continued

Related information

SeeFor information about

TriggL - Linear robot movements with events on
page 917

Use of triggers

TriggC - Circular robot movement with events on
page 873
TriggJ - Axis-wise robot movements with events
on page 909

TriggEquip - Define a fixed position and time I/O
event on the path on page 892

Definition of triggers

TriggInt - Defines a position related interrupt on
page 898
TriggIO - Define a fixed position or time I/O event
near a stop point on page 903
TriggRampAO - Define a fixed position ramp AO
event on the path on page 940
TriggSpeed - Defines TCP speed proportional
analog output with fixed position-time scale event
on page 947

TriggCheckIO - Defines I/O check at a fixed posi-
tion on page 882

Define I/O check at a fixed position

triggdata - Positioning events, trigg on page 1752Storage of trigg data

Technical reference manual - RAPID Overview,
section Basic characteristics - Data types

Data types in general, alias data types

1760 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.96 triggmode - Trigg action mode
RobotWare - OS
Continued

3.97 triggstrgo - Positioning events, trigg

Usage
triggstrgo(trigg stringdig group output) is used to store data about a positioning
event during a robot movement. When the positioning event is distributed at a
specific position on the path, a group of digital output signals is set to a specified
value.

Description
triggstrgo is used to define conditions and actions for setting a group of digital
output signals at a fixed position along the robot’s movement path.

Components

used

Data type: bool
Defines whether or not the array element should be used or not.

distance

Data type: num
Defines the position on the path where the I/O event shall occur. Specified as the
distance in mm (positive value) from the end point of the movement path if
component start is set to FALSE.

start

Data type: bool
Set to TRUE when the distance starts at the movement start point instead of the
end point.

equiplag

Equipment Lag
Data type: num
Specify the lag for the external equipment in s.
For compensation of external equipment lag, use a positive argument value. Positive
valuemeans that the I/O signal is set by the robot system at a specified time before
the TCP physically reaches the specified distance in relation to themovement start
or end point.
Negative value means that the I/O signal is set by the robot system at a specified
time after that the TCP has physically passed the specified distance in relation to
the movement start or end point.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1761
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.97 triggstrgo - Positioning events, trigg

RobotWare - OS

The figure shows use of component equiplag.

xx0800000173

signalname

Data type: string
The name of the signal that shall be changed. It has to be a name of a group output
signal.

setvalue

Data type: stringdig
Desired value of output signal (within the allowed range for the current digital group
output signal). Using stringdig data type makes it possible to use values up to
4294967295, which is the maximum value a group of digital signals can have (32
signals in a group signal is max for the system).

xxx

Data type: num
Component is not used right now. Added to be able to add functionality in future
releases, and still be able to be compatible.

Examples
The following example illustrates the data type triggstrgo:

Example 1
VAR triggstrgo gunon{1};

gunon{1}.used:=TRUE;

gunon{1}.distance:=3;

gunon{1}.start:=TRUE;

gunon{1}.signalname:="gun";

gunon{1}.equiplag:=0;

gunon{1}.setvalue:="4294967295";

MoveJ p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData2:=gunon, z50, gun1;

MoveL p3, v500, z50, gun1;

The signal gun is set to value 4294967295 when the TCP is 3 mm after point p1.

Continues on next page
1762 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.97 triggstrgo - Positioning events, trigg
RobotWare - OS
Continued

Structure
<dataobject of triggstrgo>

<used of bool>

<distance of num>

<start of bool>

<equiplag of num>

<signalname of string>

<setvalue of stringdig>

<xxx of num>

Related information

SeeFor information about

TriggLIOs - Linear robot movements with I/O
events on page 932

Linear robot movements with I/O events

StrDigCmp - Compare two strings with only
digits on page 1451

Compare two strings with only digits

StrDigCalc - Arithmetic operations with data-
type stringdig on page 1448

Arithmetic operations on stringdig data types

Technical reference manual - RAPID Instructions, Functions and Data types 1763
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.97 triggstrgo - Positioning events, trigg

RobotWare - OS
Continued

3.98 tsp_status - Task selection panel status

Usage
tsp_status is used to mirror the status of the Task Selection Panel on the
FlexPendant.

Description
With the functions TaskIsActive and GetTSPStatus, it is possible to read out
current status of Task Selection Panel on the FlexPendant.

Basic examples
The following example illustrates the data type tsp_status:

Example 1
VAR tsp_status tspstatus;

...

tspstatus:=GetTSPStatus("MYTASK");

IF tspstatus >= TSP_NORMAL_UNCHECKED AND tspstatus <=
TSP_SEMISTATIC_UNCHECKED THEN

TPWrite "Task MYTASK is unchecked in the Task Selection Panel";

ELSEIF tspstatus >= TSP_NORMAL_CHECKED THEN

TPWrite "Task MYTASK is checked in the Task Selection Panel";

ELSE

TPWrite "Task MYTASK is unchecked in TSP due to execution in
service routine";

ENDIF

This programexample investigates if program task MYTASK is checked or unchecked
in the Task Selection Panel on the FlexPendant.

Predefined data
Following constants of type tsp_status are predefined:

DescriptionValueRAPID constant

TaskIsActive. The task is a semistatic or
static task, not a normal task.

0TSP_STATUS_NOT_NORMAL_TASK

TaskIsActive. The normal task is deactiv-
ated in the Task Selection Panel.

1TSP_STATUS_DEACT

TaskIsActive. The normal task is deactiv-
ated in the Task Selection Panel because
some other task is executing a service
routine.

2TSP_STATUS_DEACT_SERV_ROUT

TaskIsActive. The normal task is active in
the Task Selection Panel.

3TSP_STATUS_ACT

GetTSPStatus. The normal task is un-
checked in the Task Selection Panel because
some other task is executing a service
routine.

10TSP_UNCHECKED_RUN_SERV_ROUT

GetTSPStatus. The normal task is un-
checked in the Task Selection Panel.

11TSP_NORMAL_UNCHECKED

Continues on next page
1764 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.98 tsp_status - Task selection panel status
RobotWare - OS

DescriptionValueRAPID constant

GetTSPStatus. The static task is unchecked
in the Task Selection Panel.

12TSP_STATIC_UNCHECKED

GetTSPStatus. The semistatic task is un-
checked in the Task Selection Panel.

13TSP_SEMISTATIC_UNCHECKED

GetTSPStatus. The normal task is checked
in the Task Selection Panel.

14TSP_NORMAL_CHECKED

GetTSPStatus. The static task is checked
in the Task Selection Panel.

15TSP_STATIC_CHECKED

GetTSPStatus. The semistatic task is
checked in the Task Selection Panel.

16TSP_SEMISTATIC_CHECKED

Characteristics
tsp_status is an alias data type for num and consequently inherits its
characteristics.

Related information

SeeFor information about

GetTSPStatus - Get current task selection panel
status on page 1289

Get current task selection panel status

TaskIsActive - Check if a normal task is active
on page 1476

Check if a normal task is active

Technical reference manual - RAPID Instructions, Functions and Data types 1765
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.98 tsp_status - Task selection panel status

RobotWare - OS
Continued

3.99 tunetype - Servo tune type

Usage
tunetype is used to represent an integer with a symbolic constant for different
types of servo tuning.

Description
A tunetype constant is intended to be used as an argument to the instruction
TuneServo.

Basic examples
The following example illustrates the data type tunetype:

Example 1
TuneServo MHA160R1, 1, 110 \Type:= TUNE_KP;

Predefined data
The following symbolic constants of the data type tunetype are predefined and
can be used as arguments for the instruction TuneServo.

CommentSymbolic constantValue

Reduces overshootsTUNE_DF0

Affects position control gainTUNE_KP1

Affects speed control gainTUNE_KV2

Affects speed control integration timeTUNE_TI3

Affects friction compensation levelTUNE_FRIC_LEV4

Affects friction compensation rampTUNE_FRIC_RAMP5

Reduces overshootsTUNE_DG6

Reduces vibrations with heavy loadsTUNE_DH7

Reduces path errorsTUNE_DI8

Only for ABB internal useTUNE_DK9

Only for ABB internal useTUNE_DL10

Characteristics
tunetype is an alias data type for num and consequently inherits its characteristics.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section Basic characteristics - Data types

Data types in general, alias data types

TuneServo - Tuning servos on page 967Use of data type tunetype

1766 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.99 tunetype - Servo tune type
RobotWare - OS

3.100 uishownum - Instance ID for UIShow

Usage
uishownum is the data type used for parameter InstanceId in instruction UIShow.
It is used to identify a view on the FlexPendant.

Description
When a persistent variable of type uishownum is used with the instruction UIShow,
it is given a specific value identifying the view launched on the FlexPendant. This
persistent is then used in all dealings with that view, such as launching the view
again, modifying the view, etc.

Examples
The following example illustrates the data type uishownum:

Example 1
CONST string Name:="TpsViewMyAppl.gtpu.dll";

CONST string Type:="ABB.Robotics.SDK.Views.TpsViewMyAppl";

CONST string Cmd1:="Init data string passed to the view";

PERS uishownum myinstance:=0;

VAR num mystatus:=0;

...

! Launch one view of the application MyAppl

UIShow Name, Type \InitCmd:=Cmd1 \InstanceID:=myinstance
\Status:=mystatus;

The code above will launch one view of the application MyAppl with init command
Cmd1. The token used to identify the view is saved in the parameter myinstance.

Characteristics
uishownum is an alias data type for num and thus inherits its properties.

Related information

SeeFor information about

UIShow - User Interface show on page 988UIShow

Technical reference manual - RAPID Instructions, Functions and Data types 1767
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.100 uishownum - Instance ID for UIShow

RobotWare - OS

3.101 weavestartdata - weave start data

Usage
weavestartdata is used to control stationary weaving during start and restart of
a process in CAP.
weavestartdata is a component of capdata and defines the properties of
stationary weaving at start or restart of a CAP process:

• if there shall be stationary weaving at start (active)
• width of stationary weaving (width)
• direction relative path direction (dir)
• frequency of stationary weaving (cycle_time)

Stationary weaving uses always geometric weaving with zig-zag pattern, see
capweavedata - Weavedata for CAP on page 1589.

Components

active
Data type: bool

DescriptionValue

Perform stationary weaving at start of a CAP processTRUE

Do NOT perform stationary weaving at start of a CAP processFALSE

width
Data type: num
Defines the amplitude of stationary weaving (mm).

dir
Data type: num
Defines the direction of stationary weaving relative to the path direction (degrees).
Zero degrees means weaving perpendicular to both the path and the z-coordinate
of the tool.

cycle_time
Data type: num
Defines the total time (in seconds) for a complete cycle of stationary weaving.

Syntax
< data object of weavestartdata >

< active of bool >

< width of num >

< dir of num >

< cycle_time of num >

Continues on next page
1768 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.101 weavestartdata - weave start data
Continuous Application Platform (CAP)

Related information

Described in:

capdata - CAP data on page 1576capdata data type

Application manual - Continuous Application
Platform

Continuous Application Platform

Technical reference manual - RAPID Instructions, Functions and Data types 1769
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.101 weavestartdata - weave start data
Continuous Application Platform (CAP)

Continued

3.102 wobjdata - Work object data

Usage
wobjdata is used to describe the work object that the robot welds, processes,
moves within, etc.

Description
If work objects are defined in a positioning instruction, the position will be based
on the coordinates of the work object. The advantages of this are as follows:

• If position data is entered manually, such as in off-line programming, the
values can often be taken from a drawing.

• Programs can be reused quickly following changes in the robot installation.
If, for example, the fixture is moved, only the user coordinate system has to
be redefined.

• Variations in how the work object is attached can be compensated for. For
this, however, some sort of sensor will be required to position the work object.

If a stationary tool or coordinated external axes are used, the work object must be
defined, since the path and velocity would then be related to the work object instead
of the TCP.
Work object data can also be used for jogging:

• The robot can be jogged in the directions of the work object.
• The current position displayed is based on the coordinate system of the work

object.

Components

robhold

robot hold
Data type: bool
Defines whether or not the robot in the actual program task is holding the work
object:

• TRUE: The robot is holding the work object, i.e. using a stationary tool.
• FALSE: The robot is not holding the work object, i.e. the robot is holding the

tool.

ufprog

user frame programmed
Data type: bool
Defines whether or not a fixed user coordinate system is used:

• TRUE: Fixed user coordinate system.
• FALSE:Movable user coordinate system, i.e. coordinated external axes are

used. Also to be used in a MultiMove system in semicoordinated or
synchronized coordinated mode.

Continues on next page
1770 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.102 wobjdata - Work object data
RobotWare - OS

ufmec

user frame mechanical unit
Data type: string
The mechanical unit with which the robot movements are coordinated. Only
specified in the case of movable user coordinate systems (ufprog is FALSE).
Specify the mechanical unit name defined in system parameters, e.g. orbit_a.

uframe

user frame
Data type: pose
The user coordinate system, i.e. the position of the current work surface or fixture
(see figure below):

• The position of the origin of the coordinate system (x, y and z) in mm.
• The rotation of the coordinate system, expressed as a quaternion (q1, q2,

q3, q4).
If the robot is holding the tool, the user coordinate system is defined in the world
coordinate system (in the wrist coordinate system if a stationary tool is used).
For movable user frame (ufprog is FALSE), the user frame is continuously defined
by the system.

oframe

object frame
Data type: pose
The object coordinate system, i.e. the position of the current work object (see figure
below):

• The position of the origin of the coordinate system (x, y and z) in mm.
• The rotation of the coordinate system, expressed as a quaternion (q1, q2,

q3, q4).
The object coordinate system is defined in the user coordinate system.

xx0500002369

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1771
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.102 wobjdata - Work object data

RobotWare - OS
Continued

Basic examples
The following example illustrates the data type wobjdata:

Example 1
PERS wobjdata wobj2 :=[FALSE, TRUE, "", [[300, 600, 200], [1, 0,

0 ,0]], [[0, 200, 30], [1, 0, 0 ,0]]];

The work object in the figure above is described using the following values:
• The robot is not holding the work object.
• The fixed user coordinate system is used.
• The user coordinate system is not rotated and the coordinates of its origin

are x= 300, y = 600 and z = 200 mm in the world coordinate system.
• The object coordinate system is not rotated and the coordinates of its origin

are x= 0, y= 200 and z= 30 mm in the user coordinate system.
wobj2.oframe.trans.z := 38.3;

• The position of the work object wobj2 is adjusted to 38.3 mm in the
z-direction.

Limitations
The work object data should be defined as a persistent variable (PERS) and should
not be defined within a routine. The current values are then savedwhen the program
is saved and are retrieved on loading.
Arguments of the type work object data in any motion instruction should only be
an entire persistent (not array element or record component).

Predefined data
The work object data wobj0 is defined in such a way that the object coordinate
system coincides with the world coordinate system. The robot does not hold the
work object.
Wobj0 can always be accessed from the program, but can never be changed (it is
stored in system module BASE).

PERS wobjdata wobj0 := [FALSE, TRUE, "", [[0, 0, 0], [1, 0, 0
,0]], [[0, 0, 0], [1, 0, 0 ,0]]];

Structure
< dataobject of wobjdata >

< robhold of bool >

< ufprog of bool >

< ufmec of string >

< uframe of pose >

< trans of pos >

< x of num >

< y of num >

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

Continues on next page
1772 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.102 wobjdata - Work object data
RobotWare - OS
Continued

< oframe of pose >

< trans of pos >

< x of num >

< y of num >

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID summary - Motion

Positioning instructions

Technical reference manual - RAPID Overview,
section Motion and I/O Principles - Coordinate
systems

Coordinate systems

Technical reference manual - RAPID Overview,
section Motion and I/O Principles - Coordinate
systems

Coordinated external axes

Application manual - Additional axes and stand
alone controller

Calibration of coordinated axes

Application manual - MultiMove

Technical reference manual - RAPID Instructions, Functions and Data types 1773
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.102 wobjdata - Work object data

RobotWare - OS
Continued

3.103 wzstationary - Stationary world zone data

Usage
wzstationary (world zone stationary) is used to identify a stationary world zone
and can only be used in an event routine connected to the event POWER ON.
Aworld zone is supervised during robot movements both during program execution
and jogging. If the robot’s TCP reaches the world zone or if the robot/external axes
reaches the world zone in joints, themovement is stopped or a digital output signal
is set or reset.

Description
A wzstationaryworld zone is defined and activated by a WZLimSup or a WZDOSet
instruction.
WZLimSup or WZDOSet gives the variable or the persistent of data type
wzstationary a numeric value. The value identifies the world zone.
A stationary world zone is always active in motor on state and is only erased by
a Restart. It is not possible to deactivate, activate or erase a stationary world zone
via RAPID instructions.
Stationary world zones should be active from power on and should be defined in
a POWER ON event routine or a semistatic task

Basic examples
The following example illustrates the data type wzstationary:

Example 1
VAR wzstationary conveyor;

...

PROC ...

VAR shapedata volume;

...

WZBoxDef \Inside, volume, p_corner1, p_corner2;

WZLimSup \Stat, conveyor, volume;

ENDPROC

A conveyor is defined as a straight box (the volume below the belt). If the robot
reaches this volume, the movement is stopped.

Limitations
A wzstationary data can be defined as a variable (VAR) or as a persistent
(PERS). It can be global in task or local within module, but not local within a routine.
Arguments of the type wzstationary should only be entire data (not array element
or record component).
An init value for data of the type wzstationary is not used by the control system.
When there is a need to use a persistent variable in a multi-tasking system, set
the init value to 0 in both tasks, e.g. PERS wzstationary share_workarea :=
[0];

Continues on next page
1774 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.103 wzstationary - Stationary world zone data
World Zones

More examples
For a complete example see instruction WZLimSup.

Characteristics
wzstationary is an alias data type of wztemporary and inherits its characteristics.

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section Motion and I/O principles - World zones

World Zones

shapedata - World zone shape data on page1710World zone shape

wztemporary - Temporary world zone data on
page 1776

Temporary world zone

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital out-
put on page 1098

Activate world zone digital output set

Technical reference manual - RAPID Instructions, Functions and Data types 1775
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.103 wzstationary - Stationary world zone data

World Zones
Continued

3.104 wztemporary - Temporary world zone data

Usage
wztemporary (world zone temporary) is used to identify a temporary world zone
and can be used anywhere in the RAPID program for any motion task.
A world zone is supervised during robot movements both during program execution
and jogging. If the robot’s TCP reaches the world zone or if the robot/external axes
reaches the world zone in joints, themovement is stopped or a digital output signal
is set or reset.

Description
A wztemporaryworld zone is defined and activated by a WZLimSup or a WZDOSet
instruction.
WZLimSup or WZDOSet gives the variable or the persistent of data type
wztemporary a numeric value. The value identifies the world zone.
Once defined and activated, a temporary world zone can be deactivated by
WZDisable, activated again by WZEnable, and erased by WZFree.
All temporary world zones in the motion task are automatically erased and all data
objects of type wztemporary in the motion task are set to 0:

• when a new program is loaded in the motion task
• when starting program execution from the beginning in the motion task

Basic examples
The following example illustrates the data type wztemporary:

Example 1
VAR wztemporary roll;

...

PROC

VAR shapedata volume;

CONST pos t_center := [1000, 1000, 1000];

...

WZCylDef \Inside, volume, t_center, 400, 1000;

WZLimSup \Temp, roll, volume;

ENDPROC

A wztemporary variable, roll, is defined as a cylinder. If the robot reaches this
volume, the movement is stopped.

Limitations
A wztemporary data can be defined as a variable (VAR) or as a persistent (PERS).
It can be global in a task or local within a module, but not local within a routine.
Arguments of the type wztemporarymust only be entire data, not an array element
or record component.
A temporary world zone must only be defined (WZLimSup or WZDOSet) and free
(WZFree) in themotion task. Definitions of temporary world zones in any background
is not allowed because it would affect the program execution in the connected

Continues on next page
1776 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.104 wztemporary - Temporary world zone data
RobotWare - OS

motion task. The instructions WZDisable and WZEnable can be used in the
background task.When there is a need to use a persistent variable in amulti-tasking
system, set the init value to 0 in both tasks, e.g. PERSwztemporary share_workarea
:= [0];

More examples
For a complete example see instruction WZDOSet.

Structure
< dataobject of wztemporary >

< wz of num >

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section Motion and I/O principles - World zones

World Zones

shapedata - World zone shape data on page 1710World zone shape

wzstationary - Stationary world zone data on
page 1774

Stationary world zone

WZLimSup - Activate world zone limit supervision
on page 1113

Activate world zone limit supervision

WZDOSet - Activate world zone to set digital output
on page 1098

Activate world zone digital output set

WZDisable - Deactivate temporary world zone su-
pervision on page 1096

Deactivate world zone

WZEnable - Activate temporary world zone super-
vision on page 1102

Activate world zone

WZFree - Erase temporary world zone supervision
on page 1104

Erase world zone

Technical reference manual - RAPID Instructions, Functions and Data types 1777
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.104 wztemporary - Temporary world zone data

RobotWare - OS
Continued

3.105 zonedata - Zone data

Usage
zonedata is used to specify how a position is to be terminated, i.e. how close to
the programmed position the axesmust be beforemoving towards the next position.

Description
A position can be terminated either in the form of a stop point or a fly-by point.
A stop point means that the robot and additional axes must reach the specified
position (stand still) before program execution continues with the next instruction.
It is also possible to define stop points other than the predefined fine. The stop
criteria, that tells if the robot is considered to have reached the point, can be
manipulated using the stoppointdata.
A fly-by point means that the programmed position is never attained. Instead, the
direction of motion is changed before the position is reached. Two different zones
(ranges) can be defined for each position:

• The position zone for the TCP path.
• The reorientation and additional axis zone.

Position zone

Start of reorientation
towards next position
Start of TCP corner path

Programmed
position

Reorientation and
additional axis zone

xx1800000945

The zone for the TCP path
A corner path is generated as soon as the edge of the corner zone is reached (see
figure above).

Continues on next page
1778 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.105 zonedata - Zone data
RobotWare - OS

Calculation of reorientation and additional axis zone
The datatype zonedata contains one component that determines the position
zone, pzone_tcp. But the reorientation and additional axis zone can be affected
by all of the following zonedata components.

• pzone_ori - zone radius, in mm TCPmovement, for reorientation of the tool
• pzone_eax - zone radius, in mm TCP movement, for movement of the

additional axis
• zone_ori - angle zone, in degrees of tool reorientation
• zone_leax - zone size, in mm of linear additional axis movement
• zone_reax - angle zone, in degrees of rotational additional axis reorientation

The size of the reorientation and additional axis zone is generally limited by the
smallest zone generated from the applicable components above. The zone will be
defined as the smallest relative size of the zone based upon the zone components
and the programmed motion.
If the calculations result in a reorientation and additional axis zone that is smaller
than the position zone, the reorientation and additional axis zone will be set to the
same size as the position zone. The exception is if there is no (or almost no) TCP
positionmovement. If the reorientation is large and the positionmovement is small,
the position zone can be reduced to the size of the reorientation and additional
axis zone.
Reorientation and additional axis zone limited by zone_ori
The following figure shows an example of the reorientation and additional axis
zone being reduced to 36% of the motion due to zone_ori.

xx0500002362

Reorientation and additional axis zone increased to position zone
The size of the reorientation and additional axis zone must never be smaller than
the position zone. So if, for example, zone_ori result in a smaller size than
pzone_tcp, the reorientation and additional axis zone is increased to the size of
the position zone.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1779
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.105 zonedata - Zone data

RobotWare - OS
Continued

The following figure shows an example where zone_ori would result in a
reorientation and additional axis zone of 15% of the motion, but is increased to
30% of the motion to match the position zone.

xx0500002363

Formulas for calculating the reorientation and additional axis zone
Normally not all zonedata components are applicable. For example, for a rotational
additional axis reorientationwithout robotmovement, only zone_reax is applicable.
For all zonedata components that are applicable, the smallest of the following
relations determine the size of the reorientation and additional axis zone (as long
as it is larger or equal to the position zone).

pzone_ori
length of movement P1 - P2

zone_ori
angle of tool reorientation P1 - P2

pzone_leax
length of max linear add. axis movement P1 - P2

pzone_eax
length of movement P1 - P2

pzone_reax
angle of max reorientation of rotating add. axis P1 - P2

xx1800000781

Reduced corner zones
If programmed positions are close to each other and the corner zones are big, the
corner zones can be reduced from the programmed size. See section Interpolation
of corner paths in Technical reference manual - RAPID Overview.

Continues on next page
1780 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.105 zonedata - Zone data
RobotWare - OS
Continued

Components

finep

fine point
Data type: bool
Defines whether the movement is to terminate as a stop point (fine point) or as
a fly-by point.

• TRUE: Themovement terminates as a stop point, and the program execution
will not continue until robot reach the stop point. The remaining components
in the zone data are not used.

• FALSE: The movement terminates as a fly-by point, and the program
execution continueswhen the prefetch conditions have beenmet (see system
parameter Prefetch Time).

pzone_tcp

path zone TCP
Data type: num
The size (the radius) of the TCP zone in mm.

pzone_ori

path zone orientation
Data type: num
The zone size (the radius) for the tool reorientation. The size is defined as the
distance of the TCP from the programmed point in mm.
The size must be larger than the corresponding value for pzone_tcp. If a lower
value is specified, the size is automatically increased to make it the same as
pzone_tcp.

pzone_eax

path zone external axes
Data type: num
The zone size (the radius) for external axes. The size is defined as the distance of
the TCP from the programmed point in mm.
The size must be larger than the corresponding value for pzone_tcp. If a lower
value is specified, the size is automatically increased to make it the same as
pzone_tcp.

zone_ori

zone orientation
Data type: num
The zone size for the tool reorientation in degrees. If the robot is holding the work
object, this means an angle of rotation for the work object.

zone_leax

zone linear external axes
Data type: num

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1781
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.105 zonedata - Zone data

RobotWare - OS
Continued

The zone size for linear external axes in mm.

zone_reax

zone rotational external axes
Data type: num
The zone size for rotating external axes in degrees.

Basic examples
The following example illustrates the data type zonedata:

Example 1
VAR zonedata path := [FALSE, 25, 40, 40, 10, 35, 5];

The zone data path is defined by means of the following characteristics:
• The zone size for the TCP path is 25 mm.
• The zone size for the tool reorientation is 40 mm (TCP movement).
• The zone size for external axes is 40 mm (TCP movement).

If the TCP is standing still, or there is a large reorientation, or there is a large
external axis movement with respect to the zone, the following apply instead:

• The zone size for the tool reorientation is 10 degrees.
• The zone size for linear external axes is 35 mm.
• The zone size for rotating external axes is 5 degrees.

Predefined data
A number of zone data are already defined in the system.

Stop points
Use zonedata named fine.

Fly-by points

ZonePath zone

Rotating
axis

Linear axisOrientationExt. axisOrientationTCP pathName

0.03°0.3 mm0.03°0.3 mm0.3 mm0.3 mmz0

0.1°1 mm0.1°1 mm1 mm1 mmz1

0.8°8 mm0.8°8 mm8 mm5 mmz5

1.5°15 mm1.5°15 mm15 mm10 mmz10

2.3°23 mm2.3°23 mm23 mm15 mmz15

3.0°30 mm3.0°30 mm30 mm20 mmz20

4.5°45 mm4.5°45 mm45 mm30 mmz30

6.0°60 mm6.0°60 mm60 mm40 mmz40

7.5°75 mm7.5°75 mm75 mm50 mmz50

9.0°90 mm9.0°90 mm90 mm60 mmz60

12°120 mm12°120 mm120 mm80 mmz80

15°150 mm15°150 mm150 mm100 mmz100

Continues on next page
1782 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.105 zonedata - Zone data
RobotWare - OS
Continued

ZonePath zone

Rotating
axis

Linear axisOrientationExt. axisOrientationTCP pathName

23°225 mm23°225 mm225 mm150 mmz150

30°300 mm30°300 mm300 mm200 mmz200

Structure
< data object of zonedata >

< finep of bool >

< pzone_tcp of num >

< pzone_ori of num >

< pzone_eax of num >

< zone_ori of num >

< zone_leax of num >

< zone_reax of num >

Related information

SeeFor information about

Technical reference manual - RAPID Overview,
section RAPID summary - Motion

Positioning instructions

Technical reference manual - RAPID Overview,
sectionMotion and I/O principles - Positioning dur-
ing program execution

Movements/Paths in general

Application manual - Additional axes and stand
alone controller

Configuration of external axes

stoppointdata - Stop point data on page 1722Other Stop points

Technical reference manual - RAPID Instructions, Functions and Data types 1783
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

3 Data types
3.105 zonedata - Zone data

RobotWare - OS
Continued

This page is intentionally left blank

4 Programming type examples
4.1 ERROR handler with movements

Usage
These type examples describe how to usemove instructions in an ERROR handler
after an asynchronously raised process or movement error has occurred.
This function can only be used in themain task T_ROB1 or, if in a MultiMove system,
in Motion tasks.

Description
The ERROR handler can start a new temporary movement and finally restart the
original interrupted and stopped movement. For example, it can be used to go to
a service position or to clean the gun after an asynchronously raised process or
movement error has occurred.
To reach this functionality, the instructions StorePath - RestoPath must be
used in the ERROR handler. To restart the movement and continue the program
execution, several RAPID instructions are available.

Type examples
Type examples of the functionality are illustrated below.

Principle
...

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StorePath;

! Move away and back to the interrupted position

...

RestoPath;

StartMoveRetry;

ENDIF

ENDPROC

At execution of StartMoveRetry the robot resumes its movement, any active
process is restarted and the program retries its execution. StartMoveRetry does
the same as StartMove plus RETRY in one indivisible operation.

Automatic restart of execution
CONST robtarget service_pos := [...];

VAR robtarget stop_pos;

...

ERROR

IF ERRNO = AW_WELD_ERR THEN

! Current movement on motion base path level

! is already stopped.

! New motion path level for new movements in the ERROR handler

StorePath;

! Store current position from motion base path level

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1785
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.1 ERROR handler with movements

Path Recovery

stop_pos := CRobT(\Tool:=tool1, \WObj:=wobj1);

! Do the work to fix the problem

MoveJ service_pos, v50, fine, tool1, \WObj:=wobj1;

...

! Move back to the position on the motion base path level

MoveJ stop_pos, v50, fine, tool1, \WObj:=wobj1;

! Go back to motion base path level

RestoPath;

! Restart the stopped movements on motion base path level,

! restart the process and retry program execution

StartMoveRetry;

ENDIF

ENDPROC

This is a type example of how to use automatic asynchronously error recovery
after some type of process error during robot movements.

Manual restart of execution
...

ERROR

IF ERRNO = PROC_ERR_XXX THEN

! Current movement on motion base path level

! is already stopped and in stop move state.

! This error must be handle manually.

! Reset the stop move state on motion base path level.

StopMoveReset;

ENDIF

ENDPROC

This is a type example of how to use manual handling of asynchronously error
recovery after some type of process error during robot movements.
After the above ERROR handler has executed to the end, the program execution
stops and the program pointer is at the beginning of the instruction with the process
error (also at beginning of any used NOSTEPIN routine). The next program start
restarts the program andmovement from the position in which the original process
error ocurred.

Program execution
Execution behavior:

• At start execution of the ERROR handler, the program leaves its base execution
level

• At execution of StorePath, the motion system leaves its base execution
level

• At execution of RestoPath, the motion system returns to its base execution
level

• At execution of StartMoveRetry, the program returns to its base execution
level

Continues on next page
1786 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.1 ERROR handler with movements
Path Recovery
Continued

Limitations
The following RAPID instructions must be used in the ERROR handler with move
instructions to get it working for automatically error recovery after an
asynchronously raised process or path error:

DescriptionInstruction

Enter new motion path levelStorePath

Return to motion base path levelRestoPath

Restart the interrupted movements on the motion base path
level. Also restart the process and retry the program execution.

StartMoveRetry

Same functionality as StartMove + RETRY.

The following RAPID instructionmust be used in the ERROR handler to get it working
for manually error recovery after an asynchronously raised process or path error:

DescriptionInstruction

Enter new motion path levelStopMoveReset

Related information

SeeFor information about

StorePath - Stores the path when an interrupt
occurs on page 816

To enter a new motion path level

RestoPath - Restores the path after an inter-
rupt on page 610

To return to motion base path level

StartMoveRetry - Restarts robot movement
and execution on page 784

To restart the interruptedmovement, process
and retry program execution.

Technical reference manual - RAPID Instructions, Functions and Data types 1787
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.1 ERROR handler with movements

Path Recovery
Continued

4.2 Service routines with or without movements

Usage
These type examples describe how to use movement instructions in a service
routine. The same principle about StopMove, StartMove, and StopMoveReset
are also valid for service routines without movements (only logical instructions).
Both service routines or other routines (procedures) without parameters can be
started manually and perform movements according to these type examples.
This functionality can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks in independent or semi-coordinated mode.

Description
The service routine can start a new temporary movement and, at later program
start, restart the original movement. For example, it can be used to go to a service
position or manually start cleaning the gun.
To reach this functionality the instructions StorePath - RestoPath and
StopMoveReset must be used in the service routine.

Type examples
Type examples of the functionality are illustrated below.

Principle
PROC xxxx()

StopMove;

StorePath;

! Move away and back to the interrupted position

...

RestoPath;

StopMoveReset;

ENDPROC

StopMove is required in order to make sure that the originally stopped movement
is not restarted upon a manually "stop program-restart program" sequence during
execution of the service routine.

Stop on path
VAR robtarget service_pos := [...];

...

PROC proc_stop_on_path()

VAR robtarget stop_pos;

! Current stopped movements on motion base path level

! must not be restarted in the service routine.

StopMove;

! New motion path level for new movements in the service routine.

StorePath;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=tool1 \WObj:=wobj1);

! Do the work

MoveJ service_pos, v50, fine, tool1 \WObj:=wobj1;

Continues on next page
1788 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.2 Service routines with or without movements
Path recovery

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, tool1, \WObj:=wobj1;

! Go back to motion base path level

RestoPath;

! Reset the stop move state for the interrupted movement

! on motion base path level

StopMoveReset;

ENDPROC

In this type example the movements in the service routine start and end at the
position on the path where the program was stopped.
Also note that the tool and work object used are known at the time of programming.

Stop in next stop point
TASK PERS tooldata used_tool := [...];

TASK PERS wobjdata used_wobj := [...];

...

PROC proc_stop_in_stop_point()

VAR robtarget stop_pos;

! Current move instruction on motion base path level continue to
its ToPoint and will be finished in a stop point.

StartMove;

! New motion path level for new movements in the service routine

StorePath;

! Get current tool and work object data

GetSysData used_tool;

GetSysData used_wobj;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=used_tool \WObj:=used_wobj);

! Do the work

MoveJ Offs(stop_pos,0,0,20),v50,fine,used_tool\WObj:=used_wobj;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, used_tool,\WObj:=used_wobj;

! Go back to motion base path level

RestoPath;

! Reset the stop move state for any new movement

! on motion base path level

StopMoveReset;

ENDPROC

In this type example the movements in the service routine continue to and end at
the ToPoint in the interruptedmove instructions before the instruction StorePath
is ready.
Also note that the tool and work object used are unknown at the time of
programming.

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1789
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.2 Service routines with or without movements

Path recovery
Continued

Program execution
Execution behavior:

• At start execution of the service routine, the program leaves its base execution
level

• At execution of StorePath, the motion system leaves its base execution
level

• At execution of RestoPath, the motion system returns to its base execution
level

• At execution of ENDPROC, the program returns to its base execution level

Limitations
The following RAPID instructions must be used in the service routine with move
instructions to get it working:

DescriptionInstruction

Enter new motion path levelStorePath

Return to motion base path levelRestoPath

Reset the stop move state for the interrupted
movement on the motion base path level

StopMoveReset

Related information

SeeFor information about

StopMove - Stops robotmovement onpage810No restart of the already stoppedmovement
on the motion base path level

StopMove - Stops robotmovement onpage810Restart of the already stopped movement
on the motion base path level

StorePath - Stores the path when an interrupt
occurs on page 816

To enter a new motion path level

RestoPath - Restores the path after an inter-
rupt on page 610

To return to the motion base path level

StopMoveReset - Reset the system stopmove
state on page 814

Reset the stopmove state for the interrupted
movement on the motion base path level

1790 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.2 Service routines with or without movements
Path recovery
Continued

4.3 System I/O interrupts with or without movements

Usage
These type examples describe how to use movement instructions in a system I/O
interrupt routine. The same principle about StopMove, StartMove, and
StopMoveReset are also valid for system I/O interrupts without movements (only
logical instructions).
This functionality can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks in independent or semi-coordinated mode.

Description
The system I/O interrupt routine can start a new temporary movement and, at later
program start, restart the original movement. For example, it can be used to go to
a service position or to clean the gun when an interrupt occurs.
To reach this functionality the instructions StorePath - RestoPath and
StopMoveReset must be used in the system I/O interrupt routine.

Type examples
Type examples of the functionality are illustrated below.

Principle
PROC xxxx()

StopMove;

StorePath;

! Move away and back to the interrupted position

...

RestoPath;

StopMoveReset;

ENDPROC

StopMove is required in order to make sure that the originally stopped movement
is not restarted at start of the I/O interrupt routine.
Without StopMove or with StartMove instead the movement in the I/O interrupt
routine will continue at once and end at the ToPoint in the interrupted move
instruction.

Stop on path
VAR robtarget service_pos := [...];

...

PROC proc_stop_on_path()

VAR robtarget stop_pos;

! Current stopped movements on motion base path level is nnt
restarted in the system I/O routine.

StopMove \Quick;

! New motion path level for new movements in the system

! I/O routine.

StorePath;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=tool1 \WObj:=wobj1);

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1791
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.3 System I/O interrupts with or without movements

Path recovery

! Do the work

MoveJ service_pos, v50, fine, tool1 \WObj:=wobj1;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, tool1, \WObj:=wobj1;

! Go back to motion base path level

RestoPath;

! Reset the stop move state for the interrupted movement

! on motion base path level

StopMoveReset;

ENDPROC

In this type example the interrupted movements are stopped at once and are
restarted at program start after the system I/O interrupt routine is finished.
Also note that the tool and work object used are known at the time of programming.

Stop in next stop point
TASK PERS tooldata used_tool := [...];

TASK PERS wobjdata used_wobj := [...];

...

PROC proc_stop_in_stop_point()

VAR robtarget stop_pos;

! Current move instruction on motion base path level continue to
its ToPoint and will be finished in a stop point.

StartMove;

! New motion path level for new movements in the system

! I/O routine

StorePath;

! Get current tool and work object data

GetSysData used_tool;

GetSysData used_wobj;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=used_tool \WObj:=used_wobj);

! Do the work

MoveJ Offs(stop_pos,0,0,20),v50,fine,used_tool\WObj:=used_wobj;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, used_tool,\WObj:=used_wobj;

! Go back to motion base path level

RestoPath;

! Reset the stop move state for new movement

! on motion base path level

StopMoveReset;

ENDPROC

In this type example the movements in the system I/O routine continue at once,
and end at the ToPoint in the interrupted move instructions.
Also note that the tool and work object used are unknown at the time of
programming.

Continues on next page
1792 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.3 System I/O interrupts with or without movements
Path recovery
Continued

Program execution
Execution behavior:

• At start execution of the system I/O routine, the program leaves its base
execution level

• At execution of StorePath, the motion system leaves its base execution
level

• At execution of RestoPath, the motion system returns to its base execution
level

• At execution of ENDPROC, the program returns to its base execution level

Limitations
The following RAPID instructionsmust be used in the system I/O routine withmove
instructions to get it working:

DescriptionInstruction

Enter new motion path levelStorePath

Return to motion base path levelRestoPath

Reset the stop move state for the interrupted movement on
the motion base path level

StopMoveReset

Related information

SeeFor information about

StopMove - Stops robot movement on
page 810

No restart of the already stopped movement
on the motion base path level

StartMove - Restarts robot movement on
page 781

Restart of the already stopped movement on
the motion base path level

StorePath - Stores the path when an interrupt
occurs on page 816

To enter a new motion path level

RestoPath - Restores the path after an inter-
rupt on page 610

To return to the motion base path level

StopMoveReset - Reset the system stop
move state on page 814

Reset the stop move state for the interrupted
movement on the motion base path level

Technical reference manual - RAPID Instructions, Functions and Data types 1793
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.3 System I/O interrupts with or without movements

Path recovery
Continued

4.4 TRAP routines with movements

Usage
These type examples describe how to use move instructions in a TRAP routine
after an interrupt has occurred.
This functionality can only be used in the main task T_ROB1 or, if in a MultiMove
system, in Motion tasks.

Description
The TRAP routine can start a new temporary movement and finally restart the
original movement. For example, it can be used to go to a service position or to
clean the gun when an interrupt occurs.
To reach this functionality the instructions StorePath - RestoPath and
StartMove must be used in the TRAP routine.

Type examples
Type examples of the functionality are illustrated below.

Principle
TRAP xxxx

StopMove;

StorePath;

! Move away and back to the interrupted position

...

RestoPath;

StartMove;

ENDTRAP

If StopMove is used, themovement stops at once on the on-going path; otherwise,
the movement continues to the ToPoint in the actual move instruction.

Stop in next stop point
VAR robtarget service_pos := [...];

...

TRAP trap_in_stop_point

VAR robtarget stop_pos;

! Current move instruction on motion base path level continue

! to it’s ToPoint and will be finished in a stop point.

! New motion path level for new movements in the TRAP

StorePath;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=tool1 \WObj:=wobj1);

! Do the work

MoveJ service_pos, v50, fine, tool1 \WObj:=wobj1;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, tool1, \WObj:=wobj1;

! Go back to motion base path level

RestoPath;

! Restart the interupted movements on motion base path level

Continues on next page
1794 Technical reference manual - RAPID Instructions, Functions and Data types

3HAC050917-001 Revision: H
© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.4 TRAP routines with movements
Path Recovery

StartMove;

ENDTRAP

In this type example the movements in the TRAP routine start and end at the
ToPoint in the interrupted move instructions. Also note that the tool and work
object are known at the time of programming.

Stop on path at once
TASK PERS tooldata used_tool := [...];

TASK PERS wobjdata used_wobj := [...];

...

TRAP trap_stop_at_once

VAR robtarget stop_pos;

! Current move instruction on motion base path level stops

! at once

StopMove;

! New motion path level for new movements in the TRAP

StorePath;

! Get current tool and work object data

GetSysData used_tool;

GetSysData used_wobj;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=used_tool \WObj:=used_wobj);

! Do the work

MoveJ Offs(stop_pos,0,0,20),v50,fine,used_tool\WObj:=used_wobj;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, used_tool,\WObj:=used_wobj;

! Go back to motion base path level

RestoPath;

! Restart the interupted movements on motion base path level

StartMove;

ENDTRAP

In this type example the movements in the TRAP routine start and end at the
position on the path where the interrupted move instruction was stopped. Also
note that the tool and work object used are unknown at the time of programming.

Program execution
Execution behavior:

• At start execution of the TRAP routine, the program leaves its base execution
level

• At execution of StorePath, the motion system leaves its base execution
level

• At execution of RestoPath, the motion system returns to its base execution
level

• At execution of ENDTRAP, the program returns to its base execution level

Continues on next page
Technical reference manual - RAPID Instructions, Functions and Data types 1795
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.4 TRAP routines with movements

Path Recovery
Continued

Limitations
Following RAPID instructions must be used in the TRAP routine with move
instructions to get it working:

DescriptionInstruction

Enter new motion path levelStorePath

Return to motion base path levelRestoPath

Restart the interrupted movements on the motion base path
level

StartMove

Related information

SeeFor information about

StopMove - Stops robot movement on
page 810

To stop the current movement at once

StorePath - Stores the path when an interrupt
occurs on page 816

To enter a new motion path level

RestoPath - Restores the path after an inter-
rupt on page 610

To return to the motion base path level

StartMove - Restarts robot movement on
page 781

To restart the interrupted movement

1796 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

4 Programming type examples
4.4 TRAP routines with movements
Path Recovery
Continued

Index
A
Abs, 1119
AbsDnum, 1121
AccSet, 21
ACos, 1123
ACosDnum, 1124
ActEventBuffer, 24
ActUnit, 26
Add, 28
AInput, 1125
aiotrigg, 1561
ALIAS, 1563
AliasCamera, 30
AliasIO, 32
AliasIOReset, 35
AND, 1127
AOutput, 1129
ArgName, 1131
ASin, 1134
ASinDnum, 1135
Assignment

=, 37
ATan, 1136
ATan2, 1138
ATan2Dnum, 1139
ATanDnum, 1137

B
BitAnd, 1140
BitAndDnum, 1142
BitCheck, 1144
BitCheckDnum, 1146
BitClear, 39
BitLSh, 1148
BitLShDnum, 1150
BitNeg, 1153
BitNegDnum, 1155
BitOr, 1157
BitOrDnum, 1159
BitRSh, 1161
BitRShDnum, 1163
BitSet, 42
BitXOr, 1165
BitXOrDnum, 1167
BookErrNo, 45
bool, 1564
Break, 47
btnres, 1565
busstate, 1567
buttondata, 1568
byte, 1570
ByteToString, 1169

C
CalcJointT, 1171
CalcRobT, 1175
CalcRotAxFrameZ, 1177
CalcRotAxisFrame, 1182
CallByVar, 48
cameradev, 1571
cameratarget, 1572
CamFlush, 50
CamGetExposure, 1186
CamGetLoadedJob, 1188

CamGetName, 1190
CamGetParameter, 51
CamGetResult, 53
CamLoadJob, 55
CamNumberOfResults, 1191
CamReqImage, 57
CamSetExposure, 59
CamSetParameter, 61
CamSetProgramMode, 63
CamSetRunMode, 64
CamStartLoadJob, 65
CamWaitLoadJob, 67
CancelLoad, 69
capaptrreferencedata, 1574
CapAPTrSetup, 71
CapAPTrSetupAI, 74
CapAPTrSetupAO, 77
CapAPTrSetupPERS, 80
CapC, 83
CapCondSetDO, 93
capdata, 1576
CapEquiDist, 95
CapGetFailSigs, 1193
CapL, 97
caplatrackdata, 1580
CapLATrSetup, 106
CapNoProcess, 111
CapRefresh, 113
capspeeddata, 1584
captrackdata, 1586
capweavedata, 1589
CapWeaveSync, 115
CASE, 848
CDate, 1195
cfgdomain, 1597
CheckProgRef, 118
CirPathMode, 120
CJointT, 1196
Clear, 126
ClearIOBuff, 127
ClearPath, 129
ClearRawBytes, 133
ClkRead, 1198
ClkReset, 135
ClkStart, 136
ClkStop, 138
clock, 1598
Close, 139
CloseDir, 140
comment, 141
CompactIF, 142
confdata, 1599
ConfJ, 143
ConfL, 145
CONNECT, 148
ContactL, 150
CopyFile, 155
CopyRawBytes, 157
CornerPathWarning, 159
CorrClear, 161
CorrCon, 162
corrdescr, 1606
CorrDiscon, 167
CorrRead, 1200
CorrWrite, 168
Cos, 1201

Technical reference manual - RAPID Instructions, Functions and Data types 1797
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Index

CosDnum, 1202
CPos, 1203
CRobT, 1205
CrossProd, 1208
CSpeedOverride, 1211
CTime, 1213
CTool, 1214
CWObj, 1216

D
datapos, 1608
DeactEventBuffer, 170
DeactUnit, 172
Decr, 174
DecToHex, 1218
DefAccFrame, 1219
DefDFrame, 1222
DefFrame, 1225
Dim, 1228
DInput, 1230
dionum, 1609
dir, 1610
Distance, 1232
DIV, 1234
dnum, 1611
DnumToNum, 1235
DnumToStr, 1237
DotProd, 1239
DOutput, 1241
DropSensor, 176
DropWObj, 177

E
egm_minmax, 1616
EGMActJoint, 178
EGMActMove, 181
EGMActPose, 183
egmframetype, 1613
EGMGetId, 187
EGMGetState, 1243
egmident, 1614
EGMMoveC, 188
EGMMoveL, 192
EGMReset, 195
EGMRunJoint, 196
EGMRunPose, 199
EGMSetupAI, 202
EGMSetupAO, 205
EGMSetupGI, 208
EGMSetupLTAPP, 211
EGMSetupUC, 213
egmstate, 1617
EGMStop, 215
egmstopmode, 1618
EGMStreamStart, 217
EGMStreamStop, 219
EGMWaitCond, 220
ELSE, 281
ELSEIF, 281
ENDIF, 281
EOF_NUM, 1399
EOffsOff, 222
EOffsOn, 223
EOffsSet, 225
EraseModule, 227
errdomain, 1619
ErrLog, 229

errnum, 1621
ERROR handler, 1785
ErrRaise, 233
errstr, 1629
errtype, 1630
ErrWrite, 237
EulerZYX, 1244
event_type, 1631
EventType, 1246
exec_level, 1632
ExecHandler, 1248
ExecLevel, 1249
EXIT, 239
ExitCycle, 240
Exp, 1250
extjoint, 1633

F
FileSize, 1251
FileTimeDnum, 1254
FitCircle, 242
flypointdata, 1635
FOR, 246
FricIdEvaluate, 249
FricIdInit, 248
FricIdSetFricLevels, 252
FSSize, 1257

G
GetAxisDistance, 1260
GetAxisMoveTime, 1262
GetDataVal, 254
GetJointData, 257
GetMaxNumberOfCyclicBool, 1264
GetMecUnitName, 1265
GetModalPayLoadMode, 1266
GetMotorTorque, 1267
GetNextCyclicBool, 1270
GetNextMechUnit, 1272
GetNextSym, 1275
GetNumberOfCyclicBool, 1277
GetServiceInfo, 1278
GetSignalOrigin, 1280
GetSysData, 259
GetSysInfo, 1282
GetTaskName, 1285
GetTime, 1287
GetTrapData, 262
GetTSPStatus, 1289
GetUASUserName, 1291
GInput, 1292
GInputDnum, 1294
GOTO, 264
GOutput, 1297
GOutputDnum, 1299
GripLoad, 266

H
handler_type, 1638
HexToDec, 1302
HollowWristReset, 268

I
I/O interrupt routines, 1791
ICap, 270
icondata, 1639
IDelete, 275

1798 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Index

identno, 1641
IDisable, 276
IEnable, 277
IError, 278
IF, 281
Incr, 283
IndAMove, 285
IndCMove, 289
IndDMove, 293
IndInpos, 1303
IndReset, 296
IndRMove, 301
IndSpeed, 1305
InitSuperv, 305
intnum, 1643
InvertDO, 306
IOBusStart, 308
IOBusState, 309
iodev, 1645
IODisable, 312
IOEnable, 315
iounit_state, 1646
IOUnitState, 1307
IPathPos, 318
IPers, 320
IRMQMessage, 322
IsBrakeCheckActive, 1310
IsCyclicBool, 1311
IsFile, 1314
ISignalAI, 326
ISignalAO, 336
ISignalDI, 340
ISignalDO, 343
ISignalGI, 346
ISignalGO, 349
IsLeadThrough, 1318
ISleep, 352
IsMechUnitActive, 1320
IsPers, 1321
IsStopMoveAct, 1323
IsStopStateEvent, 1325
IsSyncMoveOn, 1327
IsSysId, 1329
IsVar, 1330
ITimer, 354
IVarValue, 356
IWatch, 359

J
jointtarget, 1647

L
label, 361
listitem, 1649
Load, 362
loaddata, 1650
LoadId, 366
loadidnum, 1656
loadsession, 1657

M
MakeDir, 372
ManLoadIdProc, 373
MatrixSolve, 377
MatrixSolveQR, 380
MatrixSVD, 382
Max, 1331

MaxExtLinearSpeed , 1332
MaxExtReorientSpeed, 1333
MaxRobReorientSpeed, 1334
MaxRobSpeed, 1335
MechUnitLoad, 385
mecunit, 1658
Min, 1336
MirPos, 1337
MOD, 1339
ModExist, 1340
ModTimeDnum, 1341
MotionPlannerNo, 1343
MotionProcessModeSet, 390
MotionSup, 392
motsetdata, 1660
MoveAbsJ, 395
MoveC, 402
MoveCAO, 410
MoveCDO, 415
MoveCGO, 420
MoveCSync, 425
MoveExtJ, 430
MoveJ, 433
MoveJAO, 439
MoveJDO, 443
MoveJGO, 447
MoveJSync, 452
MoveL, 457
MoveLAO, 463
MoveLDO, 467
MoveLGO, 471
MoveLSync, 476
MovePnP, 481
MToolRotCalib, 491
MToolTCPCalib, 494

N
NonMotionMode, 1345
NOrient, 1348
NOT, 1347
num, 1666
NumToDnum, 1350
NumToStr, 1351

O
Offs, 1353
opcalc, 1668
Open, 497
OpenDir, 501
OpMode, 1355
opnum, 1669
OR, 1356
orient, 1670
OrientZYX, 1357
ORobT, 1359

P
PackDNHeader, 503
PackRawBytes, 506
paridnum, 1675
ParIdPosVaild, 1361
ParIdRobValid, 1364
paridvalidnum, 1677
PathAccLim, 510
PathLevel, 1367
pathrecid, 1679
PathRecMoveBwd, 514

Technical reference manual - RAPID Instructions, Functions and Data types 1799
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Index

PathRecMoveFwd, 520
PathRecStart, 523
PathRecStop, 526
PathRecValidBwd, 1369
PathRecValidFwd, 1372
PathResol, 529
PDispOff, 531
PDispOn, 532
PDispSet, 537
PFRestart, 1376
pnpdata, 1681
pos, 1683
pose, 1685
PoseInv, 1377
PoseMult, 1379
PoseVect, 1381
Pow, 1383
PowDnum, 1384
PPMovedInManMode, 1385
Present, 1386
ProcCall, 540
ProcerrRecovery, 542
processtimes, 1686
progdisp, 1687
ProgMemFree, 1388
PrxActivAndStoreRecord, 548
PrxActivRecord, 550
PrxDbgStoreRecord, 552
PrxDeactRecord, 553
PrxGetMaxRecordpos, 1389
PrxResetPos, 554
PrxResetRecords, 555
PrxSetPosOffset , 556
PrxSetRecordSampleTime, 557
PrxSetSyncalarm, 558
PrxStartRecord, 559
PrxStopRecord, 561
PrxStoreRecord, 562
PrxUseFileRecord, 564
PulseDO, 565

R
RAISE, 568
RaiseToUser, 571
rawbytes, 1689
RawBytesLen, 1390
ReadAnyBin, 574
ReadBin, 1392
ReadBlock, 577
ReadCfgData, 579
ReadDir, 1394
ReadErrData, 583
ReadMotor, 1397
ReadNum, 1399
ReadRawBytes, 586
ReadStr, 1402
ReadStrBin, 1406
ReadVar, 1408
ReadVarArr, 589
RelTool, 1410
RemainingRetries, 1412
RemoveAllCyclicBool, 591
RemoveCyclicBool, 593
RemoveDir, 595
RemoveFile, 597
RemoveSuperv, 598
RenameFile, 600

Reset, 602
ResetAxisDistance, 604
ResetAxisMoveTime, 606
ResetPPMoved, 608
ResetRetryCount, 609
restartblkdata, 1691
restartdata, 1693
RestoPath, 610
RETRY, 612
RETURN, 613
Rewind, 615
RMQEmptyQueue, 616
RMQFindSlot, 618
RMQGetMessage, 620
RMQGetMsgData, 623
RMQGetMsgHeader, 626
RMQGetSlotName, 1413
rmqheader, 1697
rmqmessage, 1699
RMQReadWait, 629
RMQSendMessage, 632
RMQSendWait, 636
rmqslot, 1700
robjoint, 1701
RobName, 1415
RobOS, 1417
robtarget, 1702
Round, 1418
RoundDnum, 1420
RunMode, 1422

S
SafetyControllerGetChecksum, 1424
SafetyControllerGetOpModePinCode, 1425
SafetyControllerGetSWVersion, 1426
SafetyControllerGetUserChecksum, 1427
SafetyControllerSyncRequest, 641
Save, 642
SaveCfgData, 645
SCWrite, 647
SearchC, 650
SearchExtJ, 660
SearchL, 668
SenDevice, 680
sensor, 1705
Sensor Interface, 577
sensorstate, 1707
sensorvardata, 1708
service routines, 1788
Set, 682
SetAllDataVal, 684
SetAO, 686
SetDataSearch, 688
SetDataVal, 692
SetDO, 695
SetGO, 698
SetLeadThrough, 701
SetSysData, 704
SetupCyclicBool, 706
SetupSuperv, 709
shapedata, 1710
SiClose, 715
SiConnect, 712
SiGetCyclic, 717
signalorigin, 1712
signalxx, 1714
Sin, 1428

1800 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Index

SinDnum, 1429
SingArea, 719
SiSetCyclic, 722
SkipWarn, 724
SocketAccept, 725
SocketBind, 728
SocketClose, 730
SocketConnect, 732
SocketCreate, 735
socketdev, 1716
SocketGetStatus, 1430
SocketListen, 737
SocketPeek, 1433
SocketReceive, 739
SocketReceiveFrom, 744
SocketSend, 749
SocketSendTo, 753
socketstatus, 1717
SoftAct, 757
SoftDeact, 759
SoftElbow, 760
speeddata, 1718
SpeedLimAxis, 762
SpeedLimCheckPoint, 766
SpeedRefresh, 771
SpyStart, 774
SpyStop, 776
Sqrt, 1435
SqrtDnum, 1436
StartLoad, 777
StartMove, 781
StartMoveRetry, 784
STCalcForce, 1437
STCalcTorque, 1439
STCalib, 787
STClose, 791
StepBwdPath, 794
STIndGun, 796
STIndGunReset, 798
STIsCalib, 1441
STIsClosed, 1443
STIsIndGun, 1445
STIsOpen, 1446
SToolRotCalib, 799
SToolTCPCalib, 802
Stop, 805
STOpen, 808
StopMove, 810
StopMoveReset, 814
stoppointdata, 1722
StorePath, 816
StrDigCalc, 1448
StrDigCmp, 1451
StrFind, 1453
string, 1728
stringdig, 1730
StrLen, 1455
StrMap, 1456
StrMatch, 1458
StrMemb, 1460
StrOrder, 1462
StrPart, 1464
StrToByte, 1466
StrToVal, 1468
STTune, 818
STTuneReset, 822

supervtimeouts, 1731
SupSyncSensorOff, 823
SupSyncSensorOn, 824
switch, 1733
symnum, 1734
syncident, 1735
SyncMoveOff, 826
SyncMoveOn, 832
SyncMoveResume, 838
SyncMoveSuspend, 840
SyncMoveUndo, 842
SyncToSensor, 844
system data, 1736
SystemStopAction, 846

T
Tan, 1470
TanDnum, 1471
taskid, 1738
TaskIsActive, 1476
TaskIsExecuting, 1478
TaskRunMec, 1472
TaskRunRob, 1473
tasks, 1739
TasksInSync, 1474
TEST, 848
TestAndSet, 1480
TestDI, 1483
testsignal, 1741
TestSignDefine, 850
TestSignRead, 1485
TestSignReset, 852
TextGet, 1487
TextTabFreeToUse, 1489
TextTabGet, 1491
TextTabInstall, 853
tooldata, 1743
TPErase, 855
tpnum, 1749
TPReadDnum, 856
TPReadFK, 860
TPReadNum, 865
TPShow, 869
TPWrite, 870
trapdata, 1750
TRAP routines, 1794
TriggC, 873
TriggCheckIO, 882
triggdata, 1752
TriggDataCopy, 888
TriggDataReset, 890
TriggDataValid, 1493
TriggEquip, 892
TriggInt, 898
TriggIO, 903
triggios, 1753
triggiosdnum, 1756
TriggJ, 909
TriggJIOs, 925
TriggL, 917
TriggLIOs, 932
triggmode, 1758
TriggRampAO, 940
TriggSpeed, 947
TriggStopProc, 957
triggstrgo, 1761
Trunc, 1495

Technical reference manual - RAPID Instructions, Functions and Data types 1801
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Index

TruncDnum, 1497
TryInt, 963
TRYNEXT, 965
tsp_status, 1764
TuneReset, 966
TuneServo, 967
tunetype, 1766
Type, 1499

U
UIAlphaEntry, 1501
UIClientExist, 1508
UIDnumEntry, 1509
UIDnumTune, 1516
UIListView, 1523
UIMessageBox, 1531
UIMsgBox, 974
UIMsgWrite, 983
UIMsgWriteAbort, 987
UINumEntry, 1539
UINumTune, 1546
UIShow, 988
uishownum, 1767
UnLoad, 992
UnpackRawBytes, 995

V
ValidIO, 1553
ValToStr, 1555
VectMagn, 1557
VelSet, 999

W
WaitAI, 1001
WaitAO, 1007
WaitDI, 1013
WaitDO, 1018
WaitGI, 1023
WaitGO, 1029
WaitLoad, 1035
WaitRob, 1039

WaitSensor, 1041
WaitSyncTask, 1044
WaitTestAndSet, 1048
WaitTime, 1051
WaitUntil, 1053
WaitWObj, 1060
WarmStart, 1063
weavestartdata, 1768
WHILE, 1064
wobjdata, 1770
WorldAccLim, 1066
Write, 1068
WriteAnyBin, 1071
WriteBin, 1074
WriteBlock, 1076
WriteCfgData, 1078
WriteRawBytes, 1082
WriteStrBin, 1084
WriteVar, 1086
WriteVarArr, 1089
WZBoxDef, 1091
WZCylDef, 1093
WZDisable, 1096
WZDOSet, 1098
WZEnable, 1102
WZFree, 1104
WZHomeJointDef, 1106
WZLimJointDef, 1109
WZLimSup, 1113
WZSphDef, 1116
wzstationary, 1774
wztemporary, 1776

X
XOR, 1559

Y
YuMi, 154

Z
zonedata, 1778

1802 Technical reference manual - RAPID Instructions, Functions and Data types
3HAC050917-001 Revision: H

© Copyright 2004-2018 ABB. All rights reserved.

Index

ABB AB, Robotics
Robotics and Motion
S-721 68 VÄSTERÅS, Sweden
Telephone +46 (0) 21 344 400

ABB AS, Robotics
Robotics and Motion
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics and Motion
No. 4528 Kangxin Highway
PuDong District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics and Motion
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
50
91
7-
0
0
1,
R
ev

H
,e
n

© Copyright 2004-2018 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	1 Instructions
	1.1 AccSet - Reduces the acceleration
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	Acc
	Ramp
	[\FinePointRamp]

	Program execution
	Syntax
	Related information

	1.2 ActEventBuffer - Activation of event buffer
	Description
	Basic examples
	Example 1

	Program execution
	Limitations
	Syntax
	Related information

	1.3 ActUnit - Activates a mechanical unit
	Usage
	Basic examples
	Example 1

	Arguments
	MechUnit

	Program execution
	Limitations
	Syntax
	Related information

	1.4 Add - Adds a numeric value
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Arguments
	Name
	Dname
	AddValue
	AddDvalue

	Limitations
	Syntax
	Related information

	1.5 AliasCamera - Define camera device with alias name
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	CameraName
	FromCamera
	ToCamera

	Program execution
	Error handling
	Limitation
	Syntax
	Related information

	1.6 AliasIO - Define I/O signal with alias name
	Usage
	Basic examples
	Example 1

	Arguments
	FromSignal
	ToSignal

	Program execution
	Error handling
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.7 AliasIOReset - Resetting I/O signal with alias name
	Usage
	Basic examples
	Example 1

	Arguments
	Signal

	Program execution
	Limitation
	Syntax
	Related information

	1.8 ":=" - Assigns a value
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	Data
	Value

	More examples
	Example 1
	Example 2

	Limitations
	Syntax
	Related information

	1.9 BitClear - Clear a specified bit in a byte or dnum data
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	BitData
	DnumData
	BitPos

	Limitations
	Syntax
	Related information

	1.10 BitSet - Set a specified bit in a byte or dnum data
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	BitData
	DnumData
	BitPos

	Limitations
	Syntax
	Related information

	1.11 BookErrNo - Book a RAPID system error number
	Usage
	Basic examples
	Example 1

	Arguments
	ErrorName

	Limitations
	Syntax
	Related information

	1.12 Break - Break program execution
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.13 CallByVar - Call a procedure by a variable
	Usage
	Basic examples
	Example 1

	Arguments
	Name
	Number

	More examples
	Example 1 - Static selection of procedure call
	Example 2 - Dynamic selection of procedure call with RAPID syntax
	Example 3 - Dynamic selection of procedure call with CallByVar

	Limitations
	Error handling
	Syntax
	Related information

	1.14 CamFlush - Removes the collection data for the camera
	Usage
	Basic examples
	Example 1

	Arguments
	Camera

	Syntax
	Related information

	1.15 CamGetParameter - Get different named camera parameters
	Usage
	Basic examples
	Example 1

	Arguments
	Camera
	ParName
	[\NumVar]
	[\BoolVar]
	[\StrVar]

	Program execution
	Error handling
	Syntax
	Related information

	1.16 CamGetResult - Gets a camera target from the collection
	Usage
	Basic examples
	Example 1

	Arguments
	Camera
	CamTarget
	[\SceneId]
	[\MaxTime]

	Program execution
	Error handling
	Syntax
	Related information

	1.17 CamLoadJob - Load a camera task into a camera
	Usage
	Basic examples
	Example 1

	Arguments
	Camera
	Name
	[\KeepTargets]
	[\MaxTime]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.18 CamReqImage - Order the camera to acquire an image
	Usage
	Basic examples
	Example 1

	Arguments
	Camera
	[\SceneId]
	[\KeepTargets]
	[\AwaitComplete]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.19 CamSetExposure - Set camera specific data
	Usage
	Basic examples
	Example 1

	Arguments
	Camera
	[\ExposureTime]
	[\Brightness]
	[\Contrast]

	Program execution
	Error handling
	Syntax
	Related information

	1.20 CamSetParameter - Set different named camera parameters
	Usage
	Basic examples
	Example 1

	Arguments
	Camera
	ParName
	[\NumVal]
	[\BoolVal]
	[\StrVal]

	Error handling
	Syntax
	Related information

	1.21 CamSetProgramMode - Orders the camera to go to program mode
	Usage
	Basic examples
	Example 1

	Arguments
	Camera

	Program execution
	Error handling
	Syntax
	Related information

	1.22 CamSetRunMode - Orders the camera to run mode
	Usage
	Basic examples
	Example 1

	Arguments
	Camera

	Program execution
	Error handling
	Syntax
	Related information

	1.23 CamStartLoadJob - Start load of a camera task into a camera
	Usage
	Basic examples
	Example 1

	Arguments
	Camera
	Name
	[\KeepTargets]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.24 CamWaitLoadJob – Wait until a camera task is loaded
	Usage
	Basic examples
	Example 1

	Arguments
	Camera

	Error handling
	Limitations
	Syntax
	Related information

	1.25 CancelLoad - Cancel loading of a module
	Usage
	Basic examples
	Example1

	Arguments
	LoadNo

	More examples
	Example 1

	Error handling
	Limitation
	Syntax
	Related information

	1.26 CapAPTrSetup - Setup an At-Point-Tracker
	Usage
	Basic example
	Arguments
	device
	DoLeft
	LevelLeft
	DoRight
	LevelRight
	[\LogFile]
	[\LogSize]

	Syntax
	Related information

	1.27 CapAPTrSetupAI - Setup an At-Point-Tracker controlled by analog input signals
	Usage
	Basic examples
	Example 1

	Arguments
	ai_y
	ai_z
	ReferenceData
	MaxIncCorr
	WarnMaxCorr
	Filter
	SampleTime
	LogFile
	LatestCorr
	AccCorr
	LogSize

	Syntax
	Related information

	1.28 CapAPTrSetupAO - Setup an At-Point-Tracker controlled by analog output signals
	Usage
	Basic examples
	Example 1

	Arguments
	ao_y
	ao_z
	ReferenceData
	MaxIncCorr
	WarnMaxCorr
	Filter
	SampleTime
	LogFile
	LogSize
	LatestCorr
	AccCorr

	Syntax
	Related information

	1.29 CapAPTrSetupPERS - Setup an At-Point-Tracker controlled by persistent variables
	Usage
	Basic examples
	Example 1

	Arguments
	var_y
	var_z
	ReferenceData
	MaxIncCorr
	WarnMaxCorr
	Filter
	SampleTime
	LogFile
	LatestCorr
	AccCorr
	LogSize

	Syntax
	Related information

	1.30 CapC - Circular CAP motion instruction
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Cirpoint
	ToPoint
	[\Id]
	Speed
	Cdata
	[\Movestart_timer]
	Weavestart
	Weave
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\Track]
	[\Corr]
	[\PreProcessTracking]
	[\Time]
	[\T1] [\T2] [\T3] [\T4] [\T5] [\T6] [\T7] [\T8]
	[\TLoad]

	Error handling
	Supervision errors
	Sensor related errors
	Errors possible in MultiMove systems
	Errors inherited from TriggX
	Other CAP errors

	Program execution
	CAP process
	Trigger conditions [\T1] to [\T8]
	Limitations
	Syntax
	Related information

	1.31 CapCondSetDO - Set a digital output signal at TCP stop
	Usage
	Basic example
	Arguments
	Signal
	Value

	Limitations
	Syntax
	Related information

	1.32 CapEquiDist - Generate equidistant event
	Usage
	Basic example
	Arguments
	[\Distance]
	[\Reset]

	Limitations
	Syntax
	Related information

	1.33 CapL - Linear CAP motion instruction
	Usage
	Basic examples
	Example1
	Example 2

	Arguments
	ToPoint
	[\Id]
	Speed
	Cdata
	[\Movestart_timer]
	Weavestart
	Weave
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\Track]
	[\Corr]
	[\PreProcessTracking]
	[\Time]
	[\T1] to [\T8]
	[\TLoad]

	Error handling
	Supervision errors
	Sensor related errors
	Errors possible in MultiMove systems
	Errors inherited from TriggX
	Other CAP errors

	Program execution
	CAP process
	Trigger conditions [\T1] to [\T8]
	Limitations
	Syntax
	Related information

	1.34 CapLATrSetup - Set up a Look-Ahead-Tracker
	Usage
	Basic example
	Arguments
	device
	calibframe
	CalibPos
	[\WarnMaxCorr]
	[\Logfile]
	[\LogSize]
	[\SensorFreq]
	[\IpolServoDelay]
	[\IpolCorrGain]
	[\ServoSensFactor]
	[\CorrFilter]
	[\IpolCorrFilter]
	[\ServoCorrFilter]
	[\ErrRampIn]
	[\ErrorRampOut]
	[\CBAngle]
	[\MaxBlind]
	[\MaxIncCorr]
	[\CalibFrame2]
	[\CalibFrame3]

	Syntax
	Related information

	1.35 CapNoProcess - Run CAP without process
	Usage
	Basic example
	Arguments
	skip_distance

	Limitations
	Syntax
	Related information

	1.36 CapRefresh - Refresh CAP data
	Usage
	Basic example
	Arguments
	[\MainSpeed]
	[\MainWeave]
	[\StartWeave]
	[\RestartDist]

	Syntax
	Related information

	1.37 CapWeaveSync - set up signals and levels for weave synchronization
	Usage
	Basic example
	Arguments
	[\Reset]
	[\DoLeft]
	[\LevelLeft]
	[\LevelLeft]
	[\DoRight]
	[\LevelRight]

	Program execution
	Limitations
	Syntax
	Related information

	1.38 CheckProgRef - Check program references
	Usage
	Basic examples
	Example 1

	Program execution
	Error handling
	Syntax
	Related information

	1.39 CirPathMode - Tool reorientation during circle path
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Description
	PathFrame
	ObjectFrame
	CirPointOri
	Wrist45 / Wrist46 / Wrist56

	Arguments
	[\PathFrame]
	[\ObjectFrame]
	[\CirPointOri]
	[\Wrist45]
	[\Wrist46]
	[\Wrist56]

	Program execution
	Limitations
	Syntax
	Related information

	1.40 Clear - Clears the value
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Name
	Dname

	Syntax
	Related information

	1.41 ClearIOBuff - Clear input buffer of a serial channel
	Usage
	Basic examples
	Example 1

	Arguments
	IODevice

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.42 ClearPath - Clear current path
	Usage
	Basic examples
	Example 1

	Limitations
	Example 1 - Limitation
	Example 2 - No limitations

	Syntax
	Related information

	1.43 ClearRawBytes - Clear the contents of rawbytes data
	Usage
	Basic examples
	Example 1

	Arguments
	RawData
	[\FromIndex]

	Program execution
	Syntax
	Related information

	1.44 ClkReset - Resets a clock used for timing
	Usage
	Basic examples
	Example 1

	Arguments
	Clock

	Program execution
	Syntax
	Related Information

	1.45 ClkStart - Starts a clock used for timing
	Usage
	Basic examples
	Example 1

	Arguments
	Clock

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related Information

	1.46 ClkStop - Stops a clock used for timing
	Usage
	Basic examples
	Arguments
	Clock

	Program execution
	Error handling
	Syntax
	Related Information

	1.47 Close - Closes a file or serial channel
	Usage
	Basic examples
	Example 1

	Arguments
	IODevice

	Program execution
	Syntax
	Related information

	1.48 CloseDir - Close a directory
	Usage
	Basic examples
	Example 1

	Arguments
	Dev

	Syntax
	Related information

	1.49 Comment - Comment
	Usage
	Basic examples
	Example 1

	Arguments
	Comment

	Program execution
	Limitations
	Comments in a record

	Syntax
	Related information

	1.50 Compact IF - If a condition is met, then... (one instruction)
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Condition

	Syntax
	Related information

	1.51 ConfJ - Controls the configuration during joint movement
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\On]
	[\Off]

	Program execution
	Syntax
	Related information

	1.52 ConfL - Monitors the configuration during linear movement
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\On]
	[\Off]

	Program execution
	Syntax
	Related information

	1.53 CONNECT - Connects an interrupt to a trap routine
	Usage
	Basic examples
	Example 1

	Arguments
	Interrupt
	Trap routine

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.54 ContactL - Linear contact movement
	Usage
	Description
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\DesiredTorque]
	ToPoint
	[\ID]
	Speed
	[\Zone]
	Tool
	[\WObj]

	Program execution
	Error handling
	Example

	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.55 CopyFile - Copy a file
	Usage
	Basic examples
	Example 1

	Arguments
	OldPath
	NewPath

	Program execution
	Error Handling
	Syntax
	Related information

	1.56 CopyRawBytes - Copy the contents of rawbytes data
	Usage
	Basic examples
	Example 1

	Arguments
	FromRawData
	FromIndex
	ToRawData
	ToIndex
	[\NoOfBytes]

	Program execution
	Limitations
	Syntax
	Related information

	1.57 CornerPathWarning - Show or hide corner path warnings
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Active

	Program execution
	Syntax
	Related information

	1.58 CorrClear - Removes all correction generators
	Descriptions
	Basic examples
	Example 1

	Syntax
	Related information

	1.59 CorrCon - Connects to a correction generator
	Usage
	Basic examples
	Example1

	Arguments
	Descr

	More examples
	Path coordinate system
	Application example
	Program example
	Program explanation
	The correction generators

	Limitations
	Syntax
	Related information

	1.60 CorrDiscon - Disconnects from a correction generator
	Description
	Basic examples
	Example 1

	Arguments
	Descr

	More examples
	Syntax
	Related information

	1.61 CorrWrite - Writes to a correction generator
	Description
	Basic examples
	Example 1

	Arguments
	Descr
	Data

	More examples
	Limitations
	Syntax
	Related information

	1.62 DeactEventBuffer - Deactivation of event buffer
	Description
	Basic examples
	Example 1

	Program execution
	Limitations
	Syntax
	Related information

	1.63 DeactUnit - Deactivates a mechanical unit
	Usage
	Examples
	Example 1
	Example 2
	Example 3

	Arguments
	MechUnit

	Program execution
	Limitations
	Syntax
	Related information

	1.64 Decr - Decrements by 1
	Usage
	Basic examples
	Example 1

	Arguments
	Name
	Dname

	More examples
	Example 1
	Example 2

	Syntax
	Related information

	1.65 DropSensor - Drop object on sensor
	Usage
	Basic example
	Arguments
	MechUnit

	Program execution
	Limitations
	Syntax
	Related information

	1.66 DropWObj - Drop work object on conveyor
	Usage
	Basic examples
	Example 1

	Arguments
	WObj

	Program execution
	Limitations
	Syntax
	Related information

	1.67 EGMActJoint - Prepare an EGM movement for a joint target
	Usage
	Basic examples
	Arguments
	EGMid
	[\Tool]
	[\Wobj]
	[\TLoad]
	[\J1] [\J2] [\J3] [\J4] [\J5] [\J6] [\J7]
	[\LpFilter]
	[\SampleRate]
	[\MaxPosDeviation]
	[\MaxSpeedDeviation]

	Limitations
	Syntax
	Related information

	1.68 EGMActMove - Prepare an EGM movement with path correction
	Usage
	Basic examples
	Example 1

	Arguments
	EGMid
	SensorFrame
	[\SampleRate]

	Program execution
	Syntax
	Related information

	1.69 EGMActPose - Prepare an EGM movement for a pose target
	Usage
	Basic examples
	Arguments
	EGMid
	[\Tool]
	[\Wobj]
	[\TLoad]
	CorrFrame
	CorrFrType
	SensorFrame
	SensFrType
	[\x] [\y] [\z]
	[\rx] [\ry] [\rz]
	[\LpFilter]
	[\SampleRate]
	[\MaxPosDeviation]
	[\MaxSpeedDeviation]

	Limitations
	Syntax
	Related information

	1.70 EGMGetId - Gets an EGM identity
	Usage
	Basic examples
	Arguments
	EGMid

	Limitations
	Syntax
	Related information

	1.71 EGMMoveC - Circular EGM movement with path correction
	Usage
	Basic examples
	Example 1

	Arguments
	EGMid
	CirPoint
	ToPoint
	Speed
	Zone
	Tool
	[\WObj]
	[\TLoad]
	[\NoCorr]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.72 EGMMoveL - Linear EGM movement with path correction
	Usage
	Basic examples
	Example 1

	Arguments
	EGMid
	ToPoint
	Speed
	Zone
	Tool
	[\WObj]
	[\TLoad]
	[\NoCorr]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.73 EGMReset - Reset an EGM process
	Usage
	Basic examples
	Arguments
	EGMid

	Syntax
	Related information

	1.74 EGMRunJoint - Perform an EGM movement with a joint target
	Usage
	Basic examples
	Arguments
	EGMid
	Mode
	[\NoWaitCond]
	[\J1] [\J2] [\J3] [\J4] [\J5] [\J6] [\J7]
	[\CondTime]
	[\RampInTime]
	[\RampOutTime]
	[\PosCorrGain]

	Error handling
	Limitations
	Syntax
	Related information

	1.75 EGMRunPose - Perform an EGM movement with a pose target
	Usage
	Basic examples
	Arguments
	EGMid
	Mode
	[\NoWaitCond]
	[\x] [\y] [\z]
	[\rx] [\ry] [\rz]
	[\CondTime]
	[\RampInTime]
	[\RampOutTime]
	[\Offset]
	[\PosCorrGain]

	Error handling
	Limitations
	Syntax
	Related information

	1.76 EGMSetupAI - Setup analog input signals for EGM
	Usage
	Basic examples
	Arguments
	MecUnit
	EGMid
	ExtConfigName
	[\Joint]
	[\Pose]
	[\PathCorr]
	[\APTR]
	[\LATR]
	[\aiR1x] [\aiR2y] [\aiR3z]
	[\aiR4rx] [\aiR5ry] [\aiR6rz]
	[\aiE1] [\aiE2] [\aiE3] [\aiE4] [\aiE5] [\aiE6]

	Error handling
	Limitations
	Syntax
	Related information

	1.77 EGMSetupAO - Setup analog output signals for EGM
	Usage
	Basic examples
	Arguments
	MecUnit
	EGMid
	ExtConfigName
	[\Joint]
	[\Pose]
	[\PathCorr]
	[\APTR]
	[\LATR]
	[\aoR1x] [\aoR2y] [\aoR3z]
	[\aoR4rx] [\aoR5ry] [\aoR6rz]
	[\aoE1] [\aoE2] [\aoE3] [\aoE4] [\aoE5] [\aoE6]

	Error handling
	Limitations
	Syntax
	Related information

	1.78 EGMSetupGI - Setup group input signals for EGM
	Usage
	Basic examples
	Arguments
	MecUnit
	EGMid
	ExtConfigName
	[\Joint]
	[\Pose]
	[\PathCorr]
	[\APTR]
	[\LATR]
	[\giR1x] [\giR2y] [\giR3z]
	[\giR4rx] [\giR5ry] [\giR6rz]
	[\giE1] [\giE2] [\giE3] [\giE4] [\giE5] [\giE6]

	Error handling
	Limitations
	Syntax
	Related information

	1.79 EGMSetupLTAPP - Setup the LTAPP protocol for EGM
	Usage
	Basic examples
	Example 1

	Arguments
	MecUnit
	EGMid
	ExtConfigName
	Device
	JointType
	[\APTR]
	[\LATR]

	Program execution
	Syntax
	Related information

	1.80 EGMSetupUC - Setup the UdpUc protocol for EGM
	Usage
	Basic examples
	Arguments
	MecUnit
	EGMid
	ExtConfigName
	UCDevice
	[\Joint]
	[\Pose]
	[\PathCorr]
	[\APTR]
	[\LATR]
	[\CommTimeout]

	Error handling
	Limitations
	Syntax
	Related information

	1.81 EGMStop - Stop an EGM movement
	Usage
	Basic examples
	Arguments
	EGMid
	Mode
	[\RampOutTime]

	Limitations
	Syntax
	Related information

	1.82 EGMStreamStart - start EGM position streaming
	Usage
	Basic example
	Example 1

	Arguments
	EGMid
	[\SampleRate]

	Program execution
	Limitations
	Syntax
	Related information

	1.83 EGMStreamStop - stop EGM position streaming
	Usage
	Basic example
	Example 1

	Arguments
	EGMid

	Program execution
	Limitations
	Syntax
	Related information

	1.84 EGMWaitCond - wait for EGM process
	Usage
	Basic example
	Example 1

	Arguments
	EGMid

	Program execution
	Limitations
	Syntax
	Related information

	1.85 EOffsOff - Deactivates an offset for additional axes
	Usage
	Basic examples
	Example 1
	Example 2

	Program execution
	Syntax
	Related information

	1.86 EOffsOn - Activates an offset for additional axes
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\ExeP]
	ProgPoint

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	1.87 EOffsSet - Activates an offset for additional axes using known values
	Usage
	Basic examples
	Example 1

	Arguments
	EAxOffs

	Program execution
	Syntax
	Related information

	1.88 EraseModule - Erase a module
	Usage
	Basic examples
	Example 1

	Arguments
	ModuleName

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.89 ErrLog - Write an error message
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	ErrorId
	[\W]
	[\I]
	Argument1
	Argument2
	Argument3
	Argument4
	Argument5

	Program execution
	Limitations
	Syntax
	Related information

	1.90 ErrRaise - Writes a warning and calls an error handler
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	ErrorName
	ErrorId
	Argument1
	Argument2
	Argument3
	Argument4
	Argument5

	Program execution
	Limitations
	More examples
	Example 1

	Syntax
	Related information

	1.91 ErrWrite - Write an error message
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\W]
	[\I]
	Header
	Reason
	[\RL2]
	[\RL3]
	[\RL4]

	Program execution
	Limitations
	Syntax
	Related information

	1.92 EXIT - Terminates program execution
	Usage
	Basic examples
	Example 1

	Syntax
	Related information

	1.93 ExitCycle - Break current cycle and start next
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.94 FitCircle - Fits a circle to 3D-points
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Points
	[\NumPoints]
	Center
	Radius
	Normal
	[\RMS]
	[\MaxErr]
	[\IndexWorst]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.95 FOR - Repeats a given number of times
	Usage
	Basic examples
	Example 1

	Arguments
	Loop counter
	Start value
	End value
	Step value

	More examples
	Example 1

	Program execution
	Limitations
	Remarks
	Syntax
	Related information

	1.96 FricIdInit - Initiate friction identification
	Usage
	Example
	Prerequisites
	Limitations
	Syntax
	Related information

	1.97 FricIdEvaluate - Evaluate friction identification
	Usage
	Example
	Arguments
	FricLevels
	[\MechUnit]
	[\BwdSpeed]
	[\NoPrint]
	[\FricLevelMax]
	[\FricLevelMin]
	[\OptTolerance]

	Error handling
	Prerequisites
	Limitations
	Syntax
	Related information

	1.98 FricIdSetFricLevels - Set friction levels after friction identification
	Usage
	Example
	Arguments
	FricLevels
	[\MechUnit]

	Program execution
	Prerequisites
	Limitations
	Syntax
	Related information

	1.99 GetDataVal - Get the value of a data object
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	Object
	[\Block]
	[\TaskRef]
	[\TaskName]
	Value

	Error handling
	Limitations
	Syntax
	Related information

	1.100 GetJointData - Get joint specific data
	Usage
	Basic examples
	Example 1

	Arguments
	[\MechUnit]
	Axis
	[\Position]
	[\Speed]
	[\Torque]
	[\ExtTorque]

	Program execution
	Error handling
	Syntax

	1.101 GetSysData - Get system data
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\TaskRef]
	[\TaskName]
	DestObject
	[\ObjectName]

	Program execution
	Error handling
	Syntax
	Related information

	1.102 GetTrapData - Get interrupt data for current TRAP
	Usage
	Basic examples
	Example 1

	Arguments
	TrapEvent

	Limitation
	More examples
	Example 1

	Syntax
	Related information

	1.103 GOTO - Goes to a new instruction
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	Label

	Limitations
	Syntax
	Related information

	1.104 GripLoad - Defines the payload for a robot
	Usage
	Description
	Basic examples
	Example 1
	Example 2

	Arguments
	Load

	Program execution
	Syntax
	Related information

	1.105 HollowWristReset - Reset hollow wrist
	Usage
	Description
	Basic examples
	Example 1

	Limitations
	Syntax
	Related information

	1.106 ICap - connect CAP events to trap routines
	Usage
	Basic example
	Arguments
	Interrupt
	Event

	Available CAP events
	Limitations
	Syntax
	Related information

	1.107 IDelete - Cancels an interrupt
	Usage
	Basic examples
	Example 1

	Arguments
	Interrupt

	Program execution
	Syntax
	Related information

	1.108 IDisable - Disables interrupts
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.109 IEnable - Enables interrupts
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.110 IError - Orders an interrupt on errors
	Usage
	Basic examples
	Example 1

	Arguments
	ErrorDomain
	[\ErrorId]
	ErrorType
	Interrupt

	Program execution
	More examples
	Limitation
	Syntax
	Related information

	1.111 IF - If a condition is met, then ...; otherwise ...
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Condition

	More examples
	Example 1

	Program execution
	Syntax
	Related information

	1.112 Incr - Increments by 1
	Usage
	Basic examples
	Example 1

	Arguments
	Name
	Dname

	More examples
	Example 1
	Example 2

	Syntax
	Related information

	1.113 IndAMove - Independent absolute position movement
	Usage
	Basic examples
	Example 1

	Arguments
	MecUnit
	Axis
	[\ToAbsPos]
	[\ToAbsNum]
	Speed
	[\Ramp]

	Program execution
	Limitations
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.114 IndCMove - Independent continuous movement
	Usage
	Basic examples
	Example 1

	Arguments
	MecUnit
	Axis
	Speed
	[\Ramp]

	Program execution
	Limitations
	More examples
	Error handling
	Syntax
	Related information

	1.115 IndDMove - Independent delta position movement
	Usage
	Basic examples
	Example 1

	Arguments
	MecUnit
	Axis
	Delta
	Speed
	[\Ramp]

	Program execution
	Limitations
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.116 IndReset - Independent reset
	Usage
	Basic examples
	Arguments
	MecUnit
	Axis
	[\RefPos]
	[\RefNum]
	[\Short]
	[\Fwd]
	[\Bwd]
	[\Old]

	Program execution
	Limitations
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.117 IndRMove - Independent relative position movement
	Usage
	Basic examples
	Example 1

	Arguments
	MecUnit
	Axis
	[\ToRelPos]
	[\ToRelNum]
	[\Short]
	[\Fwd]
	[\Bwd]
	Speed
	[\Ramp]

	Program execution
	Limitations
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.118 InitSuperv - Reset all supervision for CAP
	Usage
	Example
	Limitations
	Syntax
	Related information

	1.119 InvertDO - Inverts the value of a digital output signal
	Usage
	Basic examples
	Example 1

	Arguments
	Signal

	Program execution
	Error handling
	Syntax
	Related information

	1.120 IOBusStart - Start of I/O network
	Usage
	Basic examples
	Example 1

	Arguments
	BusName

	Program execution
	Error handling
	Syntax
	Related information

	1.121 IOBusState - Get current state of I/O network
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	BusName
	State
	[\Phys]
	[\Logic]

	Program execution
	Error handling
	Syntax
	Related information

	1.122 IODisable - Deactivate an I/O device
	Usage
	Basic examples
	Example 1

	Arguments
	UnitName
	MaxTime

	Program execution
	Error handling
	More examples
	Example 1

	Syntax
	Related information

	1.123 IOEnable - Activate an I/O device
	Usage
	Basic examples
	Example 1

	Arguments
	UnitName
	MaxTime

	Program execution
	Error handling
	More examples
	Example 1

	Syntax
	Related information

	1.124 IPathPos - Get center line robtarget when weaving
	Usage
	Basic example
	Arguments
	p_robt
	sen_pos
	intpt
	[\NoDispl]
	[\EOffs]

	Limitations
	Syntax
	Related information

	1.125 IPers - Interrupt at value change of a persistent variable
	Usage
	Basic examples
	Example 1

	Arguments
	[\Single]
	[\SingleSafe]
	Name
	Interrupt

	Program execution
	Limitations
	Syntax
	Related information

	1.126 IRMQMessage - Orders RMQ interrupts for a data type
	Usage
	Basic examples
	Example 1

	Arguments
	InterruptDataType
	Interrupt

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.127 ISignalAI - Interrupts from analog input signal
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Single]
	[\SingleSafe]
	Signal
	Condition
	HighValue
	LowValue
	DeltaValue
	[\DPos]
	[\DNeg]
	Interrupt

	Program execution
	Conditions for interrupt generation
	Condition for interrupt generation at interrupt subscription time
	Condition for interrupt generation at each sample after interrupt subscription
	Example 1 of interrupt generation
	Example 2 of interrupt generation
	Example 3 of interrupt generation
	Example 4 of interrupt generation

	Error handling
	Limitations
	Syntax
	Related information

	1.128 ISignalAO - Interrupts from analog output signal
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Single]
	[\SingleSafe]
	Signal
	Condition
	HighValue
	LowValue
	DeltaValue
	[\DPos]
	[\DNeg]
	Interrupt

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.129 ISignalDI - Orders interrupts from a digital input signal
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Single]
	[\SingleSafe]
	Signal
	TriggValue
	Interrupt

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.130 ISignalDO - Interrupts from a digital output signal
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Single]
	[\SingleSafe]
	Signal
	TriggValue
	Interrupt

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.131 ISignalGI - Orders interrupts from a group of digital input signals
	Usage
	Basic examples
	Example 1

	Arguments
	[\Single]
	[\SingleSafe]
	Signal
	Interrupt

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.132 ISignalGO - Orders interrupts from a group of digital output signals
	Usage
	Basic examples
	Example 1

	Arguments
	[\Single]
	[\SingleSafe]
	Signal
	Interrupt

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.133 ISleep - Deactivates an interrupt
	Usage
	Basic examples
	Example 1

	Arguments
	Interrupt

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.134 ITimer - Orders a timed interrupt
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\Single]
	[\SingleSafe]
	Time
	Interrupt

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.135 IVarValue - orders a variable value interrupt
	Usage
	Basic examples
	Example 1

	Arguments
	device
	VarNo
	Value
	Interrupt
	[\Unit]
	[\DeadBand]
	[\ReportAtTool]
	[\SpeedAdapt]
	[\APTR]

	Program execution
	Limitations
	Syntax
	Related information

	1.136 IWatch - Activates an interrupt
	Usage
	Basic examples
	Example 1

	Arguments
	Interrupt

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.137 Label - Line name
	Usage
	Basic examples
	Example 1

	Arguments
	Label

	Program execution
	Limitations
	Syntax
	Related information

	1.138 Load - Load a program module during execution
	Usage
	Static mode
	Dynamic mode

	Basic examples
	Example 1
	Example 2

	Arguments
	[\Dynamic]
	FilePath
	[\File]
	[\CheckRef]

	Program execution
	More examples
	More general examples
	Loaded module contains a main procedure

	Limitations
	Error handling
	Syntax
	Related information

	1.139 LoadId - Load identification of tool or payload
	Usage
	Basic examples
	Example 1

	Condition
	Arguments
	ParIdType
	LoadIdType
	Tool
	[\ PayLoad]
	[\ WObj]
	[\ ConfAngle]
	[\ SlowTest]
	[\ Accuracy]

	Program execution
	More examples
	Example 1

	Limitations
	Error handling
	Syntax
	Related information

	1.140 MakeDir - Create a new directory
	Usage
	Basic examples
	Example 1

	Arguments
	Path

	Error handling
	Syntax
	Related information

	1.141 ManLoadIdProc - Load identification of IRBP manipulators
	Usage
	Basic examples
	Arguments
	[\ ParIdType]
	[\ MechUnit]
	[\ MechUnitName]
	[\ AxisNumber]
	[\ PayLoad]
	[\ ConfigAngle]
	[\ DeactAll]
	[\ AlreadyActive]
	[\ DefinedFlag]
	[\ DoExit]

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.142 MatrixSolve - Solve a linear equation system
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	A
	[\A_m]
	[\A_n]
	b
	x

	Program execution
	Error handling
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.143 MatrixSolveQR - Computes a QR-factorization
	Usage
	Basic examples
	Example 1

	Arguments
	A
	[\A_m]
	[\A_n]
	Q
	R

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.144 MatrixSVD - Computes a singular value decomposition
	Usage
	Basic examples
	Example 1

	Arguments
	A
	[\A_m]
	[\A_n]
	U
	S
	V
	[\Econ]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.145 MechUnitLoad - Defines a payload for a mechanical unit
	Usage
	Description
	Basic examples
	Illustration
	Example 1
	Example 2
	Example 3

	Arguments
	MechUnit
	AxisNo
	Load

	Program execution
	More examples
	Illustration
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Limitations
	Syntax
	Related information

	1.146 MotionProcessModeSet - Set motion process mode
	Usage
	Basic examples
	Arguments
	Mode

	Program execution
	Predefined data
	Limitations
	Syntax
	Related information

	1.147 MotionSup - Deactivates/Activates motion supervision
	Usage
	Description
	Basic examples
	Example 1

	Arguments
	[\On]
	[\Off]
	[\TuneValue]
	[\NoBackoff]

	Program execution
	Limitations
	Syntax
	Related information

	1.148 MoveAbsJ - Moves the robot to an absolute joint position
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\Conc]
	ToJointPos
	[\ID]
	[\NoEOffs]
	Speed
	[\V]
	[\T]
	Zone
	[\Z]
	[\Inpos]
	Tool
	[\WObj]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Error handling
	Limitations
	Syntax
	Related information

	1.149 MoveC - Moves the robot circularly
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Conc]
	CirPoint
	ToPoint
	[\ID]
	Speed
	[\V]
	[\T]
	Zone
	[\Z]
	[\Inpos]
	Tool
	[\WObj]
	[\Corr]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4

	Error handling
	Limitations
	Syntax
	Related information

	1.150 MoveCAO - Moves the robot circularly and sets analog output in the corner
	Usage
	Basic examples
	Example 1

	Arguments
	CirPoint
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	Signal
	Value
	[\TLoad]

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.151 MoveCDO - Moves the robot circularly and sets digital output in the corner
	Usage
	Basic examples
	Example 1

	Arguments
	CirPoint
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	Signal
	Value
	[\TLoad]

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.152 MoveCGO - Moves the robot circularly and set a group output signal in the corner
	Usage
	Basic examples
	Example 1

	Arguments
	CirPoint
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	Signal
	[\Value]
	[\DValue]
	[\TLoad]

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.153 MoveCSync - Moves the robot circularly and executes a RAPID procedure
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	CirPoint
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	ProcName
	[\TLoad]

	Program execution
	Limitation
	Syntax
	Related information

	1.154 MoveExtJ - Move one or several mechanical units without TCP
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\Conc]
	ToJointPos
	[\ID]
	[\UseEOffs]
	Speed
	[\T]
	Zone
	[\Inpos]

	Program execution
	More examples
	Error handling
	Syntax
	Related information

	1.155 MoveJ - Moves the robot by joint movement
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\Conc]
	ToPoint
	[\ID]
	Speed
	[\V]
	[\T]
	Zone
	[\Z]
	[\Inpos]
	Tool
	[\WObj]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4

	Error handling
	Syntax
	Related information

	1.156 MoveJAO - Moves the robot by joint movement and sets analog output in the corner
	Usage
	Basic examples
	Example 1

	Arguments
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	Signal
	Value
	[\TLoad]

	Program execution
	Error handling
	Syntax
	Related information

	1.157 MoveJDO - Moves the robot by joint movement and sets digital output in the corner
	Usage
	Basic examples
	Example 1

	Arguments
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	Signal
	Value
	[\TLoad]

	Program execution
	Error handling
	Syntax
	Related information

	1.158 MoveJGO - Moves the robot by joint movement and set a group output signal in the corner
	Usage
	Basic examples
	Example 1

	Arguments
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	Signal
	[\Value]
	[\DValue]
	[\TLoad]

	Program execution
	Error handling
	Syntax
	Related information

	1.159 MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	ProcName
	[\TLoad]

	Program execution
	Limitation
	Syntax
	Related information

	1.160 MoveL - Moves the robot linearly
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\Conc]
	ToPoint
	[\ID]
	Speed
	[\V]
	[\T]
	Zone
	[\Z]
	[\Inpos]
	Tool
	[\WObj]
	[\Corr]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example with TLoad

	Error handling
	Syntax
	Related information

	1.161 MoveLAO - Moves the robot linearly and sets analog output in the corner
	Usage
	Basic examples
	Example 1

	Arguments
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	Signal
	Value
	[\TLoad]

	Program execution
	Error handling
	Syntax
	Related information

	1.162 MoveLDO - Moves the robot linearly and sets digital output in the corner
	Usage
	Basic examples
	Example 1

	Arguments
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	Signal
	Value
	[\TLoad]

	Program execution
	Error handling
	Syntax
	Related information

	1.163 MoveLGO - Moves the robot linearly and sets group output signal in the corner
	Usage
	Basic examples
	Example 1

	Arguments
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	Signal
	[\Value]
	[\DValue]
	[\TLoad]

	Program execution
	Error handling
	Syntax
	Related information

	1.164 MoveLSync - Moves the robot linearly and executes a RAPID procedure
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	ToPoint
	[\ID]
	Speed
	[\T]
	Zone
	Tool
	[\WObj]
	ProcName
	[\TLoad]

	Program execution
	Limitation
	Syntax
	Related information

	1.165 MovePnP - Moves the robot along a pick and place path
	Usage
	Basic examples
	Example 1

	Arguments
	ToPoint
	[\ID]
	Speed
	[\PnPHeight]
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\TLoad]
	[\PnPDataIN]
	[\SignalIN]
	[\Value]
	[\MaxTime]
	[\TimeFlag]
	[\PnPTrigg]
	[\PnPTriggOption]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Limitations
	Syntax
	Related information

	1.166 MToolRotCalib - Calibration of rotation for moving tool
	Usage
	Description
	Basic examples
	Example 1
	Example 2

	Arguments
	RefTip
	ZPos
	[\XPos]
	Tool

	Program execution
	Syntax
	Related information

	1.167 MToolTCPCalib - Calibration of TCP for moving tool
	Usage
	Description
	Basic examples
	Example 1

	Arguments
	Pos1
	Pos2
	Pos3
	Pos4
	Tool
	MaxErr
	MeanErr

	Program execution
	Syntax
	Related information

	1.168 Open - Opens a file or serial channel
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Object
	[\File]
	IODevice
	[\Read]
	[\Write]
	[\Append]
	[\Bin]

	More examples
	Example 1
	Example 2

	Program execution
	Error handling
	Syntax
	Related information

	1.169 OpenDir - Open a directory
	Usage
	Basic examples
	Example 1

	Arguments
	Dev
	Path

	Limitations
	Error handling
	Syntax
	Related information

	1.170 PackDNHeader - Pack DeviceNet Header into rawbytes data
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Service
	Path
	RawData

	Program execution
	Format DeviceNet Header
	Syntax
	Related information

	1.171 PackRawBytes - Pack data into rawbytes data
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Arguments
	Value
	RawData
	[\Network]
	StartIndex
	[\Hex1]
	[\IntX]
	[\Float4]
	[\ASCII]

	Program execution
	Predefined data
	Syntax
	Related information

	1.172 PathAccLim - Reduce TCP acceleration along the path
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	AccLim
	[\AccMax]
	DecelLim
	[\DecelMax]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.173 PathRecMoveBwd - Move path recorder backwards
	Usage
	Basic examples
	Example 1

	Arguments
	[\ID]
	[\ToolOffs]
	[\Speed]

	Program execution
	Synchronized motion

	More examples
	Example 1 - Independent motion
	Example 2 - Synchronized motion

	Limitations
	Syntax
	Related information

	1.174 PathRecMoveFwd - Move path recorder forward
	Usage
	Basic examples
	Example 1

	Arguments
	[\ID]
	[\ToolOffs]
	[\Speed]

	Program execution
	More examples
	Limitations
	Syntax
	Related information

	1.175 PathRecStart - Start the path recorder
	Usage
	Basic examples
	Example 1

	Arguments
	ID

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.176 PathRecStop - Stop the path recorder
	Usage
	Basic examples
	Example 1

	Arguments
	[\Clear]

	Program execution
	More examples
	Syntax
	Related information

	1.177 PathResol - Override path resolution
	Usage
	Description
	Basic examples
	Arguments
	PathSampleTime

	Program execution
	Limitation
	Syntax
	Related information

	1.178 PDispOff - Deactivates program displacement
	Usage
	Basic examples
	Example 1
	Example 2

	Program execution
	Syntax
	Related information

	1.179 PDispOn - Activates program displacement
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Rot]
	[\ExeP]
	ProgPoint
	Tool
	[\WObj]

	Program execution
	More examples
	Example 1
	Example 2

	Syntax
	Related information

	1.180 PDispSet - Activates program displacement using known frame
	Usage
	Basic examples
	Example 1

	Arguments
	DispFrame

	Program execution
	Syntax
	Related information

	1.181 ProcCall - Calls a new procedure
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Procedure
	Argument

	Basic examples
	Example 1
	Example 2

	Limitations
	Syntax
	Related information

	1.182 ProcerrRecovery - Generate and recover from process-move error
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\SyncOrgMoveInst]
	[\SyncLastMoveInst]
	[\ProcSignal]

	Program execution
	More examples
	Example with ProcerrRecovery\SyncOrgMoveInst
	Example with ProcerrRecovery\SyncLastMoveInst

	Error handling
	Limitations
	Syntax
	Related information

	1.183 PrxActivAndStoreRecord - Activate and store the recorded profile data
	Usage
	Basic example
	Arguments
	MechUnit
	Delay
	File_name

	Program execution
	Error handling
	Syntax
	Related information

	1.184 PrxActivRecord - Activate the recorded profile data
	Usage
	Basic example
	Arguments
	MechUnit
	Delay

	Program execution
	Error handling
	Syntax
	Related information

	1.185 PrxDbgStoreRecord - Store and debug the recorded profile data
	Usage
	Basic example
	Arguments
	MechUnit
	File_name

	Syntax
	Related information

	1.186 PrxDeactRecord - Deactivate a record
	Usage
	Basic example
	Arguments
	MechUnit

	Limitations
	Syntax
	Related information

	1.187 PrxResetPos - Reset the zero position of the sensor
	Usage
	Basic example
	Arguments
	MechUnit

	Program execution
	Limitations
	Syntax
	Related information

	1.188 PrxResetRecords - Reset and deactivate all records
	Usage
	Basic example
	Arguments
	MechUnit

	Program execution
	Syntax
	Related information

	1.189 PrxSetPosOffset - Set a reference position for the sensor
	Usage
	Basic example
	Arguments
	MechUnit
	Reference

	Program execution
	Limitations
	Syntax
	Related information

	1.190 PrxSetRecordSampleTime - Set the sample time for recording a profile
	Usage
	Basic example
	Arguments
	MechUnit
	SampleTime

	Syntax
	Related information

	1.191 PrxSetSyncalarm - Set sync alarm behavior
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	MechUnit
	[\Time]
	[\NoPulse]

	Syntax
	Related information

	1.192 PrxStartRecord - Record a new profile
	Usage
	Basic example
	Arguments
	MechUnit
	Record_duration
	Profile_type

	Program execution
	Syntax
	Related information

	1.193 PrxStopRecord - Stop recording a profile
	Usage
	Basic example
	Arguments
	MechUnit

	Syntax
	Related information

	1.194 PrxStoreRecord - Store the recorded profile data
	Usage
	Basic example
	Arguments
	MechUnit
	Delay
	File_name

	Limitations
	Syntax
	Related information

	1.195 PrxUseFileRecord - Use the recorded profile data
	Usage
	Basic example
	Arguments
	MechUnit
	Delay
	File_name

	Program execution
	Syntax
	Related information

	1.196 PulseDO - Generates a pulse on a digital output signal
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\High]
	[\PLength]
	Signal

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.197 RAISE - Calls an error handler
	Usage
	Basic examples
	Example 1

	Arguments
	Error no.

	More examples
	Example 1

	Program execution
	Error handling
	Syntax
	Related information

	1.198 RaiseToUser - Propagates an error to user level
	Usage
	Basic examples
	Example 1

	Arguments
	[\Continue]
	[\BreakOff]
	[\ErrorNumber]

	Program execution
	Error handling
	Syntax
	Related information

	1.199 ReadAnyBin - Read data from a binary channel or file
	Usage
	Basic examples
	Example 1

	Arguments
	IODevice
	Data
	[\Time]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.200 ReadBlock - read a block of data from device
	Usage
	Basic examples
	Example 1

	Arguments
	device
	BlockNo
	FileName
	[\TaskName]

	Error handling
	Syntax
	Related information

	1.201 ReadCfgData - Reads attribute of a system parameter
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	InstancePath
	Attribute
	CfgData
	[\ListNo]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3

	Error handling
	Limitations
	Predefined data
	Syntax
	Related information

	1.202 ReadErrData - Gets information about an error
	Usage
	Basic examples
	Example 1

	Arguments
	TrapEvent
	ErrorDomain
	ErrorId
	ErrorType
	[\Title]
	[\Str1] ... [\Str5]

	Program execution
	More examples
	Example 1

	Limitation
	Syntax
	Related information

	1.203 ReadRawBytes - Read rawbytes data
	Usage
	Basic examples
	Example 1

	Arguments
	IODevice
	RawData
	[\Time]

	Program execution
	Error handling
	Syntax
	Related information

	1.204 ReadVarArr - Read multiple variables from a sensor device
	Usage
	Basic examples
	Example 1

	Arguments
	Device
	Data
	[\TaskName]

	Error handling
	Syntax
	Related information

	1.205 RemoveAllCyclicBool - Remove all Cyclic bool conditions
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\AllTasks]

	Program execution
	Syntax
	Related information

	1.206 RemoveCyclicBool - Remove a Cyclic bool condition
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Flag
	Name

	Program execution
	Syntax
	Related information

	1.207 RemoveDir - Delete a directory
	Usage
	Basic examples
	Example 1

	Arguments
	Path

	Error handling
	Syntax
	Related information

	1.208 RemoveFile - Delete a file
	Usage
	Basic examples
	Example 1

	Arguments
	Path

	Error handling
	Syntax
	Related information

	1.209 RemoveSuperv - Remove condition for one signal
	Usage
	Basic example
	Arguments
	Signal
	Condition
	Listtype

	Syntax
	Related information

	1.210 RenameFile - Rename a file
	Usage
	Basic examples
	Example 1

	Arguments
	OldPath
	NewPath

	Program execution
	Error Handling
	Syntax
	Related information

	1.211 Reset - Resets a digital output signal
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Signal

	Program execution
	Error handling
	Syntax
	Related information

	1.212 ResetAxisDistance - Reset the traversed distance information for the axis
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	MechUnit
	AxisNo

	Program execution
	Syntax
	Related information

	1.213 ResetAxisMoveTime - Reset the move time counter of the axis
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	MechUnit
	AxisNo

	Program execution
	Syntax
	Related information

	1.214 ResetPPMoved - Reset state for the program pointer moved in manual mode
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.215 ResetRetryCount - Reset the number of retries
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.216 RestoPath - Restores the path after an interrupt
	Usage
	Basic examples
	Example 1

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.217 RETRY - Resume execution after an error
	Usage
	Basic examples
	Example 1

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.218 RETURN - Finishes execution of a routine
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Return value

	Program execution
	Syntax
	Related information

	1.219 Rewind - Rewind file position
	Usage
	Basic examples
	Example 1

	Arguments
	IODevice

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.220 RMQEmptyQueue - Empty RAPID Message Queue
	Usage
	Basic examples
	Example

	Program execution
	Limitations
	Syntax
	Related information

	1.221 RMQFindSlot - Find a slot identity from the slot name
	Usage
	Basic examples
	Example 1

	Arguments
	Slot
	Name

	Program execution
	Error handling
	Syntax
	Related information

	1.222 RMQGetMessage - Get an RMQ message
	Usage
	Basic examples
	Example 1

	Arguments
	Message

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.223 RMQGetMsgData - Get the data part from an RMQ message
	Usage
	Basic examples
	Example 1

	Arguments
	Message
	Data

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.224 RMQGetMsgHeader - Get header information from an RMQ message
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Message
	[\Header]
	[\SenderId]
	[\UserDef]

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	1.225 RMQReadWait - Returns message from RMQ
	Usage
	Basic examples
	Example

	Arguments
	Message
	[\Timeout]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.226 RMQSendMessage - Send an RMQ data message
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Slot
	SendData
	[\UserDef]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.227 RMQSendWait - Send an RMQ data message and wait for a response
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Slot
	SendData
	[\UserDef]
	Message
	ReceiveDataType
	[\Timeout]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.228 SafetyControllerSyncRequest - Initiation of hardware synchronization procedure
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.229 Save - Save a program module
	Usage
	Basic examples
	Example 1

	Arguments
	[\TaskRef]
	[\TaskName]
	ModuleName
	[\FilePath]
	[\File]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4

	Limitations
	Error handling
	Syntax
	Related information

	1.230 SaveCfgData - Save system parameters to file
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	FilePath
	[\File]
	Domain

	Program execution
	Error handling
	Syntax
	Related information

	1.231 SCWrite - Send variable data to a client application
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Arguments
	[\ToNode]
	Variable

	Program execution
	Error handling
	SCWrite error recovery

	1.232 SearchC - Searches circularly using the robot
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Stop]
	[\PStop]
	[\SStop]
	[\Sup]
	Signal
	PersBool
	[\Flanks]
	[\PosFlank]
	[\NegFlank]
	[\HighLevel]
	[\LowLevel]
	SearchPoint
	CirPoint
	ToPoint
	[\ID]
	Speed
	[\V]
	[\T]
	Tool
	[\WObj]
	[\Corr]
	[\TLoad]

	Program execution
	More examples
	Example 1

	Limitations
	Error handling
	Syntax
	Related information

	1.233 SearchExtJ - Search with one or several mechanical units without TCP
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Stop]
	[\PStop]
	[\SStop]
	[\Sup]
	Signal
	PersBool
	[\Flanks]
	[\PosFlank]
	[\NegFlank]
	[\HighLevel]
	[\LowLevel]
	SearchJointPos
	ToJointPos
	[\ID]
	[\UseEOffs]
	Speed
	[\T]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Example

	Limitations
	Syntax
	Related information

	1.234 SearchL - Searches linearly using the robot
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Stop]
	[\PStop]
	[\SStop]
	[\Sup]
	Signal
	PersBool
	[\Flanks]
	[\PosFlank]
	[\NegFlank]
	[\HighLevel]
	[\LowLevel]
	SearchPoint
	ToPoint
	[\ID]
	Speed
	[\V]
	[\T]
	Tool
	[\WObj]
	[\Corr]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3

	Limitations
	Error handling
	Example

	Syntax
	Related information

	1.235 SenDevice - connect to a sensor device
	Usage
	Basic examples
	Example 1

	Arguments
	device

	Syntax
	Related information

	1.236 Set - Sets a digital output signal
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Signal

	Program execution
	Error handling
	Syntax
	Related information

	1.237 SetAllDataVal - Set a value to all data objects in a defined set
	Usage
	Basic examples
	Arguments
	Type
	[\TypeMod]
	[\Object]
	[\Hidden]
	Value

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.238 SetAO - Changes the value of an analog output signal
	Usage
	Basic examples
	Example 1

	Arguments
	Signal
	Value

	Program execution
	Error handling
	More examples
	Example 1

	Syntax
	Related information

	1.239 SetDataSearch - Define the symbol set in a search sequence
	Usage
	Basic examples
	Example 1

	Arguments
	Type
	[\TypeMod]
	[\Object]
	[\PersSym]
	[\VarSym]
	[\ConstSym]
	[\InTask]
	[\InMod]
	[\InRout]
	[\GlobalSym]
	[\LocalSym]

	Program execution
	Limitations
	Syntax
	Related information

	1.240 SetDataVal - Set the value of a data object
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	Object
	[\Block]
	[\TaskRef]
	[\TaskName]
	Value

	Error handling
	Limitations
	Syntax
	Related information

	1.241 SetDO - Changes the value of a digital output signal
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Arguments
	[\SDelay]
	[\Sync]
	Signal
	Value

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.242 SetGO - Changes the value of a group of digital output signals
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\SDelay]
	Signal
	Value
	Dvalue

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.243 SetLeadThrough - Activate and deactivate lead-through
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\On]
	[\Off]
	[\NoStopMove]
	[\NoStartMove]
	[\NoClearPath]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.244 SetSysData - Set system data
	Usage
	Basic examples
	Example 1

	Arguments
	SourceObject
	[\ObjectName]

	Program execution
	Syntax
	Related information

	1.245 SetupCyclicBool - Setup a Cyclic bool condition
	Usage
	Basic examples
	Example 1

	Arguments
	Flag
	Cond
	[\Signal]

	Program execution
	Limitations
	Error handling
	More examples
	Example 1
	Example 2

	Syntax
	Related information

	1.246 SetupSuperv - Setup conditions for signal supervision in CAP
	Usage
	Basic example
	Arguments
	Signal
	Condition
	Listtype
	[\ErrIndSig]

	Program execution
	Errors
	CAP_SPV_LIM
	CAP_SPV_UNK_LST

	Limitations
	Syntax
	Related information

	1.247 SiConnect - Sensor Interface Connect
	Usage
	Basic examples
	Example 1

	Arguments
	Sensor
	[\NoStop]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Syntax
	Related information

	1.248 SiClose - Sensor Interface Close
	Usage
	Basic examples
	Example 1

	Arguments
	Sensor

	Program execution
	Error handling
	Syntax
	Related information

	1.249 SiGetCyclic - Sensor Interface Get Cyclic
	Usage
	Basic examples
	Example 1

	Arguments
	Sensor
	Data
	Rate

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	1.250 SingArea - Defines interpolation around singular points
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Wrist]
	[\LockAxis4]
	[\Off]

	Program execution
	Syntax
	Related information

	1.251 SiSetCyclic - Sensor Interface Set Cyclic
	Usage
	Basic examples
	Example 1

	Arguments
	Sensor
	Data
	Rate

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	1.252 SkipWarn - Skip the latest warning
	Usage
	Basic examples
	Example 1

	Syntax
	Related information

	1.253 SocketAccept - Accept an incoming connection
	Usage
	Basic examples
	Example 1

	Arguments
	Socket
	ClientSocket
	[\ClientAddress]
	[\Time]

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.254 SocketBind - Bind a socket to my IP-address and port
	Usage
	Basic examples
	Example 1

	Arguments
	Socket
	LocalAddress
	LocalPort

	Program execution
	Error handling
	Syntax
	Related information

	1.255 SocketClose - Close a socket
	Usage
	Basic examples
	Example 1

	Arguments
	Socket

	Program execution
	Limitations
	Syntax
	Related information

	1.256 SocketConnect - Connect to a remote computer
	Usage
	Basic examples
	Example 1

	Arguments
	Socket
	Address
	Port
	[\Time]

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.257 SocketCreate - Create a new socket
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Socket
	[\UDP]

	Program execution
	Limitations
	Syntax
	Related information

	1.258 SocketListen - Listen for incoming connections
	Usage
	Basic examples
	Example 1

	Arguments
	Socket

	Program execution
	Error handling
	Syntax
	Related information

	1.259 SocketReceive - Receive data from remote computer
	Usage
	Basic examples
	Example 1

	Arguments
	Socket
	[\Str]
	[\RawData]
	[\Data]
	[\ReadNoOfBytes]
	[\NoRecBytes]
	[\Time]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.260 SocketReceiveFrom - Receive data from remote computer
	Usage
	Basic examples
	Example 1

	Arguments
	Socket
	[\Str]
	[\RawData]
	[\Data]
	[\NoRecBytes]
	RemoteAddress
	RemotePort
	[\Time]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.261 SocketSend - Send data to remote computer
	Usage
	Basic examples
	Example 1

	Arguments
	Socket
	[\Str]
	[\RawData]
	[\Data]
	[\NoOfBytes]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.262 SocketSendTo - Send data to remote computer
	Usage
	Basic examples
	Example 1

	Arguments
	Socket
	RemoteAddress
	RemotePort
	[\Str]
	[\RawData]
	[\Data]
	[\NoOfBytes]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.263 SoftAct - Activating the soft servo
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\MechUnit]
	Axis
	Softness
	[\Ramp]

	Program execution
	Limitations
	Syntax
	Related information

	1.264 SoftDeact - Deactivating the soft servo
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\Ramp]

	Program execution
	Syntax
	Related information

	1.265 SoftElbow - Making the elbow flexible for external forces
	Usage
	Basic example
	Example 1

	Arguments
	[\On]
	[\Off]

	Program execution
	Limitations
	Syntax

	1.266 SpeedLimAxis - Set speed limitation for an axis
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	MechUnit
	AxisNo
	AxisSpeed

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.267 SpeedLimCheckPoint - Set speed limitation for check points
	Usage
	Basic examples
	Example 1

	Arguments
	RobSpeed

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.268 SpeedRefresh - Update speed override for ongoing movement
	Usage
	Basic examples
	Example 1

	Arguments
	Override

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.269 SpyStart - Start recording of execution time data
	Usage
	Basic examples
	Example 1

	Arguments
	File

	Program execution
	Limitations
	Error handling
	File format
	Syntax
	Related information

	1.270 SpyStop - Stop recording of time execution data
	Usage
	Basic examples
	Example 1

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.271 StartLoad - Load a program module during execution
	Usage
	Static mode
	Dynamic mode

	Basic examples
	Example 1

	Arguments
	[\Dynamic]
	FilePath
	[\File]
	LoadNo

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4

	Error handling
	Syntax
	Related information

	1.272 StartMove - Restarts robot movement
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\AllMotionTasks]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.273 StartMoveRetry - Restarts robot movement and execution
	Usage
	Basic examples
	Example 1

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.274 STCalib - Calibrate a Servo Tool
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Arguments
	ToolName
	[\ToolChg]
	[\TipChg]
	[\TipWear]
	[\RetTipWear]
	[\RetPosAdj]
	[\PrePos]
	[\Conc]

	Program execution
	Error handling
	Syntax
	Related information

	1.275 STClose - Close a Servo Tool
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Arguments
	ToolName
	TipForce
	Thickness
	[\RetThickness]
	[\Conc]

	Program execution
	Error handling
	Syntax
	Related information

	1.276 StepBwdPath - Move backwards one step on path
	Usage
	Basic examples
	Example 1

	Arguments
	StepLength
	StepTime

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.277 STIndGun - Sets the gun in independent mode
	Usage
	Basic examples
	Example 1

	Arguments
	ToolName
	GunPos

	Syntax

	1.278 STIndGunReset - Resets the gun from independent mode
	Usage
	Basic examples
	Arguments
	ToolName

	Program execution
	Syntax

	1.279 SToolRotCalib - Calibration of TCP and rotation for stationary tool
	Usage
	Description
	Basic examples
	Example 1

	Arguments
	RefTip
	ZPos
	XPos
	Tool

	Program execution
	Syntax
	Related information

	1.280 SToolTCPCalib - Calibration of TCP for stationary tool
	Usage
	Description
	Basic example
	Example 1

	Arguments
	Pos1
	Pos2
	Pos3
	Pos4
	Tool
	MaxErr
	MeanErr

	Program execution
	Syntax
	Related information

	1.281 Stop - Stops program execution
	Usage
	Basic examples
	Example 1

	Arguments
	[\NoRegain]
	[\AllMoveTasks]

	Program execution
	Stop
	Stop \AllMoveTasks

	More examples
	Example 1

	Syntax
	Related information

	1.282 STOpen - Open a Servo Tool
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	ToolName
	[\WaitZeroSpeed]
	[\Conc]

	Program execution
	Error handling
	Syntax
	Related information

	1.283 StopMove - Stops robot movement
	Usage
	Basic examples
	Example 1

	Arguments
	[\Quick]
	[\AllMotionTasks]

	Program execution
	More examples
	Example 1
	Example 2

	Limitations
	Syntax
	Related information

	1.284 StopMoveReset - Reset the system stop move state
	Usage
	Basic examples
	Example 1

	Arguments
	[\AllMotionTasks]

	Program execution
	Syntax
	Related information

	1.285 StorePath - Stores the path when an interrupt occurs
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\KeepSync]

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.286 STTune - Tuning Servo Tool
	Usage
	Basic examples
	Example 1

	Arguments
	MecUnit
	TuneValue
	Type

	Description
	RampTorqRefOpen
	RampTorqRefClose
	KV
	SpeedLimit
	CollAlarmTorq
	CollContactPos
	CollisionSpeed
	CloseTimeAdjust
	ForceReadyDelayT
	PostSyncTime
	CalibTime
	CalibForceLow
	CalibForceHigh

	Program execution
	Error handling
	Syntax
	Related information

	1.287 STTuneReset - Resetting Servo tool tuning
	Usage
	Basic examples
	Example 1

	Arguments
	MecUnit

	Program execution
	Error handling
	Syntax
	Related information

	1.288 SupSyncSensorOff - Stop synchronized sensor supervision
	Usage
	Basic example
	Example

	Arguments
	MechUnit

	Syntax
	Related information

	1.289 SupSyncSensorOn - Start synchronized sensor supervision
	Usage
	Basic example
	Example

	Arguments
	MechUnit
	MaxSyncSup
	SafetyDist
	MinSyncSup
	[\SafetyDelay]

	Limitations
	Syntax
	Related information

	1.290 SyncMoveOff - End coordinated synchronized movements
	Usage
	Basic examples
	Example 1

	Arguments
	SyncID
	[\TimeOut]

	Program execution
	More examples
	Example of simple synchronized movement
	Example with error recovery
	Example with semi coordinated and coordinated movement

	Error handling
	Limitations
	Syntax
	Related information

	1.291 SyncMoveOn - Start coordinated synchronized movements
	Usage
	Basic examples
	Example 1

	Arguments
	SyncID
	TaskList
	[\TimeOut]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3- Program example with three tasks

	Error handling
	Limitations
	Syntax
	Related information

	1.292 SyncMoveResume - Set synchronized coordinated movements
	Usage
	Basic examples
	Example 1

	Program execution
	Limitations
	Syntax
	Related information

	1.293 SyncMoveSuspend - Set independent-semicoordinated movements
	Usage
	Basic examples
	Example 1

	Program execution
	Limitations
	Syntax
	Related information

	1.294 SyncMoveUndo - Set independent movements
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.295 SyncToSensor - Sync to sensor
	Usage
	Basic examples
	Example 1

	Arguments
	MechUnit
	[\MaxSync]
	[\On]
	[\Off]

	Program execution
	Limitations
	Syntax
	Related information

	1.296 SystemStopAction - Stop the robot system
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	[\Stop]
	[\StopBlock]
	[\Halt]

	Limitations
	Program execution
	Syntax
	Related information

	1.297 TEST - Depending on the value of an expression ...
	Usage
	Basic examples
	Example 1

	Arguments
	Test data
	Test value

	Program execution
	Syntax
	Related information

	1.298 TestSignDefine - Define test signal
	Usage
	Basic examples
	Example 1

	Arguments
	Channel
	SignalId
	MechUnit
	Axis
	SampleTime

	Program execution
	Error handling
	Syntax
	Related information

	1.299 TestSignReset - Reset all test signal definitions
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.300 TextTabInstall - Installing a text table
	Usage
	Basic examples
	Example 1

	Arguments
	File

	Limitations
	Error handling
	Syntax
	Related information

	1.301 TPErase - Erases text printed on the FlexPendant
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.302 TPReadDnum - Reads a number from the FlexPendant
	Usage
	Basic examples
	Example 1

	Arguments
	TPAnswer
	TPText
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]

	Program execution
	Error handling
	Syntax
	Related information

	1.303 TPReadFK - Reads function keys
	Usage
	Basic examples
	Example 1

	Arguments
	TPAnswer
	TPText
	TPFKx
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Predefined data
	Syntax
	Related information

	1.304 TPReadNum - Reads a number from the FlexPendant
	Usage
	Basic examples
	Example 1

	Arguments
	TPAnswer
	TPText
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	1.305 TPShow - Switch window on the FlexPendant
	Usage
	Basic examples
	Example 1

	Arguments
	Window

	Predefined data
	Program execution
	Syntax
	Related information

	1.306 TPWrite - Writes on the FlexPendant
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	String
	[\Num]
	[\Bool]
	[\Pos]
	[\Orient]
	[\Dnum]

	Program execution
	Limitations
	Syntax
	Related information

	1.307 TriggC - Circular robot movement with events
	Usage
	Basic examples
	Example 1

	Arguments
	[\Conc]
	CirPoint
	ToPoint
	[\ID]
	Speed
	[\T]
	Trigg_1
	TriggArray
	[\T2]
	[\T3]
	[\T4]
	[\T5]
	[\T6]
	[\T7]
	[\T8]
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\Corr]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.308 TriggCheckIO - Defines I/O check at a fixed position
	Usage
	Basic examples
	Example 1

	Arguments
	TriggData
	Distance
	[\Start]
	[\Next]
	[\Time]
	Signal
	Relation
	CheckValue
	CheckDvalue
	[\StopMove]
	Interrupt
	[\Inhib]
	[\Mode]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.309 TriggDataCopy - Copy the content in a triggdata variable
	Usage
	Basic examples
	Example 1

	Arguments
	Source
	Destination

	Program execution
	Syntax
	Related information

	1.310 TriggDataReset - Reset the content in a triggdata variable
	Usage
	Basic examples
	Example 1

	Arguments
	TriggData

	Program execution
	Syntax
	Related information

	1.311 TriggEquip - Define a fixed position and time I/O event on the path
	Usage
	Basic examples
	Example 1

	Arguments
	TriggData
	Distance
	[\Start]
	[\Next]
	EquipLag
	[\DOp]
	[\GOp]
	[\AOp]
	[\ProcID]
	SetValue
	SetDvalue
	[\Inhib]
	[\InhibSetValue]
	[\Mode]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.312 TriggInt - Defines a position related interrupt
	Usage
	Basic examples
	Example 1

	Arguments
	TriggData
	Distance
	[\Start]
	[\Next]
	[\Time]
	Interrupt
	[\Inhib]
	[\Mode]

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.313 TriggIO - Define a fixed position or time I/O event near a stop point
	Usage
	Basic examples
	Example 1

	Arguments
	TriggData
	Distance
	[\Start]
	[\Time]
	[\DOp]
	[\GOp]
	[\AOp]
	[\ProcID]
	SetValue
	SetDvalue
	[\DODelay]
	[\Inhib]
	[\InhibSetValue]
	[\Mode]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.314 TriggJ - Axis-wise robot movements with events
	Usage
	Basic examples
	Example 1

	Arguments
	[\Conc]
	ToPoint
	[\ID]
	Speed
	[\T]
	Trigg_1
	TriggArray
	[\T2]
	[\T3]
	[\T4]
	[\T5]
	[\T6]
	[\T7]
	[\T8]
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.315 TriggL - Linear robot movements with events
	Usage
	Basic examples
	Example 1

	Arguments
	[\Conc]
	ToPoint
	[\ID]
	Speed
	[\T]
	Trigg_1
	TriggArray
	[\T2]
	[\T3]
	[\T4]
	[\T5]
	[\T6]
	[\T7]
	[\T8]
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\Corr]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.316 TriggJIOs - Joint robot movements with I/O events
	Usage
	Basic examples
	Example 1

	Arguments
	[\Conc]
	ToPoint
	[\ID]
	Speed
	[\T]
	[\TriggData1]
	[\TriggData2]
	[\TriggData3]
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Limitations regarding accuracy

	Syntax
	Related information

	1.317 TriggLIOs - Linear robot movements with I/O events
	Usage
	Basic examples
	Example 1

	Arguments
	[\Conc]
	ToPoint
	[\ID]
	Speed
	[\T]
	[\TriggData1]
	[\TriggData2]
	[\TriggData3]
	Zone
	[\Inpos]
	Tool
	[\WObj]
	[\Corr]
	[\TLoad]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Limitations regarding accuracy

	Syntax
	Related information

	1.318 TriggRampAO - Define a fixed position ramp AO event on the path
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	TriggData
	Distance
	[\Start]
	[\Next]
	EquipLag
	AOutput
	SetValue
	RampLength
	[\Time]
	[\Inhib]
	[\InhibSetValue]
	[\Mode]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.319 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
	Usage
	Basic examples
	Example 1

	Arguments
	TriggData
	Distance
	[\Start]
	[\Next]
	ScaleLag
	AOp
	ScaleValue
	[\DipLag]
	[\ErrDO]
	[\Inhib]
	[\InhibSetValue]
	[\Mode]

	Program execution
	More examples
	Example 1
	Example 2

	Limitations
	Accuracy of position-time related scale value event
	Accuracy of TCP speed dips adaptation (deceleration - acceleration phases)
	Negative ScaleLag

	Error handling
	Related system parameters
	Syntax
	Related information

	1.320 TriggStopProc - Generate restart data for trigg signals at stop
	Usage
	Arguments
	RestartRef
	[\DO1]
	[\GO1]
	[\GO2]
	[\GO3]
	[\GO4]
	ShadowDO

	Program execution
	Setup and execution of TriggStopProc
	Program stop STOP
	Emergency stop (QSTOP)
	Critical area for process restart

	Performing a restart
	Error handling
	Limitation
	Syntax
	Related information

	1.321 TryInt - Test if data object is a valid integer
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	DataObj
	DataObj2

	Program execution
	Error handling
	Syntax
	Related information

	1.322 TRYNEXT - Jumps over an instruction which has caused an error
	Usage
	Basic examples
	Example 1

	Program execution
	Limitations
	Syntax
	Related information

	1.323 TuneReset - Resetting servo tuning
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.324 TuneServo - Tuning servos
	Usage
	Description
	Reduce overshoots and vibrations - TUNE_DF
	Reduce overshoots and vibrations - TUNE_DH
	Only for ABB internal use - TUNE_DK, TUNE_DL, TUNE_DG, TUNE_DI
	Tuning external axes - TUNE_KP, TUNE_KV, TUNE_TI
	Tuning robot axes - TUNE_KP, TUNE_KV, TUNE_TI
	Friction compensation - TUNE_FRIC_LEV, TUNE_FRIC_RAMP

	Arguments
	MecUnit
	Axis
	TuneValue
	[\Type]

	Basic examples
	Example 1

	Program execution
	Limitations
	Syntax
	Related information

	1.325 UIMsgBox - User Message Dialog Box type basic
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\Header]
	MsgLine1
	[\MsgLine2]
	[\MsgLine3]
	[\MsgLine4]
	[\MsgLine5]
	[\Wrap]
	[\Buttons]
	[\Icon]
	[\Image]
	[\Result]
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]
	[\UIActiveSignal]

	Program execution
	Predefined data
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.326 UIMsgWrite - User message dialog box type non-waiting
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Header
	Message
	MsgArray
	[\Wrap]
	[\Icon]
	[\Image]
	[\PersBool]
	[\PersBoolName]
	[\AbortValue]
	[\UIActiveSignal]

	Program execution
	Error handling
	Predefined data
	Syntax
	Related information

	1.327 UIMsgWriteAbort - Abort user message dialog box type non-waiting
	Usage
	Basic examples
	Example 1

	Syntax
	Related information

	1.328 UIShow - User Interface show
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Arguments
	AssemblyName
	TypeName
	[\InitCmd]
	[\InstanceId]
	[\Status]
	[\NoCloseBtn]

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	1.329 UnLoad - UnLoad a program module during execution
	Usage
	Basic examples
	Example 1

	Arguments
	[\ErrIfChanged]
	[\Save]
	FilePath
	[\File]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3

	Limitations
	Error handling
	Syntax
	Related information

	1.330 UnpackRawBytes - Unpack data from rawbytes data
	Usage
	Basic examples
	Example 1

	Arguments
	RawData
	[\Network]
	StartIndex
	Value
	[\Hex1]
	[\IntX]
	[\Float4]
	[\ASCII]

	Program execution
	Predefined data
	Syntax
	Related information

	1.331 VelSet - Changes the programmed velocity
	Usage
	Basic examples
	Example 1

	Arguments
	Override
	Max

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.332 WaitAI - Waits until an analog input signal value is set
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Signal
	[\LT]
	[\GT]
	Value
	[\MaxTime]
	[\ValueAtTimeout]
	[\Visualize]
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\Image]
	[\VisualizeTime]
	[\UIActiveSignal]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Syntax
	Related information

	1.333 WaitAO - Waits until an analog output signal value is set
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Signal
	[\LT]
	[\GT]
	Value
	[\MaxTime]
	[\ValueAtTimeout]
	[\Visualize]
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\Image]
	[\VisualizeTime]
	[\UIActiveSignal]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Syntax
	Related information

	1.334 WaitDI - Waits until a digital input signal is set
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	Signal
	Value
	[\MaxTime]
	[\TimeFlag]
	[\Visualize]
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\Image]
	[\VisualizeTime]
	[\UIActiveSignal]

	Program execution
	Error handling
	Syntax
	Related information

	1.335 WaitDO - Waits until a digital output signal is set
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Arguments
	Signal
	Value
	[\MaxTime]
	[\TimeFlag]
	[\Visualize]
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\Image]
	[\VisualizeTime]
	[\UIActiveSignal]

	Program execution
	Error handling
	Syntax
	Related information

	1.336 WaitGI - Waits until a group of digital input signals are set
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Signal
	[\NOTEQ]
	[\LT]
	[\GT]
	Value
	Dvalue
	[\MaxTime]
	[\ValueAtTimeout]
	[\DvalueAtTimeout]
	[\Visualize]
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\Image]
	[\VisualizeTime]
	[\UIActiveSignal]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Error handling
	Syntax
	Related information

	1.337 WaitGO - Waits until a group of digital output signals are set
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	Signal
	[\NOTEQ]
	[\LT]
	[\GT]
	Value
	Dvalue
	[\MaxTime]
	[\ValueAtTimeout]
	[\DvalueAtTimeout]
	[\Visualize]
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\Image]
	[\VisualizeTime]
	[\UIActiveSignal]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Error handling
	Syntax
	Related information

	1.338 WaitLoad - Connect the loaded module to the task
	Usage
	Basic examples
	Example 1

	Arguments
	[\UnloadPath]
	[\UnloadFile]
	LoadNo
	[\CheckRef]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Syntax
	Related information

	1.339 WaitRob - Wait until stop point or zero speed
	Usage
	Basic examples
	Example 1

	Arguments
	[\InPos]
	[\ZeroSpeed]

	More examples
	Example 1

	Syntax
	Related information

	1.340 WaitSensor - Wait for connection on sensor
	Usage
	Basic examples
	Example 1

	Arguments
	MechUnit
	[\RelDist]
	[\PredTime]
	[\MaxTime]
	[\TimeFlag]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Limitations
	Error handling
	Syntax
	Related information

	1.341 WaitSyncTask - Wait at synchronization point for other program tasks
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\InPos]
	SyncID
	TaskList
	[\TimeOut]

	Program execution
	More examples
	Example 1

	Error handling
	Limitation
	Syntax
	Related information

	1.342 WaitTestAndSet - Wait until variable becomes FALSE, then set
	Usage
	Basic examples
	Example 1

	Arguments
	Object

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	1.343 WaitTime - Waits a given amount of time
	Usage
	Basic examples
	Example 1

	Arguments
	[\InPos]
	Time

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.344 WaitUntil - Waits until a condition is met
	Usage
	Basic examples
	Example 1

	Arguments
	[\InPos]
	Cond
	[\MaxTime]
	[\TimeFlag]
	[\PollRate]
	[\Visualize]
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\Image]
	[\VisualizeTime]
	[\UIActiveSignal]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Error handling
	Limitation
	Syntax
	Related information

	1.345 WaitWObj - Wait for work object on conveyor
	Usage
	Basic examples
	Example 1

	Arguments
	WObj
	[\RelDist]
	[\MaxTime]
	[\TimeFlag]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4

	Limitations
	Error handling
	Syntax
	Related information

	1.346 WarmStart - Restart the controller
	Usage
	Basic examples
	Example 1

	Program execution
	Syntax
	Related information

	1.347 WHILE - Repeats as long as ...
	Usage
	Basic examples
	Example 1

	Arguments
	Condition

	Program execution
	Syntax
	Related information

	1.348 WorldAccLim - Control acceleration in world coordinate system
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	[\On]
	[\Off]

	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	1.349 Write - Writes to a character-based file or serial channel
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	IODevice
	String
	[\Num]
	[\Bool]
	[\Pos]
	[\Orient]
	[\Dnum]
	[\NoNewLine]

	Program execution
	More examples
	Example 1

	Limitations
	Error handling
	Syntax
	Related information

	1.350 WriteAnyBin - Writes data to a binary serial channel or file
	Usage
	Basic examples
	Example 1

	Arguments
	IODevice
	Data

	Program execution
	Limitations
	Error handling
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.351 WriteBin - Writes to a binary serial channel
	Usage
	Basic examples
	Example 1

	Arguments
	IODevice
	Buffer
	NChar

	Program execution
	Limitations
	Error handling
	More examples
	Example 1

	Syntax
	Related information

	1.352 WriteBlock - Write block of data to device
	Usage
	Basic examples
	Example 1

	Arguments
	device
	BlockNo
	FileName
	[\TaskName]

	Error handling
	Syntax
	Related information

	1.353 WriteCfgData - Writes attribute of a system parameter
	Usage
	Basic examples
	Example 1
	Example 2

	Arguments
	InstancePath
	Attribute
	CfgData
	[\ListNo]

	Program execution
	More examples
	Example 1
	Example 2

	Error handling
	Limitations
	Predefined data
	Syntax
	Related information

	1.354 WriteRawBytes - Write rawbytes data
	Usage
	Basic examples
	Example 1

	Arguments
	IODevice
	RawData
	[\NoOfBytes]

	Program execution
	Error handling
	Syntax
	Related information

	1.355 WriteStrBin - Writes a string to a binary serial channel
	Usage
	Basic examples
	Example 1

	Arguments
	IODevice
	Str

	Program execution
	Limitations
	Error handling
	More examples
	Example 1

	Syntax
	Related information

	1.356 WriteVar - Write variable
	Usage
	Basic examples
	Example 1

	Arguments
	device
	VarNo
	VarData
	[\TaskName]

	Error handling
	Syntax
	Related information

	1.357 WriteVarArr - Write multiple variables to a sensor device
	Usage
	Basic examples
	Example 1

	Arguments
	Device
	Data
	[\TaskName]

	Error handling
	Syntax
	Related information

	1.358 WZBoxDef - Define a box-shaped world zone
	Usage
	Basic examples
	Example 1

	Arguments
	[\Inside]
	[\Outside]
	Shape
	LowPoint
	HighPoint

	Program execution
	Limitations
	Syntax
	Related information

	1.359 WZCylDef - Define a cylinder-shaped world zone
	Usage
	Basic examples
	Example 1

	Arguments
	[\Inside]
	[\Outside]
	Shape
	CentrePoint
	Radius
	Height

	Program execution
	Limitations
	Syntax
	Related information

	1.360 WZDisable - Deactivate temporary world zone supervision
	Usage
	Basic examples
	Example 1

	Arguments
	WorldZone

	Program execution
	Limitations
	Syntax
	Related information

	1.361 WZDOSet - Activate world zone to set digital output
	Usage
	Basic examples
	Example 1

	Arguments
	[\Temp]
	[\Stat]
	WorldZone
	[\Inside]
	[\Before]
	Shape
	Signal
	SetValue

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	1.362 WZEnable - Activate temporary world zone supervision
	Usage
	Basic examples
	Example 1

	Arguments
	WorldZone

	Program execution
	Limitations
	Syntax
	Related information

	1.363 WZFree - Erase temporary world zone supervision
	Usage
	Basic examples
	Example 1

	Arguments
	WorldZone

	Program execution
	Limitations
	Syntax
	Related information

	1.364 WZHomeJointDef - Define a world zone for home joints
	Usage
	Basic examples
	Example 1

	Arguments
	[\Inside]
	[\Outside]
	Shape
	MiddleJointVal
	DeltaJointVal

	Program execution
	Limitations
	Syntax
	Related information

	1.365 WZLimJointDef - Define a world zone for limitation in joints
	Usage
	Basic examples
	Example 1

	Arguments
	[\Inside]
	[\Outside]
	Shape
	LowJointVal
	HighJointVal

	Program execution
	Limitations
	Syntax
	Related information

	1.366 WZLimSup - Activate world zone limit supervision
	Usage
	Basic examples
	Example 1

	Arguments
	[\Temp]
	[\Stat]
	WorldZone
	Shape

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	1.367 WZSphDef - Define a sphere-shaped world zone
	Usage
	Basic examples
	Example 1

	Arguments
	[\Inside]
	[\Outside]
	Shape
	CentrePoint
	Radius

	Program execution
	Limitations
	Syntax
	Related information

	2 Functions
	2.1 Abs - Gets the absolute value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	More examples
	Example 1

	Syntax
	Related information

	2.2 AbsDnum - Gets the absolute value of a dnum
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	More examples
	Example 1

	Syntax
	Related information

	2.3 ACos - Calculates the arc cosine value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	Limitations
	Syntax
	Related information

	2.4 ACosDnum - Calculates the arc cosine value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	Limitations
	Syntax
	Related information

	2.5 AInput - Reads the value of an analog input signal
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Signal

	More examples
	Example 1
	Example 2

	Syntax
	Related information

	2.6 AND - Evaluates a logical value
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Syntax
	Related information

	2.7 AOutput - Reads the value of an analog output signal
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Signal

	Error handling
	Syntax
	Related information

	2.8 ArgName - Gets argument name
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Parameter
	ErrorNumber

	Program execution
	More examples
	Convert from identifier to string
	Routine call in several steps
	Supress execution in error handler

	Error handling
	Syntax
	Related information

	2.9 ASin - Calculates the arc sine value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	Limitations
	Syntax
	Related information

	2.10 ASinDnum - Calculates the arc sine value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	Limitations
	Syntax
	Related information

	2.11 ATan - Calculates the arc tangent value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	Syntax
	Related information

	2.12 ATanDnum - Calculates the arc tangent value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	Syntax
	Related information

	2.13 ATan2 - Calculates the arc tangent2 value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Y
	X

	Syntax
	Related information

	2.14 ATan2Dnum - Calculates the arc tangent2 value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Y
	X

	Syntax
	Related information

	2.15 BitAnd - Logical bitwise AND - operation on byte data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	BitData1
	BitData2

	Limitations
	Syntax
	Related information

	2.16 BitAndDnum - Logical bitwise AND - operation on dnum data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value1
	Value2

	Limitations
	Syntax
	Related information

	2.17 BitCheck - Check if a specified bit in a byte data is set
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	BitData
	BitPos

	Limitations
	Syntax
	Related information

	2.18 BitCheckDnum - Check if a specified bit in a dnum data is set
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value
	BitPos

	Limitations
	Syntax
	Related information

	2.19 BitLSh - Logical bitwise LEFT SHIFT - operation on byte
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	BitData
	ShiftSteps

	Limitations
	Syntax
	Related information

	2.20 BitLShDnum - Logical bitwise LEFT SHIFT - operation on dnum
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value
	ShiftSteps
	Size

	Limitations
	More examples
	Example 1

	Syntax
	Related information

	2.21 BitNeg - Logical bitwise NEGATION - operation on byte data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	BitData

	Limitations
	Syntax
	Related information

	2.22 BitNegDnum - Logical bitwise NEGATION - operation on dnum data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value
	Size

	Limitations
	More examples
	Example 1

	Syntax
	Related information

	2.23 BitOr - Logical bitwise OR - operation on byte data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	BitData1
	BitData2

	Limitations
	Syntax
	Related information

	2.24 BitOrDnum - Logical bitwise OR - operation on dnum data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value1
	Value2

	Limitations
	Syntax
	Related information

	2.25 BitRSh - Logical bitwise RIGHT SHIFT - operation on byte
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	BitData
	ShiftSteps

	Limitations
	Syntax
	Related information

	2.26 BitRShDnum - Logical bitwise RIGHT SHIFT - operation on dnum
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value
	ShiftSteps

	Limitations
	Syntax
	Related information

	2.27 BitXOr - Logical bitwise XOR - operation on byte data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	BitData1
	BitData2

	Limitations
	Syntax
	Related information

	2.28 BitXOrDnum - Logical bitwise XOR - operation on dnum data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value1
	Value2

	Limitations
	Syntax
	Related information

	2.29 ByteToStr - Converts a byte to a string data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	BitData
	[\Hex]
	[\Okt]
	[\Bin]
	[\Char]

	Limitations
	Syntax
	Related information

	2.30 CalcJointT - Calculates joint angles from robtarget
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Return value
	Arguments
	[\UseCurWObjPos]
	Rob_target
	Tool
	[\WObj]
	[\ErrorNumber]

	Program execution
	Limitation
	Error handling
	Syntax
	Related information

	2.31 CalcRobT - Calculates robtarget from jointtarget
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Joint_target
	Tool
	[\WObj]

	Program execution
	Limitation
	Syntax
	Related information

	2.32 CalcRotAxFrameZ - Calculate a rotational axis frame
	Usage
	Description
	Basic examples
	Example 1

	Return value
	Arguments
	TargetList
	TargetsInList
	PositiveZPoint
	MaxErr
	MeanErr

	Error handling
	Syntax
	Related information

	2.33 CalcRotAxisFrame - Calculate a rotational axis frame
	Usage
	Description
	Basic examples
	Example 1

	Return value
	Arguments
	MechUnit
	[\AxisNo]
	TargetList
	TargetsInList
	MaxErr
	MeanErr

	Error handling
	Syntax
	Related information

	2.34 CamGetExposure - Get camera specific data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Camera
	[\ExposureTime]
	[\Brightness]
	[\Contrast]

	Error handling
	Syntax
	Related information

	2.35 CamGetLoadedJob - Get name of the loaded camera task
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Camera

	Program execution
	Error handling
	Syntax
	Related information

	2.36 CamGetName - Get the name of the used camera
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Camera

	Syntax
	Related information

	2.37 CamNumberOfResults - Get number of available results
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Camera
	[\SceneId]

	Program execution
	Error handling
	Syntax
	Related information

	2.38 CapGetFailSigs - Get failed I/O signals
	Usage
	Basic example
	Return value
	Arguments
	ErrorNames

	Limitations
	Syntax
	Related information

	2.39 CDate - Reads the current date as a string
	Usage
	Basic examples
	Example 1

	Return value
	More examples
	Example 1

	Syntax
	Related information

	2.40 CJointT - Reads the current joint angles
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\TaskRef]
	[\TaskName]

	More examples
	Example 1
	Example 2

	Error handling
	Syntax
	Related information

	2.41 ClkRead - Reads a clock used for timing
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Argument
	Clock
	[\HighRes]

	Program execution
	Error handling
	Syntax
	Related information

	2.42 CorrRead - Reads the current total offsets
	Usage
	Basic examples
	Example 1

	Return value
	More examples
	Syntax
	Related information

	2.43 Cos - Calculates the cosine value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Angle

	Syntax
	Related information

	2.44 CosDnum - Calculates the cosine value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Angle

	Syntax
	Related information

	2.45 CPos - Reads the current position (pos) data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Tool]
	[\WObj]

	Program execution
	More examples
	Syntax
	Related information

	2.46 CRobT - Reads the current position (robtarget) data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\TaskRef]
	[\TaskName]
	[\Tool]
	[\WObj]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3

	Error handling
	Syntax
	Related information

	2.47 CrossProd - Cross product of two pos vectors
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Vector1
	Vector2

	More examples
	Example 2

	Syntax
	Related information

	2.48 CSpeedOverride - Reads the current override speed
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\CTask]

	Syntax
	Related information

	2.49 CTime - Reads the current time as a string
	Usage
	Basic examples
	Example 1

	Return value
	More examples
	Example 1

	Syntax
	Related information

	2.50 CTool - Reads the current tool data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\TaskRef]
	[\TaskName]

	Error handling
	Syntax
	Related information

	2.51 CWObj - Reads the current work object data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\TaskRef]
	[\TaskName]

	Error handling
	Syntax
	Related information

	2.52 DecToHex - Convert from decimal to hexadecimal
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Str

	Syntax
	Related information

	2.53 DefAccFrame - Define an accurate frame
	Usage
	Description
	Basic examples
	Example 1

	Return value
	Arguments
	TargetListOne
	TargetListTwo
	TargetsInList
	MaxErr
	MeanErr

	Error handling
	Syntax
	Related information

	2.54 DefDFrame - Define a displacement frame
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	OldP1
	OldP2
	OldP3
	NewP1
	NewP2
	NewP3

	Error handling
	Syntax
	Related information

	2.55 DefFrame - Define a frame
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	NewP1
	NewP2
	NewP3
	[\Origin]

	Error handling
	Limitations
	Syntax
	Related information

	2.56 Dim - Obtains the size of an array
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ArrPar
	DimNo

	More examples
	Example 1

	Syntax
	Related information

	2.57 DInput - Reads the value of a digital input signal
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Signal

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	2.58 Distance - Distance between two points
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Point1
	Point2

	Program execution
	Syntax
	Related information

	2.59 DIV - Evaluates an integer division
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Syntax
	Related information

	2.60 DnumToNum - Converts dnum to num
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value
	[\Integer]

	Error handling
	Syntax
	Related information

	2.61 DnumToStr - Converts numeric value to string
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Return value
	Arguments
	Val
	Dec
	[\Exp]

	Syntax
	Related information

	2.62 DotProd - Dot product of two pos vectors
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Vector1
	Vector2

	Syntax
	Related information

	2.63 DOutput - Reads the value of a digital output signal
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Signal

	Program execution
	Error handling
	More examples
	Example 1

	Syntax
	Related information

	2.64 EGMGetState - Gets the current EGM state
	Usage
	Basic examples
	Return value
	Arguments
	EGMid

	Limitations
	Syntax
	Related information

	2.65 EulerZYX - Gets euler angles from orient
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\X]
	[\Y]
	[\Z]
	Rotation

	Syntax
	Related information

	2.66 EventType - Get current event type inside any event routine
	Usage
	Basic examples
	Example 1

	Return value
	Predefined data
	Syntax
	Related information

	2.67 ExecHandler - Get type of execution handler
	Usage
	Basic examples
	Example 1

	Return value
	Predefined data
	Syntax
	Related information

	2.68 ExecLevel - Get execution level
	Usage
	Basic examples
	Example 1

	Return value
	Predefined data
	Syntax
	Related information

	2.69 Exp - Calculates the exponential value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Exponent

	Syntax
	Related information

	2.70 FileSize - Retrieve the size of a file
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Path

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	2.71 FileTimeDnum - Retrieve time information about a file
	Usage
	Basic example
	Example 1

	Return value
	Arguments
	Path
	[\ModifyTime]
	[\AccessTime]
	[\StatCTime]
	[\StrDig]

	Program execution
	More examples
	Error handling
	Syntax
	Related information

	2.72 FSSize - Retrieve the size of a file system
	Usage
	Basic example
	Example 1

	Return value
	Arguments
	Name
	[\Total]
	[\Free]
	[\Kbyte]
	[\Mbyte]

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	2.73 GetAxisDistance - Get the traversed distance counter of the axis
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	MechUnit
	AxisNo

	Syntax
	Related information

	2.74 GetAxisMoveTime - Get the move time counter of the axis
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	MechUnit
	AxisNo

	Syntax
	Related information

	2.75 GetMaxNumberOfCyclicBool - Get the maximum number of Cyclic bool conditions
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.76 GetMecUnitName - Get the name of the mechanical unit
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	MechUnit

	Syntax
	Related information

	2.77 GetModalPayLoadMode - Get the ModalPayLoadMode value
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.78 GetMotorTorque - Reads the current motor torque
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	MecUnit
	AxisNo

	Program execution
	Limitations
	More examples
	Example 1
	Example 2

	Error handling
	Syntax
	Related information

	2.79 GetNextCyclicBool - Get the names of all Cyclic bools
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	ListNumber
	Name

	Syntax
	Related information

	2.80 GetNextMechUnit - Get name and data for mechanical units
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ListNumber
	UnitName
	[\MecRef]
	[\TCPRob]
	[\NoOfAxes]
	[\MecTaskNo]
	[\MotPlanNo]
	[\Active]
	[\DriveModule]
	[\OKToDeact]

	More examples
	Example 1

	Syntax
	Related information

	2.81 GetNextSym - Get next matching symbol
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Object
	Block
	[\Recursive]

	Syntax
	Related information

	2.82 GetNumberOfCyclicBool - Get the number of Cyclic bool conditions
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.83 GetServiceInfo - Get service information from the system
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	MechUnit
	[\DutyTimeCnt]

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	2.84 GetSignalOrigin - Get information about the origin of an I/O signal
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Signal
	SignalName

	Program execution
	Syntax
	Related information

	2.85 GetSysInfo - Get information about the system
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\SerialNo]
	[\SWVersion]
	[\SWVersionName]
	[\RobotType]
	[\CtrlId]
	[\LanIp]
	[\CtrlLang]
	[\SystemName]

	Syntax
	Related information

	2.86 GetTaskName - Gets the name and number of current task
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Return value
	Arguments
	[\TaskNo]
	[\MecTaskNo]

	Syntax
	Related information

	2.87 GetTime - Reads the current time as a numeric value
	Usage
	Basic examples
	Example 1

	Return value
	Argument
	[\WDay]
	[\Hour]
	[\Min]
	[\Sec]

	More examples
	Example 1

	Syntax
	Related information

	2.88 GetTSPStatus - Get current task selection panel status
	Usage
	Basic examples
	Example 1

	Return value
	Predefined data
	Arguments
	TaskRef
	TaskName

	Error handling
	Syntax
	Related information

	2.89 GetUASUserName - Get user name of logged in user
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.90 GInput - Read value of group input signal
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Signal

	Syntax
	Related information

	2.91 GInputDnum - Read value of group input signal
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	Signal

	Error handling
	Syntax
	Related information

	2.92 GOutput - Reads the value of a group of digital output signals
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Signal

	Error handling
	Syntax
	Related information

	2.93 GOutputDnum - Read value of group output signal
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	Signal

	Error handling
	Syntax
	Related information

	2.94 HexToDec - Convert from hexadecimal to decimal
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Str

	Syntax
	Related information

	2.95 IndInpos - Independent axis in position status
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	MecUnit
	Axis

	Limitations
	Error handling
	Syntax
	Related information

	2.96 IndSpeed - Independent speed status
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	MecUnit
	Axis
	[\InSpeed]
	[\ZeroSpeed]

	Limitation
	Error handling
	Syntax
	Related information

	2.97 IOUnitState - Get current state of I/O device
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	UnitName
	[\Phys]
	[\Logic]

	Syntax
	Related information

	2.98 IsBrakeCheckActive - Test if brake check is running
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.99 IsCyclicBool - Checks if a persistent variable is a Cyclic bool
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Return value
	Arguments
	Flag
	Name
	[\TaskRef]
	[\TaskName]

	Program execution
	Error handling
	Syntax
	Related information

	2.100 IsFile - Check the type of a file
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Path
	[\Directory]
	[\Fifo]
	[\RegFile]
	[\BlockSpec]
	[\CharSpec]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	2.101 IsLeadThrough - Check lead-through status
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Return value
	Arguments
	\MechUnit
	\Active
	\Set

	Limitations
	Syntax
	Related information

	2.102 IsMechUnitActive - Is mechanical unit active
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	MechUnit

	Syntax
	Related information

	2.103 IsPers - Is persistent
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	DatObj

	Syntax
	Related information

	2.104 IsStopMoveAct - Is stop move flags active
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	[\FromMoveTask]
	[\FromNonMoveTask]

	Syntax
	Related information

	2.105 IsStopStateEvent - Test whether moved program pointer
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\PPMoved]
	[\PPToMain]

	Limitations
	Syntax
	Related information

	2.106 IsSyncMoveOn - Test if in synchronized movement mode
	Usage
	Basic examples
	Example 1

	Return value
	Program execution
	Syntax
	Related information

	2.107 IsSysId - Test system identity
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	SystemId

	Syntax
	Related information

	2.108 IsVar - Is variable
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	DatObj

	Syntax
	Related information

	2.109 Max - Get the largest of two values
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	A
	B

	Syntax
	Related information

	2.110 MaxExtLinearSpeed - Maximum additional axis speed
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.111 MaxExtReorientSpeed - Maximum additional axis rotational speed
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.112 MaxRobReorientSpeed - Maximum reorient speed of robot
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.113 MaxRobSpeed - Maximum robot speed
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.114 Min - Get the smallest of two values
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	A
	B

	Syntax
	Related information

	2.115 MirPos - Mirroring of a position
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Point
	MirPlane
	[\WObj]
	[\MirY]

	Limitations
	Syntax
	Related information

	2.116 MOD - Evaluates an integer modulo
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Syntax
	Related information

	2.117 ModExist - Check if program module exist
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ModuleName

	Syntax
	Related information

	2.118 ModTimeDnum - Get file modify time for the loaded module
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Object
	[\StrDig]

	Program execution
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	2.119 MotionPlannerNo - Get connected motion planner number
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.120 NonMotionMode - Read the Non-Motion execution mode
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Main]

	Syntax
	Related information

	2.121 NOT - Inverts a logical value
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Syntax
	Related information

	2.122 NOrient - Normalize orientation
	Usage
	Description
	Basic examples
	Example 1

	Return value
	Arguments
	Rotation

	Error handling
	Syntax
	Related information

	2.123 NumToDnum - Converts num to dnum
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	Syntax
	Related information

	2.124 NumToStr - Converts numeric value to string
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	Val
	Dec
	[\Exp]

	Syntax
	Related information

	2.125 Offs - Displaces a robot position
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	Point
	XOffset
	YOffset
	ZOffset

	More examples
	Example 1

	Syntax
	Related information

	2.126 OpMode - Read the operating mode
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.127 OR - Evaluates a logical value
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Syntax
	Related information

	2.128 OrientZYX - Builds an orient from Euler angles
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ZAngle
	YAngle
	XAngle

	Syntax
	Related information

	2.129 ORobT - Removes the program displacement from a position
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	OrgPoint
	[\InPDisp]
	[\InEOffs]

	More examples
	Example 1
	Example 2

	Syntax
	Related information

	2.130 ParIdPosValid - Valid robot position for parameter identification
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ParIdType
	Pos
	AxValid
	[\ConfAngle]

	Error handling
	Syntax
	Related information

	2.131 ParIdRobValid - Valid robot type for parameter identification
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ParIdType
	[\MechUnit]
	[\AxisNo]

	Error handling
	Syntax
	Related information

	2.132 PathLevel - Get current path level
	Usage
	Basic examples
	Example 1

	Return value
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	2.133 PathRecValidBwd - Is there a valid backward path recorded
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\ID]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4

	Syntax
	Related information

	2.134 PathRecValidFwd - Is there a valid forward path recorded
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\ID]

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	2.135 PFRestart - Check interrupted path after power failure
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Base]
	[\Irpt]

	Syntax
	Related information

	2.136 PoseInv - Inverts pose data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Pose

	Syntax
	Related information

	2.137 PoseMult - Multiplies pose data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Pose1
	Pose2

	Syntax
	Related information

	2.138 PoseVect - Applies a transformation to a vector
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Pose
	Pos

	Syntax
	Related information

	2.139 Pow - Calculates the power of a value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Base
	Exponent

	Limitations
	Syntax
	Related information

	2.140 PowDnum - Calculates the power of a value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Base
	Exponent

	Limitations
	Syntax
	Related information

	2.141 PPMovedInManMode - Test whether the program pointer is moved in manual mode
	Usage
	Basic examples
	Example 1

	Return value
	Program execution
	Syntax
	Related information

	2.142 Present - Tests if an optional parameter is used
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	OptPar

	More examples
	Example 1

	Syntax
	Related information

	2.143 ProgMemFree - Get the size of free program memory
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.144 PrxGetMaxRecordpos - Get the maximum sensor position
	Usage
	Basic example
	Return value
	Arguments
	MechUnit

	Program execution
	Syntax
	Related information

	2.145 RawBytesLen - Get the length of rawbytes data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	RawData

	Program execution
	Syntax
	Related information

	2.146 ReadBin - Reads a byte from a file or serial channel
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	IODevice
	[\Time]

	Program execution
	More examples
	Example 1

	Limitations
	Error handling
	Predefined data
	Syntax
	Related information

	2.147 ReadDir - Read next entry in a directory
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Dev
	FileName

	Program execution
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	2.148 ReadMotor - Reads the current motor angles
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	MecUnit
	Axis

	Program execution
	Limitations
	More examples
	Example 1

	Error handling
	Syntax
	Related information

	2.149 ReadNum - Reads a number from a file or serial channel
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	IODevice
	[\Delim]
	[\Time]

	Program execution
	More examples
	Example 1

	Limitations
	Error handling
	Predefined data
	Syntax
	Related information

	2.150 ReadStr - Reads a string from a file or serial channel
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	IODevice
	[\Delim]
	[\RemoveCR]
	[\DiscardHeaders]
	[\Time]
	[\Line]

	Program execution
	More examples
	Example 1
	Example 2
	Example 3

	Limitations
	Error handling
	Predefined data
	Syntax
	Related information

	2.151 ReadStrBin - Reads a string from a binary serial channel or file
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	IODevice
	NoOfChars
	[\Time]

	Program execution
	Limitations
	Error handling
	Predefined data
	Syntax
	Related information

	2.152 ReadVar - Read variable from a device
	Usage
	Basic examples
	Example 1

	Arguments
	device
	VarNo
	[\TaskName]

	Error handling
	Syntax
	Related information

	2.153 RelTool - Make a displacement relative to the tool
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	Point
	Dx
	Dy
	Dz
	[\Rx]
	[\Ry]
	[\Rz]

	Syntax
	Related information

	2.154 RemainingRetries - Remaining retries left to do
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.155 RMQGetSlotName - Get the name of an RMQ client
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Slot

	Program execution
	Error handling
	Syntax
	Related information

	2.156 RobName - Get the TCP robot name
	Usage
	Basic examples
	Example 1

	Return value
	More examples
	Example 1

	Syntax
	Related information

	2.157 RobOS - Check if execution is on RC or VC
	Usage
	Basic examples
	Example 1

	Return value
	Syntax

	2.158 Round - Round a numeric value
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Return value
	Arguments
	Val
	[\Dec]

	Syntax
	Related information

	2.159 RoundDnum - Round a numeric value
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Return value
	Arguments
	Val
	[\Dec]

	Syntax
	Related information

	2.160 RunMode - Read the running mode
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Main]

	Syntax
	Related information

	2.161 SafetyControllerGetChecksum - Get the checksum for the user configuration file
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.162 SafetyControllerGetOpModePinCode - Get the operating mode pin code
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.163 SafetyControllerGetSWVersion - Get the safety controller firmware version
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.164 SafetyControllerGetUserChecksum - Get the checksum for protected parameters
	Usage
	Basic examples
	Example 1

	Return value
	Syntax
	Related information

	2.165 Sin - Calculates the sine value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Angle

	Syntax
	Related information

	2.166 SinDnum - Calculates the sine value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Angle

	Syntax
	Related information

	2.167 SocketGetStatus - Get current socket state
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Socket

	Program execution
	More examples
	Example 1

	Limitations
	Syntax
	Related information

	2.168 SocketPeek - Test for the presence of data on a socket
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Socket

	Error handling
	Limitations
	Syntax
	Related information

	2.169 Sqrt - Calculates the square root value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	Limitations
	Syntax
	Related information

	2.170 SqrtDnum - Calculates the square root value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Value

	Limitations
	Syntax
	Related information

	2.171 STCalcForce - Calculate the tip force for a Servo Tool
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ToolName
	MotorTorque

	Error handling
	Syntax
	Related information

	2.172 STCalcTorque - Calculate the motor torque for a servo tool
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ToolName
	TipForce

	Error handling
	Syntax
	Related information

	2.173 STIsCalib - Tests if a servo tool is calibrated
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	ToolName
	[\sguninit]
	[\sgunsynch]

	Syntax
	Related information

	2.174 STIsClosed - Tests if a servo tool is closed
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Return value
	Arguments
	ToolName
	[\RetThickness]

	Syntax
	Related information

	2.175 STIsIndGun - Tests if a servo tool is in independent mode
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ToolName

	Syntax
	Related information

	2.176 STIsOpen - Tests if a servo tool is open
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Return value
	Arguments
	ToolName
	[\RetTipWear]
	[\RetPosAdj]

	Syntax
	Related information

	2.177 StrDigCalc - Arithmetic operations with datatype stringdig
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	StrDig1
	Operation
	StrDig2

	Program execution
	More examples
	Example 1
	Example 2
	Example 3
	Example 4

	Error handling
	Limitations
	Syntax
	Related information

	2.178 StrDigCmp - Compare two strings with only digits
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	StrDig1
	Relation
	StrDig2

	Program execution
	Error handling
	Limitations
	Syntax
	Related information

	2.179 StrFind - Searches for a character in a string
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Str
	ChPos
	Set
	[\NotInSet]

	Syntax
	Predefined data
	Related information

	2.180 StrLen - Gets the string length
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Str

	Syntax
	Related information

	2.181 StrMap - Maps a string
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	Str
	FromMap
	ToMap

	Syntax
	Predefined data
	Related information

	2.182 StrMatch - Search for pattern in string
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Str
	ChPos
	Pattern

	Syntax
	Related information

	2.183 StrMemb - Checks if a character belongs to a set
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Str
	ChPos
	Set

	Syntax
	Predefined data
	Related information

	2.184 StrOrder - Checks if strings are ordered
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Return value
	Arguments
	Str1
	Str2
	Order

	Syntax
	Predefined data
	Related information

	2.185 StrPart - Finds a part of a string
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Str
	ChPos
	Len

	Syntax
	Related information

	2.186 StrToByte - Converts a string to a byte data
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	ConStr
	[\Hex]
	[\Okt]
	[\Bin]
	[\Char]

	Limitations
	Syntax
	Related information

	2.187 StrToVal - Converts a string to a value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Str
	Val

	More examples
	Example 1

	Syntax
	Related information

	2.188 Tan - Calculates the tangent value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Angle

	Syntax
	Related information

	2.189 TanDnum - Calculates the tangent value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Angle

	Syntax
	Related information

	2.190 TaskRunMec - Check if task controls any mechanical unit
	Usage
	Basic examples
	Example 1

	Return value
	Program execution
	Syntax
	Related information

	2.191 TaskRunRob - Check if task controls some robot
	Usage
	Basic examples
	Example 1

	Return value
	Program execution
	Syntax
	Related information

	2.192 TasksInSync - Returns the number of synchronized tasks
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	TaskList

	Program execution
	Limitations
	Syntax
	Related information

	2.193 TaskIsActive - Check if a normal task is active
	Usage
	Basic examples
	Example 1

	Return value
	Predefined data
	Arguments
	TaskRef
	TaskName

	Error handling
	Syntax
	Related information

	2.194 TaskIsExecuting - Check if task is executing
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	TaskRef
	TaskName

	Error handling
	Syntax
	Related information

	2.195 TestAndSet - Test variable and set if unset
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Object

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	2.196 TestDI - Tests if a digital input is set
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Signal

	Error handling
	Syntax
	Related information

	2.197 TestSignRead - Read test signal value
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Channel

	Program execution
	More examples
	Example 1

	Syntax
	Related information

	2.198 TextGet - Get text from system text tables
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Table
	Index

	Error handling
	Syntax
	Related information

	2.199 TextTabFreeToUse - Test whether text table is free
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	TableName

	Limitations
	Syntax
	Related information

	2.200 TextTabGet - Get text table number
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Arguments
	TableName

	Syntax
	Related information

	2.201 TriggDataValid - Check if the content in a triggdata variable is valid
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	TriggData

	Syntax
	Related information

	2.202 Trunc - Truncates a numeric value
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Return value
	Arguments
	Val
	[\Dec]

	Syntax
	Related information

	2.203 TruncDnum - Truncates a numeric value
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Return value
	Arguments
	Val
	[\Dec]

	Syntax
	Related information

	2.204 Type - Get the data type name for a variable
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3

	Return value
	Arguments
	Data
	[\BaseName]

	Syntax
	Related information

	2.205 UIAlphaEntry - User Alpha Entry
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\InitString]
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]
	[\UIActiveSignal]

	Program execution
	Predefined data
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	2.206 UIClientExist - Exist User Client
	Usage
	Basic examples
	Example 1

	Return value
	Limitations
	Syntax
	Related information

	2.207 UIDnumEntry - User Number Entry
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\InitValue]
	[\MinValue]
	[\MaxValue]
	[\AsInteger]
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]
	[\UIActiveSignal]

	Program execution
	Predefined data
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	2.208 UIDnumTune - User Number Tune
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	InitValue
	Increment
	[\MinValue]
	[\MaxValue]
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]
	[\UIActiveSignal]

	Program execution
	Predefined data
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	2.209 UIListView - User List View
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Result]
	[\Header]
	ListItems
	[\Buttons]
	[\BtnArray]
	[\Icon]
	[\DefaultIndex]
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]()
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]
	[\UIActiveSignal]

	Program execution
	Predefined data
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	2.210 UIMessageBox - User Message Box type advanced
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Buttons]
	[\BtnArray]
	[\DefaultBtn]
	[\Icon]
	[\Image]
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]
	[\UIActiveSignal]

	Program execution
	Predefined data
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	2.211 UINumEntry - User Number Entry
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	[\InitValue]
	[\MinValue]
	[\MaxValue]
	[\AsInteger]
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]
	[\UIActiveSignal]

	Program execution
	Predefined data
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	2.212 UINumTune - User Number Tune
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	[\Header]
	[\Message]
	[\MsgArray]
	[\Wrap]
	[\Icon]
	InitValue
	Increment
	[\MinValue]
	[\MaxValue]
	[\MaxTime]
	[\DIBreak]
	[\DIPassive]
	[\DOBreak]
	[\DOPassive]
	[\PersBoolBreak]
	[\PersBoolPassive]
	[\BreakFlag]
	[\UIActiveSignal]

	Program execution
	Predefined data
	More examples
	Example 1

	Error handling
	Limitations
	Syntax
	Related information

	2.213 ValidIO - Valid I/O signal to access
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Signal

	Program execution
	Syntax
	Related information

	2.214 ValToStr - Converts a value to a string
	Usage
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Return value
	Arguments
	Val

	Syntax
	Related information

	2.215 VectMagn - Magnitude of a pos vector
	Usage
	Basic examples
	Example 1

	Return value
	Arguments
	Vector

	Syntax
	Related information

	2.216 XOR - Evaluates a logical value
	Usage
	Basic examples
	Example 1
	Example 2

	Return value
	Syntax
	Related information

	3 Data types
	3.1 aiotrigg - Analog I/O trigger condition
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.2 ALIAS - Assigning an alias data type
	Usage
	errnum type
	intnum type

	Basic examples
	Example 1

	Limitations
	Syntax
	Related information

	3.3 bool - Logical values
	Usage
	Description
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Related information

	3.4 btnres - Push button result data
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.5 busstate - State of I/O network
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.6 buttondata - Push button data
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.7 byte - Integer values 0 - 255
	Usage
	Description
	Basic examples
	Example 1
	Example 2

	Error handling
	Characteristics
	Related information

	3.8 cameradev - camera device
	Usage
	Description
	Limitations
	Predefined data
	Basic examples
	Example 1

	Characteristics
	Related information

	3.9 cameratarget - camera data
	Usage
	Description
	Components
	name
	cframe
	val1
	...
	val5
	string1
	string2
	type
	cameraname
	sceneid

	Basic examples
	Example 1

	Structure
	Related information

	3.10 capaptrreferencedata - Variable setup data for At-Point-Tracker
	Usage
	Components
	reference_y
	reference_z
	threshold_y
	threshold_z
	gain_y
	gain_z

	Structure
	Related information

	3.11 capdata - CAP data
	Usage
	Components
	start_fly
	end_fly
	first_instr
	last_instr
	restart_dist
	speed_data
	start_fly_point
	end_fly_point
	sup_timeouts
	proc_times
	block_at_restart

	Structure
	Related information

	3.12 caplatrackdata - CAP Look-Ahead-Tracker track data
	Usage
	Components
	joint_no
	filter
	calibframe_no
	seamoffs_y, seamoffs_z
	seamadapt_y, seamadapt_z
	track_mode

	Basic examples
	Syntax
	Related information

	3.13 capspeeddata - Speed data for CAP
	Usage
	Components
	fly_start
	start
	startspeed_time
	startmove_delay
	main
	fly_end

	Structure
	Related information

	3.14 captrackdata - CAP track data
	Usage
	Components
	device
	max_corr
	la_trackdata

	Basic examples
	Syntax
	Related information

	3.15 capweavedata - Weavedata for CAP
	Usage
	Description of weaving
	Components
	active
	width
	shape
	type
	length
	cycle_time
	height
	dwell_left
	dwell_center
	dwell_right
	dir
	tilt
	rot
	bias
	ptrn_sync_on

	Limitations
	Syntax
	Related information

	3.16 cfgdomain - Configuration domain
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.17 clock - Time measurement
	Usage
	Description
	Basic examples
	Example 1

	Limitations
	Characteristics
	Related information

	3.18 confdata - Robot configuration data
	Usage
	Description
	Configuration supervision
	6-axis robots
	4-axis robots
	Parallel arm robots (delta robots)
	SCARA robots
	7-axis robots
	Paint robots

	Robot configuration data
	6-axis robots with serial link
	6-axis robots with parallel rod
	4-axis robots
	Parallel arm robots
	SCARA robots
	7-axis robots
	Paint robots
	IRB 5500
	IRB 5350

	Components
	cf1
	cf4
	cf6
	cfx

	Basic examples
	Example 1

	Structure
	Related information

	3.19 corrdescr - Correction generator descriptor
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.20 datapos - Enclosing block for a data object
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.21 dionum - Digital values (0 - 1)
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.22 dir - File directory structure
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.23 dnum - Double numeric values
	Usage
	Description
	Basic examples
	Example 1
	Example 2
	Example 3

	Limitations
	Related information

	3.24 egmframetype - Defines frame types for EGM
	Usage
	Description
	Basic examples
	Predefined values
	Characteristics
	Related information

	3.25 egmident - Identifies a specific EGM process
	Usage
	Description
	Basic examples
	Limitations
	Characteristics
	Related information

	3.26 egm_minmax - Convergence criteria for EGM
	Usage
	Description
	Components
	Min
	Max

	Basic examples
	Characteristics
	Structure
	Related information

	3.27 egmstate - Defines the state for EGM
	Usage
	Description
	Basic examples
	Predefined values
	Characteristics
	Related information

	3.28 egmstopmode - Defines stop modes for EGM
	Usage
	Description
	Basic examples
	Predefined values
	Characteristics
	Related information

	3.29 errdomain - Error domain
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.30 errnum - Error number
	Usage
	Description
	Basic examples
	Example 1
	Example 2

	Predefined data
	Characteristics
	Related information

	3.31 errstr - Error string
	Usage
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.32 errtype - Error type
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.33 event_type - Event routine type
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.34 exec_level - Execution level
	Usage
	Description
	Predefined data
	Characteristics
	Related information

	3.35 extjoint - Position of external joints
	Usage
	Description
	Components
	eax_a
	...
	eax_f

	Basic examples
	Example 1

	Structure
	Related information

	3.36 flypointdata - Data for flying start/end
	Usage
	Definitions
	Components
	from_start
	process_dist
	distance

	Structure
	Related information

	3.37 handler_type - Type of execution handler
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.38 icondata - Icon display data
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.39 identno - Identity for move instructions
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.40 intnum - Interrupt identity
	Usage
	Description
	Basic examples
	Example 1
	Example 2

	Limitations
	Characteristics
	Related information

	3.41 iodev - Serial channels and files
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.42 iounit_state - State of I/O device
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.43 jointtarget - Joint position data
	Usage
	Description
	Components
	robax
	extax

	Basic examples
	Example 1

	Structure
	Related information

	3.44 listitem - List item data structure
	Usage
	Description
	Basic example
	Example 1

	Components
	image
	text

	Structure
	Related information

	3.45 loaddata - Load data
	Usage
	Description
	Components
	mass
	cog
	aom
	ix
	iy
	iz

	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Limitations
	Predefined data
	Structure
	Related information

	3.46 loadidnum - Type of load identification
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.47 loadsession - Program load session
	Usage
	Description
	Characteristics
	Related information

	3.48 mecunit - Mechanical unit
	Usage
	Description
	Limitations
	Predefined data
	Basic examples
	Example 1

	Characteristics
	Related information

	3.49 motsetdata - Motion settings data
	Usage
	Description
	Components
	vel.oride
	vel.max
	acc.acc
	acc.ramp
	acc.finepramp
	sing.wrist
	sing.lockaxis4
	sing.arm
	sing.base
	conf.jsup
	conf.lsup
	conf.ax1
	conf.ax4
	conf.ax6
	pathresol
	motionsup
	tunevalue
	backoffaftercoll
	acclim
	accmax
	decellim
	decelmax
	cirpathreori
	worldacclim
	worldaccmax
	evtbufferact
	corner_path_warn_suppress

	Limitations
	Basic examples
	Example 1

	Predefined data
	Structure
	Related information

	3.50 num - Numeric values
	Usage
	Description
	Basic examples
	Example 1
	Example 2

	Predefined data
	Limitations
	Related information

	3.51 opcalc - Arithmetic Operator
	Usage
	Description
	Examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.52 opnum - Comparison operator
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.53 orient - Orientation
	Usage
	Description
	Components
	q1
	q2
	q3
	q4

	Basic examples
	Example 1

	Limitations
	What is a Quaternion?
	Example 1
	Example 2

	Structure
	Related information

	3.54 paridnum - Type of parameter identification
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.55 paridvalidnum - Result of ParIdRobValid
	Usage
	Description
	Basic examples
	Predefined data
	Characteristics
	Related information

	3.56 pathrecid - Path recorder identifier
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.57 pnpdata - Configure pick and place paths
	Usage
	Description
	Components
	smooth_start
	smooth_end
	z_above_start
	z_above_end

	Basic examples
	Structure
	Related information

	3.58 pos - Positions (only X, Y and Z)
	Usage
	Description
	Components
	x
	y
	z

	Basic examples
	Example 1
	Example 2

	Structure
	Related information

	3.59 pose - Coordinate transformations
	Usage
	Description
	Components
	trans
	rot

	Basic examples
	Structure
	Related information

	3.60 processtimes - process times
	Usage
	Components
	pre
	post1
	post2

	Syntax
	Related information

	3.61 progdisp - Program displacement
	Usage
	Description
	Components
	pdisp
	eoffs

	Basic examples
	Example 1

	Predefined data
	Structure
	Related information

	3.62 rawbytes - Raw data
	Usage
	Description
	Basic examples
	Example 1

	Limitations
	Structure
	Related information

	3.63 restartblkdata - blockdata for restart
	Usage
	Components
	weave_start
	motion_delay
	pre_phase
	startspeed_phase
	post1_phase
	post2_phase

	Syntax
	Related information

	3.64 restartdata - Restart data for trigg signals
	Usage
	Definition
	Description
	Components
	restartstop
	stoponpath
	predo1val
	postdo1val
	prego1val
	postgo1val
	prego2val
	postgo2val
	prego3val
	postgo3val
	prego4val
	postgo4val
	preshadowval
	shadowflanks
	postshadowval

	Structure
	Related information

	3.65 rmqheader - RAPID Message Queue Message header
	Usage
	Description
	Components
	datatype
	ndim
	dim1
	dim2
	dim3

	Examples
	Example 1

	Structure
	Related information

	3.66 rmqmessage - RAPID Message Queue message
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.67 rmqslot - Identity number of an RMQ client
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.68 robjoint - Joint position of robot axes
	Usage
	Description
	Components
	rax_1
	...
	rax_6

	Structure
	Related information

	3.69 robtarget - Position data
	Usage
	Description
	Components
	trans
	rot
	robconf
	extax

	Basic examples
	Example 1
	Example 2

	Structure
	Related information

	3.70 sensor - External device descriptor
	Usage
	Description
	Components
	id
	error
	state

	Examples
	Example 1

	Structure
	Related information

	3.71 sensorstate - Communication state of the device
	Usage
	Description
	Predefined data
	Characteristics
	Related information

	3.72 sensorvardata - Multiple variable setup data for sensor interface
	Usage
	Components
	varnumber
	sensordatatype
	raw
	scale
	value

	Structure
	Related information

	3.73 shapedata - World zone shape data
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.74 signalorigin - Describes the I/O signal origin
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.75 signalxx - Digital and analog signals
	Usage
	Description
	Limitations
	Predefined data
	Characteristics
	Error handling
	Related information

	3.76 socketdev - Socket device
	Usage
	Description
	Basic examples
	Example 1

	Limitations
	Characteristics
	Related information

	3.77 socketstatus - Socket communication status
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.78 speeddata - Speed data
	Usage
	Description
	Components
	v_tcp
	v_ori
	v_leax
	v_reax

	Basic examples
	Example 1

	Limitations
	Predefined data
	Structure
	Related information

	3.79 stoppointdata - Stop point data
	Usage
	Description
	Components
	type
	progsynch
	inpos.position
	inpos.speed
	inpos.mintime
	inpos.maxtime
	stoptime
	followtime
	signal
	relation
	checkvalue

	Basic examples
	Inpos
	Stoptime
	Followtime

	Predefined data
	In position stop points
	Stop time stop points
	Follow time stop points

	Structure
	Related information

	3.80 string - Strings
	Usage
	Description
	Basic examples
	Example 1

	Limitations
	Predefined data
	Related information

	3.81 stringdig - String with only digits
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.82 supervtimeouts - Handshake supervision time outs
	Usage
	Components
	pre_cond
	start_cond
	end_main_cond
	end_post1_cond
	end_post2_cond

	Syntax
	Related information

	3.83 switch - Optional parameters
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.84 symnum - Symbolic number
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.85 syncident - Identity for synchronization point
	Usage
	Description
	Basic examples
	Example 1

	Structure
	Related information

	3.86 System data - Current RAPID system data settings
	Usage
	C_MOTSET
	C_PROGDISP
	ERRNO
	INTNO
	ROB_ID

	3.87 taskid - Task identification
	Usage
	Description
	Limitations
	Predefined data
	Characteristics
	Related information

	3.88 tasks - RAPID program tasks
	Usage
	Description
	Components
	taskname

	Basic examples
	Example 1

	Structure
	Related information

	3.89 testsignal - Test signal
	Usage
	Description
	Basic examples
	Example 1
	Example 2

	Predefined data
	Characteristics
	Related information

	3.90 tooldata - Tool data
	Usage
	Description
	Components
	robhold
	tframe
	tload
	Summary

	Basic examples
	Example 1
	Example 2

	Limitations
	Predefined data
	Structure
	Related information

	3.91 tpnum - FlexPendant window number
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.92 trapdata - Interrupt data for current TRAP
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.93 triggdata - Positioning events, trigg
	Usage
	Description
	Basic examples
	Example 1

	Characteristics
	Related information

	3.94 triggios - Positioning events, trigg
	Usage
	Description
	Components
	used
	distance
	start
	equiplag
	signalname
	setvalue
	xxx

	Examples
	Example 1

	Structure
	Related information

	3.95 triggiosdnum - Positioning events, trigg
	Usage
	Description
	Components
	used
	distance
	start
	equiplag
	signalname
	setvalue
	xxx

	Examples
	Example 1

	Structure
	Related information

	3.96 triggmode - Trigg action mode
	Usage
	Description
	Basic examples
	Example 1
	Example 2
	Example 3
	Example 4

	Predefined data
	Characteristics
	Related information

	3.97 triggstrgo - Positioning events, trigg
	Usage
	Description
	Components
	used
	distance
	start
	equiplag
	signalname
	setvalue
	xxx

	Examples
	Example 1

	Structure
	Related information

	3.98 tsp_status - Task selection panel status
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.99 tunetype - Servo tune type
	Usage
	Description
	Basic examples
	Example 1

	Predefined data
	Characteristics
	Related information

	3.100 uishownum - Instance ID for UIShow
	Usage
	Description
	Examples
	Example 1

	Characteristics
	Related information

	3.101 weavestartdata - weave start data
	Usage
	Components
	active
	width
	dir
	cycle_time

	Syntax
	Related information

	3.102 wobjdata - Work object data
	Usage
	Description
	Components
	robhold
	ufprog
	ufmec
	uframe
	oframe

	Basic examples
	Example 1

	Limitations
	Predefined data
	Structure
	Related information

	3.103 wzstationary - Stationary world zone data
	Usage
	Description
	Basic examples
	Example 1

	Limitations
	More examples
	Characteristics
	Related information

	3.104 wztemporary - Temporary world zone data
	Usage
	Description
	Basic examples
	Example 1

	Limitations
	More examples
	Structure
	Related information

	3.105 zonedata - Zone data
	Usage
	Description
	The zone for the TCP path
	Calculation of reorientation and additional axis zone
	Reduced corner zones

	Components
	finep
	pzone_tcp
	pzone_ori
	pzone_eax
	zone_ori
	zone_leax
	zone_reax

	Basic examples
	Example 1

	Predefined data
	Stop points
	Fly-by points

	Structure
	Related information

	4 Programming type examples
	4.1 ERROR handler with movements
	Usage
	Description
	Type examples
	Principle
	Automatic restart of execution
	Manual restart of execution

	Program execution
	Limitations
	Related information

	4.2 Service routines with or without movements
	Usage
	Description
	Type examples
	Principle
	Stop on path
	Stop in next stop point

	Program execution
	Limitations
	Related information

	4.3 System I/O interrupts with or without movements
	Usage
	Description
	Type examples
	Principle
	Stop on path
	Stop in next stop point

	Program execution
	Limitations
	Related information

	4.4 TRAP routines with movements
	Usage
	Description
	Type examples
	Principle
	Stop in next stop point
	Stop on path at once

	Program execution
	Limitations
	Related information

	Index

